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Neural Network approach to Event Reconstruction

Challenges of Event Reconstruction Encoding the Particle Decay Tree

Heavy particles produced in collisions decay rapidly until B j ® The natural representation of a particle decay tree

stable daughter particles can reach the detector L o s a rooted, directed, acyclic tree graph
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Neural Relational Inference (NRI) encoder model
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We have demonstrated a novel approach to deal with scenarios where the structure of the rooted tree graph representing a particle decay is unknown.
Namely, we implemented a method of encoding the entire decay tree structure into a single matrix which relies on minimal assumptions about the intermediate
particles. This method allows for training on the entire decay structure as a single training target.

This method was tested on Belle |l simulated data on

a single decay study including various detector effects, showing that the approach is suitable for experimental realities
a mix of different decay channels
Current work is demonstrating decay tree reconstruction on all Belle |l simulated decays and comparing with the existing reconstruction algorithm.
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