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Neural Network approach to Event Reconstruction

Challenges of Event Reconstruction
Heavy particles produced in collisions decay rapidly until
stable daughter particles can reach the detector

Particles can escape the detector undetected and particle
reconstruction is imperfect
→ can only use detected particles
Large amount of possible decay channels leads to
unknown number of intermediate particles and an
unknown tree structure
different multiplicities in event decays
→ network must handle a variable number of particles

Have to predict tree structure using only detected
particles
Propose new method applicable for event tagging by
reconstructing the tag side
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Encoding the Particle Decay Tree
The natural representation of a particle decay tree
is a rooted, directed, acyclic tree graph
Use lowest common ancestor (LCA) matrix rep-
resentation to encode graph structure as final
state particle (FSP) relations

any two detected particles connected via lowest
common parent
intermediate particles assigned classes corre-
sponding to generation

LCA extracted from event generation and detector
simulation, use as single target for training neural
network

used Belle II simulated datasets [1] for bench-
mark studies

Neural Relational Inference (NRI) encoder model

Utilise Graph Neural Network based
on modified encoder from the NRI [2]

Input the kinematic features of de-
tected particles

Predict the LCA as edge-weights be-
tween fully connected graph of input
particles
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 Multilayer Perceptron (MLP) Block:  
- 2 Linear Layers with ELU activation  
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Proof of concept on single Belle II simulated decay
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best case scenario : all FSP example B0 decay

including missing

including unmatched

including secondary

including missing, unmatched, secondary

realistic scenario: including missing, unmatched,
secondary, duplicates

Training on decay:
B0 → D∗–(→ D0(→ K+π–)π–)π+

with different background levels caused
by detector effects

Scaling of performance based on
background levels
Predictive capacity of 86.6% for real-
istic case

Mixed Dataset of Belle II simulated decays

2 4 6 8 10

1

2

3

4

de
pt

h

76 99 nan nan nan nan nan nan nan

102 556 1286 418 507 nan nan nan nan

79 290 586 628 491 225 100 nan nan

12 113 456 1149 1957 2747 3327 2297 708

dataset distribution

2 4 6 8 10
leaves

1

2

3

4

de
pt

h

0.87 0.84 nan nan nan nan nan nan nan

0.68 0.86 0.90 0.54 0.64 nan nan nan nan

0.61 0.73 0.72 0.68 0.62 0.55 0.54 nan nan

0.08 0.22 0.55 0.61 0.40 0.22 0.22 0.25 0.30

correctly predicted LCA

1000

2000

3000

0.00

0.25

0.50

0.75

1.00

Trained on a mix of six decay channels (incl.
missing particles)

correctly predicted LCA matrix 43.2% com-
pared to 31.8% on transformer model base-
line [3]
achieves high accuracy (correctly predicted
LCA entries) of 85.6% for different decay
topologies

Conclusion and Outlook
We have demonstrated a novel approach to deal with scenarios where the structure of the rooted tree graph representing a particle decay is unknown.
Namely, we implemented a method of encoding the entire decay tree structure into a single matrix which relies on minimal assumptions about the intermediate
particles. This method allows for training on the entire decay structure as a single training target.
This method was tested on Belle II simulated data on

a single decay study including various detector effects, showing that the approach is suitable for experimental realities
a mix of different decay channels

Current work is demonstrating decay tree reconstruction on all Belle II simulated decays and comparing with the existing reconstruction algorithm.
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