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Introduction to the project
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Source: Elena Cuoco - Real Time Classifier for transient signals in Gravitational Waves, From raw data to classified triggers  

Produces: 1-D time-series strain 

• Detection of gravitational waves (GWs) at LIGO  



LIGO Dataset
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Source: github.com/timothygebhard/ggwd, https://www.gw-openscience.org/data/

1. Simulates typical detector noise 
conditions from a PSD

2. Simulates GW waveforms for the 
following conditions:
• Binary masses of black hole 

mergers (BBH) or neutron 
star mergers (BNS) 

• SNR of 5-20
• Variable angles in the sky

3. Adds GW strain into noise for 
signal events

4. Data is whitened, bandpass, and 
normalized

https://github.com/timothygebhard/ggwd
https://www.gw-openscience.org/data/
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Currently used methods
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Source: https://arxiv.org/pdf/1711.03121.pdf, https://arxiv.org/pdf/2005.06534.pdf

, 

Matched Filtering
• Current method used by LIGO 
• Compares incoming GW data to bank of simulated 

waveforms
• Can only identify GWs that are available in GW 

banks (no exotic events)

Deep Filtering

• Convolutional Neural Networks (CNNs) 
• Take time-series inputs, can determine detections 

and estimate parameters of events 
• Still can miss events that aren’t included in training 

set

https://arxiv.org/pdf/1711.03121.pdf
https://arxiv.org/pdf/2005.06534.pdf


Unsupervised Learning: Autoencoder
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• Encoders and decoders made of:
• Dense Neural Networks
• Recurrent Neural Networks (RNNs) such as 

LSTMs or GRUs which are good with dealing 
with time-dependent data

• Convolutional layers
• Spiking Neural Networks (interesting 

proposition!) 



Unsupervised Learning: Detection
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https://github.com/eric-moreno/LSTM-Autoencoder

Comparing input and reconstructed 
data gives a model loss

Anomaly detection sequence:
1. Train autoencoder to encoder and decode 

data on data with no anomalies. 
2. Compute the highest loss on the training 

dataset – set as threshold for anomalous 
detection

3. Run autoencoder for test data, identify 
events that fall above detection threshold

https://github.com/eric-moreno/LSTM-Autoencoder


LSTM AE 
Architecture
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https://github.com/eric-moreno/LSTM-Autoencoder

https://github.com/eric-moreno/LSTM-Autoencoder
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Event Loss with Autoencoders

• LSTM AE evaluated BBH and BNS 
events yields promising results

• Red dotted line represents 
detection threshold which can 
be determined according to FPR

• During training, AE never 
receives information about any 
GW (signal) -> Source Agnostic
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Supervised vs Unsupervised BBH

• BBH generated from SEOBNRv4 
Approximant

• High mass BH (10–80+ solar masses) 
produce large amplitude events

• Both autoencoders perform better than 
supervised models generalized from BNS 
data

• Outperforms supervised methods (trained 
on equivalent length data) at below FPR = 
0.04

AE can be used for: 
• Triggering on high SNR rare events
• Glitch detection within LIGO apparatus

• Glitches are hard to simulate and 
more easily identifiable with AE

https://arxiv.org/abs/2107.12698
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LIGO Single-Detector BBH Detection

CNN trained w/ BBH (auc = 0.92)
CNN trained w/ BNS (auc = 0.53)
LSTM Autoencoder (auc = 0.73)
GRU Autoencoder (auc = 0.67)
CNN Autoencoder (auc = 0.66)

https://arxiv.org/abs/2107.12698
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LIGO Single-Detector BNS Detection

CNN trained w/ BBH (auc = 0.59)
CNN trained w/ BNS (auc = 0.77)
LSTM Autoencoder (auc = 0.59)
GRU Autoencoder (auc = 0.57)
CNN Autoencoder (auc = 0.54)
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Supervised vs Unsupervised BNS

• BNS generated from IMRPhenomDNRTidal_v2 
Approximant 

• BNS are lower mass (1.1–2.1 solar masses) 
than black holes and produce lower amplitude 
(and higher frequency) signatures 

• Generalization performance stagnates for both 
models meaning that they are extracting the 
same amount of signal from events

• Outperforms supervised methods (trained on 
equivalent length data) at below FPR = 0.1

https://arxiv.org/abs/2107.12698

https://arxiv.org/abs/2107.12698
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Exploiting Dual-Detector Coincidence
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LIGO Dual-Detector BNS Detection

CNN trained w/ BBH (auc = 0.63)
CNN trained w/ BNS (auc = 0.82)
LSTM Autoencoder (auc = 0.63)
GRU Autoencoder (auc = 0.60)
CNN Autoencoder (auc = 0.56)
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LIGO Dual-Detector BBH Detection

CNN trained w/ BBH (auc = 0.96)
CNN trained w/ BNS (auc = 0.57)
LSTM Autoencoder (auc = 0.79)
GRU Autoencoder (auc = 0.73)
CNN Autoencoder (auc = 0.72)
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Dependence on SNR
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Summary - Recurrent-AE

• We have developed a recurrent unsupervised anomaly detection learning method to 
detect GWs (or other anomalies) in LIGO detector [2107.12698] 
• Builds on CNN-AE methods [2103.07688], providing an upgraded performance

• This source-agnostic method generalizes better to exotic events than supervised learners
• Source-agnostic method trained on same length of data outperforms supervised methods 

at low FPRs
• Squares FPR at TPR working-point for each additional LIGO detector built 
• Optimization for real-detector conditions is ongoing (but demonstrates similar 

performance to simulated LIGO data) 
• Beyond scope of this talk: the algorithm has been accelerated for real-time use at LIGO by 

a team at ICL, CERN [2106.14089]
• Could yield promising discoveries of new GW sources that haven’t been sufficiently 

simulated or are computationally prohibitive (Supernova, Gravitational Bremsstrahlung, 
etc.)

• Could be used for any number of time-series anomaly detection applications – possibly 
HEP? 

• Next step: Transformers!

https://arxiv.org/abs/2107.12698
https://arxiv.org/abs/2103.07688
https://arxiv.org/abs/2106.14089


Thank you for your attention!

Questions?


