

20th International Workshop on Advanced Computing and Analysis Techniques in Physics Research

A novel ML approach for the reconstruction of particle showers with a tracking detector

Elena Graverini and Paul de Bryas 30.11.2021

Contact: paul.debryas@epfl.ch, elena.graverini@epfl.ch

- We will present an approach using Convolutional Neural Networks for the reconstruction of particle showers using informations from a high-granularity tracking detector
- ML allows you go beyond calorimetry, also performing tracking
- We are developing this technique to improve the reconstruction of neutrinos at the SND@LHC experiment
- Being able to perform real-time calorimetry adds a lot to the SND@LHC physics case
- All of this is an ongoing exploratory work, for the time being.

Introduction

Example of a particle shower

- SND@LHC is a newly approved experiment at the Large Hadron Collider (LHC)
- Its objective it is to study neutrinos of all flavours produced at the ATLAS interaction point, measuring their cross-sections in the GeV-TeV range for the first time
- Detector can also probe light dark matter scattering signatures
- The tracker of this detector is built at EPFL

SND@LHC's installation undergoing in TI18 tunnel

SND@LHC detector layout

- Detector Layout: -target region: Emulsion walls (tungsten plates interleaved with nuclear emulsion films) combined with scintillating fibre (SciFi) tracking planes -Muon Identification system: iron plates interleaved with scintillating bars.
- Emulsion films are taken out for developing every few months while the SciFi layers allow real-time event analysis.

Paul de Bryas - 30.11.2021

<u>SND@LHC - Scattering and Neutrino Detector at the LHC</u>

Motivation

- active layers of a sampling calorimeter
- The goal is to use the information of the SciFi tracker to perform prompt analysis
- Overview of the talk:
 - -Energy reconstruction in EM showers (feasibility study) -How to deal with ghost hits
 - -Energy reconstruction in case of neutrino scattering (EM + HAD showers at SND@LHC)
 - -Future Neutrino flavour tagging

Paul de Bryas - 30.11.2021

For real-time event analysis, emulsion walls act as passive materials and SciFi planes behaves as the

5

- Shower energy resolution achievable by classical methods (counting hits) is ~22%
- It does not provide flavor tagging, nor use the topological information from the shower, nor from the muon detector
- Feasibility study convinced us to take this direction:
- Objective:

- Measure the energy of EM shower in the energy range 0-100 GeV.

Particle gun electron: - electrons shot on to the center of the first plane

Example of inputs: here the incoming particle is a 64 GeV electron.

- Procedure: SciFi hits (images) -> convolutional neural network (CNN) -> Energy
- Analysis of the detector response demonstrates that the target tracker planes behave as a sampling calorimeter.
- The CNN exhibits a resolution of 5% at E = 100 GeV and it is almost unbiased

Ghost hit problem

- Explain the pb!
- The architecture of the CNN was changed in order to use only the (x,z) and (y,z) projections of the simulated hits on the target tracker.
- This new architecture exhibits an average fractional energy resolution of 5.7% with PG data.
- keep the same resolution with less information!

Paul de Bryas - 30.11.2021

100

120

140

80 .

100 -

120

140

100

150

30000 events Linear Regression (Optimised CNN)

- Artificial Neural Networks algorithms are subset of ML
- They are comprised of one input layer, hidden layers, and an output layer.
- Each node of a layer is connected to all the nodes of the previous layer.
- Weights (->) are the parameters of the NN
- CNN are a type of Artificial Neural Networks originally designed for large number of inputs (pixels)
- The convolution operation allows to reduce drastically the number of NN parameters and to keep track of the spatial information between adjacent nodes.

Deep neural network Multiple hidden layers Input layeı

Image

4	

Convolved Feature

CERN

CMBR Block

Loss functions:

$$smooth_l1_loss$$

$$l(x,y) = \sum_{n} z_{n}$$

$$l(x,y) = \begin{cases} \frac{0.5 (x_{n} - y_{n})^{2}}{\beta} & if |x_{n} - y_{n}| < \beta \\ |x_{n} - y_{n}| - 0.5\beta & otherwise \end{cases}$$

translation

Paul de Bryas - 30.11.2021

 Our architecture is composed of n CMBR blocks where n should be proportional to the number of inputs.

A CMBR block is a succession of 4 different operations: -CoordConv= Convolution operation but invariant under

-MaxPool = take maximum value to reduce dimentionality -BatchNorm = normalisation to avoid very large value -ReLu = Removing negative values to increases the nonlinear properties of the loss function

Objective:

- Measure the energy of an EM shower induced by a neutrino in the energy range 100-5000 GeV (expected at SND@LHC)

Inputs:

 $-\nu_{\rho}$ neutrino with elastic scattering and charged-current deep inelastic scattering

- no simulation of readout electronics;
- hits are defined as a Yes/No signal in each pixel (no amplitude information)
- true (X, Y) positions of the simulated hits

Paul de Bryas - 30.11.2021

Example of inputs: here the incoming particle is a 767GeV ν_{e} . The shower induced by this particle produced hits (white dots) on the 5 SciFi planes

11

- Bias of ~9 GeV compared to 100-5000 GeV range
- Energy resolution around 500 GeV
- Degradation in performance is due to: -Shower generated at any depth in the detector -Shower sampling goes from $10X_0$ to $15X_0$ -> only 2 planes have a significant amount of hits on average -Analysis has to be improved
- We separate the data samples (elastic scattering vs) charged-current deep inelastic scattering) during the test of the CNN accuracy
- Elastic events seems to be better reconstructed

Neutrino energy reconstruction

N

- Objective: -as a first step towards flavour tagging we try to performed classification of elastic and inelastic events
- The spatial distribution of hits can be used as a way of discriminating between elastic and inelastic scattering events.
- The CNN used for the first study was modified to provide output label probabilities rather than a predicted energy value.

Classification of elastic and inelastic events

- for the event to be elastic or inelastic predicted by the CNN
- After training, the prediction accuracy was found to be 94.5%

Paul de Bryas - 30.11.2021

This time the loss function will evaluate the difference between the true label, and the probability

- Add information from the scintillating pads of the Muon detector
 –> greatly improve efficiency for not fully contained showers
- Study effect of non-binary SciFi channels response
- Move on to full detector simulation and higher stat samples
- Optimize network structure & parameters to achieve best energy resolution
- Add the possibility of adding tracking for isolated tracks (muons) to aid flavour tagging
- SND@LHC finishing installation -> Use in the LHC Run 3

15

- Using CNN algorithms for SND@LHC prompt analysis has many advantages:
 - once trained, it is fast and straightforward to compute the energy
 - It is flexible, as the same architecture can be used for multiple tasks (type of interaction, flavour tagging)
 - It can be very accurate
- Allow to perform real time physic
- It is very greedy: we need feed it a lot with labelled data to achieve acceptable accuracy. For this, an accurate description of the detector geometry and digitalisation of the detector signal is essential.
- It would be a crucial asset for particle detector operating at a high luminosity collider or beam dump
- In case of SND@LHC, after HL-LHC upgrade, emulsions cannot operate and a ML approach would become even more important
- New approach to neutrino physics with a tracking detector

Contact: paul.debryas@epfl.ch, elena.graverini@epfl.ch

<mark>감사해요</mark> (Thank you)

BACKUP

Muon upstream

5 planes of 82x61 cm made of 10 horizontal bars

3 planes of 82x61cm made of 2 layers (X and Y) of 60 bars each

Paul de Bryas - 30.11.2021

Muon downstream

SciFi tracker

5 planes of 41x40cm made of 2 layers (X and Y) with a $250 \mu m$ resolution

planes (smaller dimension of the input images)

Advantages:

- -It save a lot of computing time
- Optimal size of the sub-image calculated using whole sample: Take 3 sigma around the barycenter of the hits of the planes

•To find the optimal CNN architecture, we worked on a simplified dataset with smaller SciFi

-That avoid polluting the CNN with extra hits so that the shower features stand out better

	_			
			-	

Downsizing process

- Objective:
 - Measure the energy of an electronic shower in the energy range 0-100 GeV.
- Detector geometry used:
 - 4 planes of 41.6x38.7 cm.

 - Tungsten bricks of 5.6cm ($10X_0$ radiation lengths). - granularity implemented corresponds to the fibre diameter (250 μ m)
- Particle gun electron: - shot before the first plane though the center with a random angle within plus/minus 10°.
- Input information for the reconstruction: - (X, Y) truth positions of the hits used (from MC)
 - no simulation of readout electronics
 - hits are defined as a greyscale signal (amplitude of the hit proportional to the numb of hits that fall into the plane pixel).

)	e	r

- Detector geometry:
 - 5 planes of 41x40 cm.

 - separated by tungsten bricks of 7.8cm (15X0 radiation lengths). - granularity implemented correspond to the resolution of the SciFi ($250 \mu m$)
- Neutrino:
 - produced with Genie using the NuEElastic and CCDIS settings
 - energy range 100-5000 GeV
 - shotted in accordance with the alignment of the IP (off center of the plane) with a random angle.
 - shower starting point is spread uniformly over the detector length
- Input information for the reconstruction: - no simulation of readout electronics;
 - hits are defined as a Yes/No signal in each pixel (no amplitude information is used) - (X, Y) truth positions of the hits used (from MC)

