





# A First Application of Collaborative Learning in Particle Physics

29th November, 2021

**Stefano Vergani HEP GROUP – Cavendish Laboratory** 

#### **OVERVIEW**

- Introduction
- Collaborative Learning and the Colearn Library
- Usability in Particle Physics
- Neutrino Dataset
- Keras Models
- Results
- Conclusion and Future work



#### **Personal Introduction**

- PhD student specialised in neutrino physics and artificial intelligence
- Funded by UK STFC Centres for Doctoral Training in Data Intensive Science
- Working on data analysis for Deep Underground Neutrino
   Experiment (DUNE) and its prototype Proto-DUNE Single Phase (SP)
- Focus on new technologies for AI: hardware and software
- Currently finishing internship at UK Cambridge-based company Fetch.ai (<a href="https://fetch.ai/">https://fetch.ai/</a>)
- Co-author Attila Bagoly works at Fetch.Al
- For any questions: sv408@hep.phy.cam.ac.uk



## **Federated Learning and Collaborative Learning**

Federated Learning: the model is sent to the data (typically edge devices) and trained locally.

Example: Apple trains their model to recognise the user's writing style directly on the I-Phone, without actually knowing what the user writes.

**Collaborative Learning**: there is a collection of different datasets. One dataset is randomly picked to see if the weights from the chosen dataset improve the performance of the model.

Example: the user wants to sell on the market validated images to improve one machine learning model. The potential buyers want to see how good are these images compared to others.



# **Colearn Library**

Colearn is a library that enables privacy-preserving decentralized machine learning tasks on the FET network.

Useful for building a shared machine learning model without:

- relying on a central authority
- Revealing your dataset to the other stakeholders

The library can be found here: https://docs.fetch.ai/colearn/

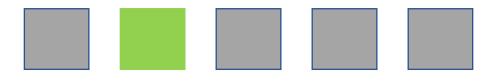


# **Colearn Library in a Nutshell**

A group of learners come together and each one of them has a dataset



One learner is randomly selected to train the model



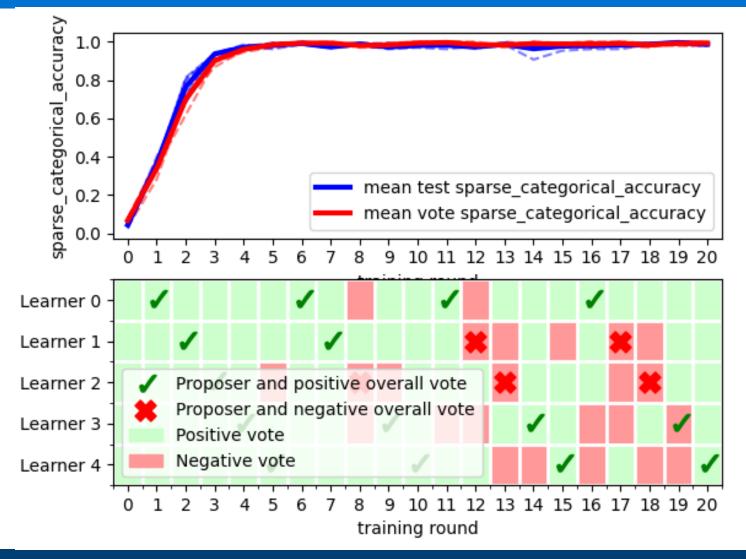
Each learner votes on whether the new weights are an improvement



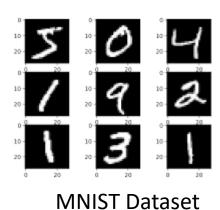
If the majority agrees, new weights are accepted, and a new round starts



#### **Colearn for Keras with MNIST dataset**



5 Learners20 Rounds



## **Usability in Particle Physics**

Only for DUNE, there are countless different datasets and machine learning (ML) models being used.

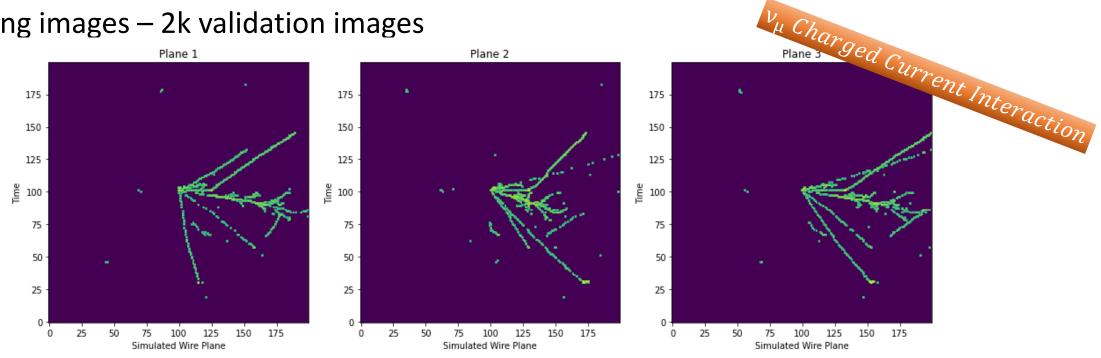
#### This library can be used for:

- 1. Using different datasets to train together a ML model.
- 2. Identifying the most performant datasets for a given ML model scientifically and impartially.
- 3. Identifying the most performant ML model for a given dataset. It is possible to change the structure of the code so that each learner will bring a different ML model instead of a different dataset.

#### **Neutrino Dataset**

- Liquid Argon Time-Projection Chamber (LArTPC) simulated images
- 3 simulated wire planes, 200x200 pixels which mimic wire readouts
- 3 classes of interaction: neutrino neutral current (NN), muon neutrino charged current  $(v_{\mu}CC)$ , electron neutrino charged current  $(v_{e}CC)$

10k training images – 2k validation images

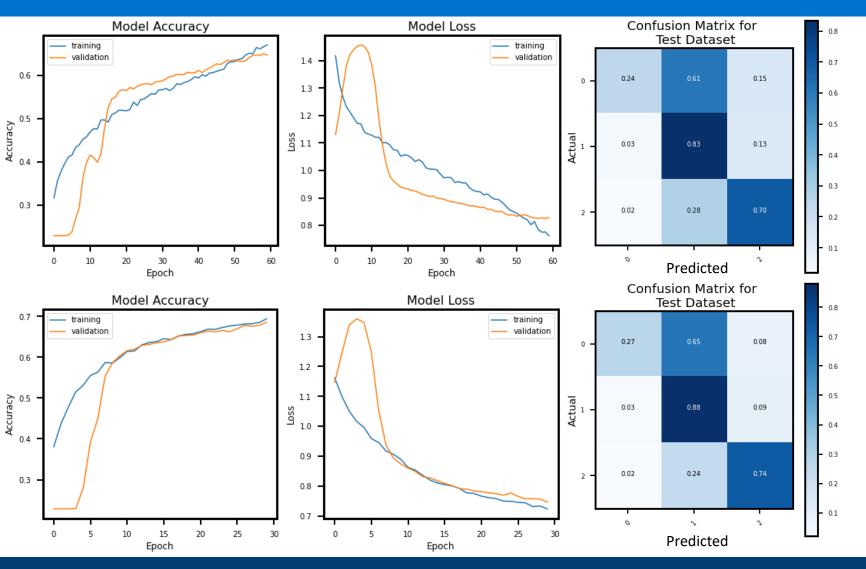




#### **Neutrino Dataset for Learners**

- For this experiment, we broke the neutrino train dataset into x parts and each part was assigned to one learner. This is to simulate different datasets coming from different sources.
- To maintain the proof of concept as objective as possible, the test dataset has been divided into x parts as well. Each learner will test the new set of weights on its own subset of test images, as it would normally happen.

#### ResNet 50 V2 and DenseNet 169



#### ResNet-50 V2

Validation accuracy **64.15**%

#### **Confusion Matrix Values:**

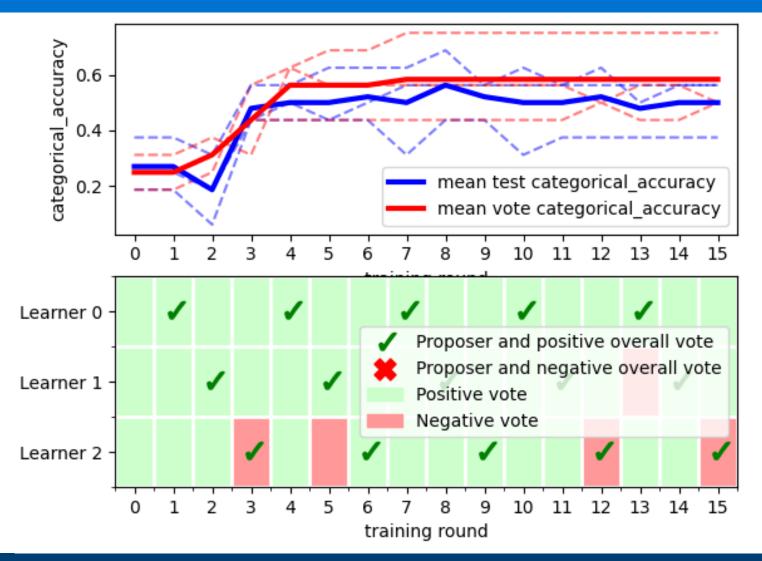
- 0. NN
- 1.  $\nu_{\mu}$ CC
- $2. \nu_e CC$

#### DenseNet-169

Validation accuracy **68.6**%

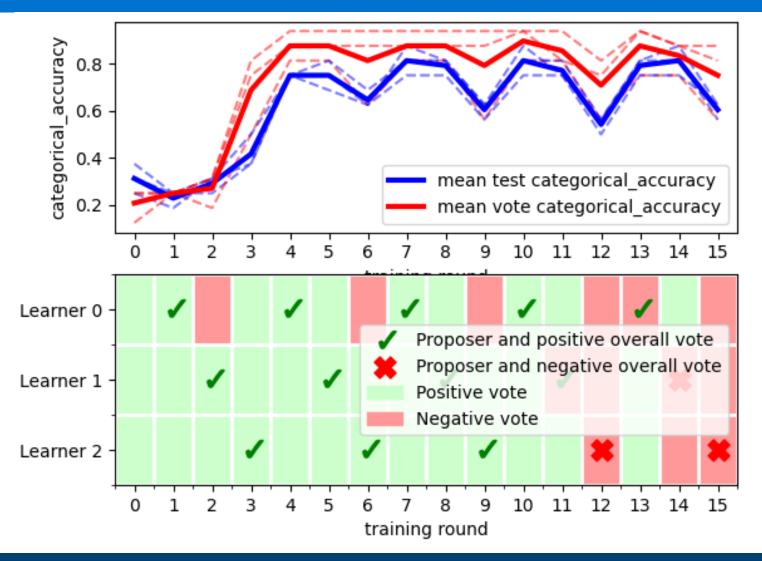


#### Results – ResNet 50 V2



3 Learners15 Rounds

#### **Results – DenseNet 169**



3 Learners15 Rounds

#### Results

- Efficiency tends to ramp up and reaches a plateau during the first 4 rounds.
- The more rounds we add, the higher is the possibility that a new set of weights is not chosen.
- Bad datasets tend to be ignored already during the first rounds.
- Mean vote tends to have higher efficiency than mean test.
- The overall efficiency is similar to the one obtained training the model with a single dataset.
- After reaching the plateau, the efficiency starts to oscillate.



#### **Conclusion and Future Work**

- ✓ Exponential usage of AI in particle physics requires new technologies to compare different ML models and datasets.
- ✓ This experiment worked and showed that this library can be successfully used also for very complicated datasets, as the ones used in particle physics.
- > Several tests on scalability and benchmarks with different Keras models are now needed.
- > Implementation on a new approach to test different ML models on the same dataset on planning stage.
- > Colearn and in general Collaborative Learning are ready to be used by the community!



# Thank you for your attention!!

For any questions: sv408@hep.phy.cam.ac.uk

