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LUXE EXPERIMENT LUAL

e |LUXE (Laser Und XFEL Experiment) is a proposed experiment at DESY aiming

to study QED in the strong-tfield regime where it becomes non-perturbative.

 Use European XFEL electron beam and high-power laser.

o CDR: arXiv:2102.02032, website: https://luxe.desy.de/
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https://arxiv.org/pdf/2102.02032.pdf
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LUXE EXPERIMENT SETUP
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TRACKING CHALLENGE

210 orders of magnitude!

e One of the main measurements at x 107
. . - e, phase-1
L UXE is the positron flux vs €. ’ 6" phase-0
'§ Y,» Phase-1
e Two challenges: = Y, phase-0
| | o g Yo phase-1
* Good linearity up to a multiplicity €
-
ot O(109).
e Background rate needs to be LUXE CDR
below 10-3/BX at low €. A
8x10~" 1 2 3 4 5 6 7 8910
S

nom

e Study the use of quantum computing.
>tudy X P I LUXE has a two-phase approach (2nd

phase with an upgraded laser).
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SIMULATION

, Beam line

e Signal interactions at the IP are generated with a custom Trifesr'tmn path ) _‘

MC (T. G. Blackburn, A. J. MacLeod, B. King, arXiv:2103.06673). X

\

e The resulting positrons are propagated through the dipole \

magnet and tracking detector using a simplified simulation.

. . . Tracks and hits
e For simplicity, consider four distributions inside tracker £ Di
: : ipole

detection layers without d |

gap/overlap. D
e Ability to turn on/off the detector

resolution effect, parametric o

multiple scattering, etc.

*Sketch not to scale
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https://arxiv.org/abs/2103.06673

TRACKING PROBLEM

e Study =3, 4, 5and 7 in the e-laser phase-1 scenario. Number of positrons
ranges from 800 to 500,000.

e Limit to the 500 tracks closest to the beam line 4 4.
(typically densest region) such that the size of the e e [
oroblem is constant.

e But the complexity increases due to increasing
track density with &

e Starting point: doublets (triplets) which is a set of two (three) hits in

consecutive layers.
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PRE-SELECTION

* Pre-selection is applied on the initial doublet/triplet candidates to reduce the

combinatorial candidates at ~100 % efficiency:. triplets
O----=-"=- >0~ —0
e Triplets are formed starting from doublets. R X
X
e Pre-selection based on the expected angles from image from Lucy Linder's thesis

geometry (doublet level) and the straightness of the

triplet candidates. friplet

e Triplets are formed from 1st to 3rd layer, and 2nd 0 ’
to 4th layer.
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CLASSICAL BENCHMARK

 As benchmark, we use an ACTS"-based tracking with combinatorial
Kalman Filter (CKF) technique for the track finding and fitting.

e Seeding using the tirst three layers, similar to the triplet pre-selection.

e |nitial estimate of track parameters from seed is
used to predict next hit and updated progressively, _
with the measurement search performed at the same

time as the fit. o

 Ambiguity solving applied to remove tracks with shareo .

hits from the initial track collection. o

*ACTS: A Common Tracking Software https://acts.readthedocs.io
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https://acts.readthedocs.io

GRAPH NEURAL NETWORK

e Graph constructed from doublets.

e Hits are nodes and the connections between them are

A segment

Y

)

edges. The doublet structure is called a segment. A node

An edge

e All nodes of consecutive layers are connected, and only the ones that satisfy pre-

selection cuts are kept.

}>K[~\w|a-\--~-tl~-*'“‘"“"“-*l l [

e Developedin HE

P

(arXiv:2103.06995).
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rkX project (arXiv:1810.06111) and further extended in

-xa. TrkX

Hybrid gquantum-classical version also exists (Q.TrkX, arXiv:2109.12636)



https://arxiv.org/abs/1810.06111
https://arxiv.org/abs/2103.06995
https://arxiv.org/abs/2109.12636

THE QUANTUM APPROACH

 The triplets are identitied to form tracks by expressing the problem as a quadratic
unconstrained binary optimisation (QUBO), problem similar to https://doi.org/

10.1007//s41781-012-0032-5".

e Minimising the QUBO is equivalent to finding the ground state of the Hamiltonian.

a; quantity the quality of the triplets.

N N N bi; quantify the compatibility between
O(a,b, T) = a.l. + b.T.T. T.,T.e€{0,1} tripletpairs.
i=Z1 o Z ; e b;= 0, it no shared hit

Quality of triplets Compaz%ibility | = 4 1, if in conflict
between triplet pairs
= — S(7;, T, it two hits are shared

"Bapst, F., Bhimji, W., Calatiura, P. et al. A Pattern Recognition Algorithm for Quantum Annealers. Comput Softw Big Sci 4, 1 (2020).
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https://doi.org/10.1007/s41781-019-0032-5
https://doi.org/10.1007/s41781-019-0032-5

SOLVING QUBO

QO—:;; :‘;1 311
e QUBO can be mapped to Ising Hamiltonian and 0 - R Ry R
solved using Variational Quantum Eigensolver (VQE). «. J& Ry R
N N q3 — Ry Ry Ry
&3] g10] g17]
. § : T T . 2 : x : . .
H T Jn 0n—|—1 v Jn 9 = :41 q'}n ;:s]
n=1 n=1 95 = :5: ;:;l ;:;1_
e Use Qiskit from IBM. % L i
e Two sets of results: £ 3.0
_| X500-selection 1 7'/X500 - 1363
. . . . . . 10-1 §=4.0
e Exact solution using matrix diagonalisation Fixso0 - 250
(NumPy Eigensolver) for benchmarking _ e
1072 — 2
T/X500 = 3715

e VQE (without QC noise) using one choice of Ansatz and optimiser.

Fraction of counts
(-
o
&

* As € increases, the track density increases and the number ot .
interactions of a triplet with other triplets too increases. [ﬂ‘

0 10 20 30 40 50 60 70
Number of interactions with other triplets
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SUB-QUBO

e Need as many qubits as there are triplets.

e Due to the limited number of qubits, the QUBO is
split into sub-QUBOs (of size 7) to be solved.

o After the sub-QUBOs are solved, the results are
combined and a tabu search performed.

e Repeat for niterations.

—150
& =7.0, Scattering -&- VQE (COBYLA) & =7.0, Non-Scattering -&- VQE (COBYLA)
2001 W == Numpy Eigensolver | Numpy-Eigensolver
[\ == Enin = = Emin
i\
—2507 '\ :
> _300{ | —-o-%o-0_ -"-0- *-o \
o 1 \
5 \ \
(5 Y ~®
—400 | 1
l\'
—450 - - -p-82--8-E—-2--80
=500 e e e [ e
2 4 6 8 10 12 1 2 3 4 5 6 7 8 9
Iteration Iteration
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local
optimisation

global
optimisation

iNnitial solution

{quantum}

tabu search

------------------------ e

final solution

Image from Lucy Linder’s thesis
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Toy Model

-------------------------------------------------------

Triplets (kept, rejected)

Doublets

subQUBOs
Group Triplets l | ; . .
; ; Trajectories
Quantum | :
: Real, Fake,
QUBO Algorithm Missed
Model Building subQUBO Solver Processing
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PERFORMANCE

* Track must contain four hits, found either with classical CKF tracking or combining
selected triplet pairs into quadruplets if they share two hits between them.

e A correct track has all four hits matched to the same generated particle.

e Performance metrics:
M atched Nfa ke

—fficiency = tracks and Fake rate = tracks
generated Nreconstructed
tracks tracks

e Compare classical (CKF and GNN) and quantum (VQE and exact solution) approaches.

 Noise and real guantum device also tested but at a smaller scale.

Yee Chinn Yap
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RESULTS

Multiple scattering included Multiple scattering included
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§ §

* Conventional tracking as benchmark shows the performance that can be realistically

achieved. Room for improvement for other tracking methods (preliminary results shown).

*GNN performance limited by training data size.
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SUMMARY AND NEXT STEPS

* Tracking challenge in LUXE presented.

e Study the use of a hybrid quantum-classical algorithm in track reconstruction along with
conventional tracking method as well as GNN-based tracking.

e A firstimplementation of track reconstruction in LUXE using quantum devices is in place.

e Preliminary study shows performance similar to traditional algorithms, however

imited by the size of the device.

e Next:

e Study the performance in more extreme environments, take into account the QC
noise and explore regions where QC could outperform the traditional methods.

Yee Chinn Yap
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BACK-UP SLIDES



VQE

e VQE ansatz: Twolocal with Ry, and circular CNOT entangler.

e Optimiser: Constrained Optimization by Linear Approximation (COBYLA).
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QUANTUM DEVICE

e Comparison of real quantum hardware and ideal noise-free simulation.

e 2 tracks, 5 triplets, 5 qubits.
1000
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e Correct triplet identitied.
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