
Nanosecond Jet Classification at LHC

Introduction
The Large Hadron Collider(LHC) at CERN will go thorugh an upgrade (HL-LHC) to increase the rate of proton collisions, allowing experiments to collect one order of magnitude more data. This will demand a more efficient real-time event
filter and this study shows how to perform jet classification on field-programmable gate arrays (FPGA) within O(100) ns. Through quantization-aware training (QAT) and efficient FPGA implementations, we show that nanosecond inference
using complex architectures like graph neural networks are feasible at low resource-cost.

Neural Network Architechtures
The Models are implemented using Keras and Tensorflow libraries. We compare the following
architectures:
▶ A deep multilayer perceptron (MLP)
▶ A Graph Convolutional Network(GCN)
▶ An Interaction Network (IN)

For graph models the jet is represented as a fully connected graph, where each node is associated to a jet
constituent and its features.

Dataset

In this study we analyze the public HLS jet dataset [1], consisting of jets
from five different origins: quark (q), gluon (g), W boson, Z boson, and top
(t) jets, with up to N = 50 jet particle constituents. We use a scenario of jets
with N = 8 constituents, the expected average number at the L1T. We
define the constituents features as Pt ,𝜂 and 𝜙 relative to the jet axis.

Full Precision Models Performance
Each model is first trained at floating-point precision, establishing the baseline performance that the
quantized model on FPGA should match. The table bellow shows the models size and performance
parameters.

Model Param. Oper. Accuracy AUC FPR @30% TPR
q g W Z t q g W Z t q g W Z t

MLP 4,925 9840 0.82 0.86 0.84 0.85 0.90 0.82 0.86 0.87 0.86 0.91 0.043 0.022 0.032 0.023 0.011
GCN 5,045 11847 0.83 0.86 0.86 0.87 0.90 0.84 0.87 0.90 0.88 0.92 0.042 0.019 0.021 0.010 0.009
IN 4,289 92544 0.83 0.86 0.86 0.87 0.90 0.84 0.87 0.89 0.88 0.92 0.042 0.019 0.022 0.012 0.006

References:
1) HLS4ML LHC Jet Dataset , https://doi.org/10.5281/zenodo.3601443 , J.M.Duarte and others, 2020

2) QKeras - https://github.com/google/qkeras , C.Coelho, 2019

3) HLS4ML - https://fastmachinelearning.org/hls4ml , 2018

Quantized Models Performance

Quantization aware training (QAT) of each model is implemented using the QKeras library [2]. The bit
precision is scanned between 2 and 16 with a 1-bit step, when quantizing a model. The QAT performance
obtained for each model as a function of the bit width is shown bellow.

2 4 6 8 10 12 14 16
bitwidth

0.5

0.6

0.7

0.8

0.9

1.0

AU
C

MLP
q
g
W
Z
t

2 4 6 8 10 12 14 16
bitwidth

0.5

0.6

0.7

0.8

0.9

1.0

AU
C

GCN
q
g
W
Z
t

2 4 6 8 10 12 14 16
bitwidth

0.5

0.6

0.7

0.8

0.9

1.0

AU
C

 IN
q
g
W
Z
t

2 4 6 8 10 12 14 16
bitwidth

100

101

1 
/ F

PR

MLP
TPR = 0.8

q
g
W
Z
t

2 4 6 8 10 12 14 16
bitwidth

100

101

1 
/ F

PR

GCN
TPR = 0.8

q
g
W
Z
t

2 4 6 8 10 12 14 16
bitwidth

100

101

1 
/ F

PR

IN
TPR = 0.8

q
g
W
Z
t

Results
The models described above are translated into firmware using HLS4ML library [3], then synthesized with
Vivado HLS 2020.1, targeting a Xilinx Virtex UltraScale+ VU9P (xcvu9p-flgb2104-2-e) FPGA with a clock
frequency of 200MHz.
A summary of the average accuracy ratio, resource consumption, and latency for the models is shown in
table bellow. We find the FPGA resources are all bellow 16% of the total available, while latencies are less
than about 250 ns for the MLP and GCN models and 505 ns for the IN. Moreover the initiation interval (II),
which is the number of clock cycles between a new input, for the MLP and GCN are well within the
required 150 ns, but IN have larger II making it too large for the L1T.

‘

FPGA: Xilinx Virtex UltraScale+ VU9P
Model Bits Acc.Ratio Latency[ns] Latency[cc] II [cc] DSP LUT FF BRAM
MLP 8 0.97 135 27 1 194 (3.5%) 85903 (12.9%) 36772 (2.8%) 2.0 (0.1%)
GCN 8 0.97 250 50 16 63 (1.1%) 67001 (10.1%) 32360 (2.4%) 2.0 (0.1%)
IN 8 0.99 505 101 67 213 (3.9%) 104885 (15.8%) 53291 (4.0%) 2.0 (0.1%)

Conclusions
We show the feasibility of a particle-based jet tagging algorithm for L1T and how to deploy graph neural classifiers on a FPGA using the HLS4ML library. Using QAT, we can limit resource utilization while retaining accuracy and inference
time within a O(100) ns latency, well within the typical time of a collision-event processing. The MLP and GCN architectures are suitable for the L1T , while IN consumes too much of the resources and have larger latencies.
An algorithm of this kind could improve the quality of the trigger decision, reducing false positive at little true-positive cost, increasing the scientific reach of the experiments.

Andre Sznajder in collaboratio with:
andre.sznajder@cern.ch

UERJ (Brazil)


