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Introduction to the project

« Detection of gravitational waves (GWSs) at LIGO

Source: Elena Cuoco - Real Time Classifier for transient signals in Gravitational Waves, From raw data to classified triggers
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Amplitude of Whitened Strain (H1)

Amplitude of Whitened Strain (L1)

LIGO Dataset

Sample #1
njection Parameters:

massl = 66.45, mass2 = 33.96, spinlz = 0.54, spin2z = 0.01, ra = 4.73, dec = -0.25, coa_phase = 1.32, inclination = 2.62, polarization = 4.79, injection_snr = 15.10
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Source: github.com/timothygebhard/ggwd, https://www.gw-openscience.org/data/
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LIGO Dataset
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Currently used methods

Matched Filtering

* Current method used by LIGO 100

« Compares incoming GW data to bank of simulated S—— .///;
waveforms NARAR Ml /

» Can only identify GWs that are available in GW
banks (no exotic events)

Deep Filtering

Sensitivity (%)

« Convolutional Neural Networks (CNNs)

Take time-series inputs, can determine detections
and estimate parameters of events

. ) e s . . 8 10 12 14 16
séltll can miss events that aren'’t included in training Optimal Matched—Filter SNR

cep Filtering —— Matched Filtering

Source: https://arxiv.org/pdf/1711.03121.pdf, https://arxiv.org/pdf/2005.06534.pdf
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Unsupervised Learning: Autoencoder

 Encoders and decoders made of:

e Dense Neural Networks

e Recurrent Neural Networks (RNNs) such as
LSTMSs or GRUs which are good with dealing
with time-dependent data

* Convolutional layers

e Spiking Neural Networks (interesting
proposition!)

Input Data 6



Unsupervised Learning: Detection

https://qithub.com/eric-moreno/LSTM-Autoencoder

» | Comparing input and reconstructed
I data gives a model loss

Anomaly detection sequence:

1. Train autoencoder to encoder and decode
data on data with no anomalies.

2. Compute the highest loss on the training
dataset — set as threshold for anomalous
detection

3. Run autoencoder for test data, identify
events that fall above detection threshold

Input Data Encoded Data Reconstructed Data 7


https://github.com/eric-moreno/LSTM-Autoencoder
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https://github.com/eric-moreno/LSTM-Autoencoder

Event Loss with Autoencoders

LSTM Autoencoder Output
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Supervised vs Unsupervised BBH

LIGO|Single-Detector|BBH Detection

II| 1 1 Illll?l T IIIII| 1 1 | R

1.0— = CNN trained w/ BBH (auc = 0.92)

 BBH generated from SEOBNRv4 = NN trained w/ BNS (auc = 0.53)
Approximan i

* High mass BH (10-80+ solar masses) = NN Autoencoder (auc = 0.66)
produce large amplitude events 08—

* Both autoencoders perform better than
supervised models generalized from BNS
data

* Outperforms supervised methods (trained
on equivalent length data) at below FPR =
0.04
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AE can be used for:
» Triggering on high SNR rare events
* Glitch detection within LIGO apparatus 02— n
* Glitches are hard to simulate and
more easily identifiable with AE
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https://arxiv.org/abs/2107.12698

Supervised vs Unsupervised BNS

LIGO Single-Detector[BNS Detection
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[

= CNN trained w/ BBH (auc = 0.59)
== CNN trained w/ BNS (auc = 0.77)
= | STM Autoencoder (auc = 0.59)
= GRU Autoencoder (auc = 0.57)
= CNN Autoencoder (auc = 0.54)

*  BNS generated from IMRPhenomDNRTidal_v2
Approximant

 BNS are lower mass (1.1-2.1 solar masses)
than black holes and produce lower amplitude
(and higher frequency) signatures

» Generalization performance stagnates for both
models meaning that they are extracting the
same amount of signal from events

* Outperforms supervised methods (trained on
equivalent length data) at below FPR = 0.1
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https://arxiv.org/abs/2107.12698

Exploiting Dual-Detector Coincidence
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Dependence on SNR

o LIGO Dual-Detector BBH Detection o LIGO Dual-Detector BNS Detection
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Summary - Recurrent-AE

* We have developed a recurrent unsupervised anomaly detection learning method to
detect GWs (or other anomalies) in LIGO detector [2107.12698]

* Builds on CNN-AE methods [2103.07688], providing an upgraded performance

* This source-agnostic method generalizes better to exotic events than supervised learners

* Source-agnostic method trained on same length of data outperforms supervised methods
at low FPRs

e Squares FPR at TPR working-point for each additional LIGO detector built

* Optimization for real-detector conditions is ongoing (but demonstrates similar
performance to simulated LIGO data)

* Beyond scope of this talk: the algorithm has been accelerated for real-time use at LIGO by
a team at ICL, CERN [2106.14089]

* Could yield promising discoveries of new GW sources that haven’t been sufficiently
simt)JIated or are computationally prohibitive (Supernova, Gravitational Bremsstrahlung,
etc.

. Coul?d be used for any number of time-series anomaly detection applications — possibly
HEP"

* Next step: Transformers!
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Thank you for your attention!

Questions?




