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Personal Introduction

• PhD student specialised in neutrino physics and artificial intelligence
• Funded by UK STFC Centres for Doctoral Training in Data Intensive 

Science
• Working on data analysis for Deep Underground Neutrino 

Experiment (DUNE) and its prototype Proto-DUNE Single Phase (SP)
• Focus on new technologies for AI: hardware and software
• Currently finishing internship at UK Cambridge-based company 

Fetch.ai (https://fetch.ai/)
• Co-author Attila Bagoly works at Fetch.AI
• For any questions: sv408@hep.phy.cam.ac.uk

https://fetch.ai/
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Federated Learning and Collaborative Learning

Federated Learning: the model  is sent to the data (typically edge devices) and trained locally.

Example: Apple trains their model to recognise the user’s writing style directly on the I-Phone, 
without actually knowing what the user writes. 

Collaborative Learning: there is a collection of different datasets. One dataset is randomly picked 
to see if the weights from the chosen dataset improve the performance of the model.

Example: the user wants to sell on the market validated images to improve one machine learning 
model. The potential buyers want to see how good are these images compared to others.
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Colearn Library

Colearn is a library that enables privacy-preserving decentralized machine learning 
tasks on the FET network.
Useful for building a shared machine learning model without:
• relying on a central authority
• Revealing your dataset to the other stakeholders

The library can be found here: https://docs.fetch.ai/colearn/
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Colearn Library in a Nutshell

A group of learners come together
and each one of them has a dataset

One learner is randomly selected to
train the model

Each learner votes on whether the
new weights are an improvement

If the majority agrees, new weights
are accepted, and a new round
starts
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Colearn for Keras with MNIST dataset

5 Learners
20 Rounds

MNIST Dataset
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Usability in Particle Physics

Only for DUNE, there are countless different datasets and machine learning  (ML) models being 
used.

This library can be used for:

1. Using different datasets to train together a ML model.
2. Identifying the most performant datasets for a given ML model scientifically and impartially.
3. Identifying the most performant ML model for a given dataset. It is possible to change the 

structure of the code so that each learner will bring a different ML model instead of a 
different dataset.
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Neutrino Dataset

• Liquid Argon Time-Projection Chamber (LArTPC) simulated images
• 3 simulated wire planes, 200x200 pixels which mimic wire readouts
• 3 classes of interaction: neutrino neutral current (NN) , muon neutrino charged current 

(νμCC), electron neutrino charged current (ν𝑒CC)

• 10k training images – 2k validation images
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Neutrino Dataset for Learners

• For this experiment, we broke the neutrino train dataset into x parts and each 
part was assigned to one learner. This is to simulate different datasets coming 
from different sources.

• To maintain the proof of concept as objective as possible, the test dataset has 
been divided into x parts as well. Each learner will test the new set of weights on 
its own subset of test images, as it would normally happen.
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ResNet 50 V2 and DenseNet 169

ResNet-50 V2
Validation accuracy 64.15%

DenseNet-169
Validation accuracy 68.6%

Confusion Matrix Values:
0. NN
1. νμCC

2. ν𝑒CC
Predicted

Predicted
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Results – ResNet 50 V2

3 Learners
15 Rounds
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Results – DenseNet 169

3 Learners
15 Rounds
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Results

• Efficiency tends to ramp up and reaches a plateau during the first 4 rounds.
• The more rounds we add, the higher is the possibility that a new set of weights is not 

chosen.
• Bad datasets tend to be ignored already during the first rounds.
• Mean vote tends to have higher efficiency than mean test.
• The overall efficiency is similar to the one obtained training the model with a single 

dataset.
• After reaching the plateau, the efficiency starts to oscillate.
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Conclusion and Future Work

✓ Exponential usage of AI in particle physics requires new technologies to compare different ML 
models and datasets.

✓ This experiment worked and showed that this library can be successfully used also for very 
complicated datasets, as the ones used in particle physics.

➢ Several tests on scalability and benchmarks with different Keras models are now needed.
➢ Implementation on a new approach to test different ML models on the same dataset on 

planning stage.
➢ Colearn and in general Collaborative Learning are ready to be used by the community!
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Q&A

Thank you for your attention!!

For any questions:
sv408@hep.phy.cam.ac.uk


