The Iterative Clustering framework for the CMS HGCAL Reconstruction

Felice Pantaleo
CERN, Experimental Physics department
On behalf of the CMS Collaboration
felice@cern.ch
CMS Phase-2 Calorimeter Endcap

Major CMS Phase2 upgrade:
• Silicon sensors (EM + HAD)
 • 28 (EM) + 22 (HAD) layers
 • about \sim6M channels, cell sizes (about 0.5 cm2 and 1.2 cm2)
• Plastic Scintillator + SiPM (HAD)
 • 14 layers
 • \sim4K tiles (\sim240K channels)
CMS Phase-2 Calorimeter Endcap

Major CMS Phase2 upgrade:
- Silicon sensors (EM + HAD)
 - 28 (EM) + 22 (HAD) layers
 - about \(\sim 6 \)M channels, cell sizes (about 0.5 cm\(^2\) and 1.2 cm\(^2\))
- Plastic Scintillator + SiPM (HAD)
 - 14 layers
 - \(\sim 4 \)K tiles (\(\sim 240 \)K channels)
The pile-up challenge

Single electron in PU200
Reconstruction in HGCAL

Reconstruction in HGCAL is a very interesting task in high PU environments as overlapping showers are the norm
• naive reconstruction algorithms exploring many combinations among all possible paths are expected to fail due to memory/timing explosion
• Fertile ground for new techniques and algorithms: clustering, machine learning, graph theory, and modern computer architectures

• Must be planned and designed, considering the information from the surrounding tracking and timing detectors
TICL – “The Iterative CLustering” Framework

● TICL is a **modular framework** integrated and under development in CMSSW
 ○ Profit from regular release validation, high-quality review, computing performance monitored
● Its final purpose is to process HGCAL Hits (x, y, z, t, E) and return particle properties and identification probabilities
● The philosophy:
 ○ Staged and modular: decouple independent parts of the reconstruction for:
 ■ **independent development** by multiple collaborators
 ■ promptly localize and identify actions to be taken in case of unexpected failures
 ■ **algorithms can be easily swapped for comparison** (aka don’t get too attached to your favourite clustering algo)
 ○ **Defined interface**: new developers don’t have to know anything about the CMSSW core framework in order to contribute
 ○ **Validation-driven**: The performance of each stage of the reconstruction can be monitored
 ○ **Parallel Architecture-Friendly** (SoA data structures and algorithms being ported to CUDA/Alpaka)
HGCAL Reconstruction

- Many of these chains can co-exist in “iterations” targeting different particles
- Performance monitored by CMSSW Validation and full Visualization support by Fireworks
• Many of these chains can co-exists in “iterations” targeting different particles
• **Performance monitored by CMSSW Validation and full Visualization support by Fireworks**
CLUE: Layer Clustering

TICL’s modularity starts with the Layer Clustering:

- Input Hits, output layer clusters
- Swappable plugins for 2D clustering algo
- CLUE [1] default clustering algo:
 - Energy Density Based

CLUE: A Fast Parallel Clustering Algorithm for High Granularity Calorimeters in High Energy Physics
CLUE: Layer Clustering

TICL’s modularity starts with the Layer Clustering:

- Input Hits, output layer clusters
- Swappable plugins for 2D clustering algo
- CLUE [1] default clustering algo:
 - Energy Density Based
 - Removes Noise
 - Reduces dimensionality of the problem by an order of magnitude

CLUE: A Fast Parallel Clustering Algorithm for High Granularity Calorimeters in High Energy Physics
CLUE: Layer Clustering

TICL’s modularity starts with the Layer Clustering:

- Input Hits, output layer clusters
- Swappable plugins for 2D clustering algo
- CLUE [1] default clustering algo:
 - Energy Density Based
 - Removes Noise
 - Reduces dimensionality of the problem by an order of magnitude

CLUE: A Fast Parallel Clustering Algorithm for High Granularity Calorimeters in High Energy Physics
CLUE: Layer Clustering

TICL’s modularity starts with the Layer Clustering:

- Input Hits, output layer clusters
- Swappable plugins for 2D clustering algo
- CLUE [1] default clustering algo:
 - Energy Density Based
 - Removes Noise
 - Reduces dimensionality of the problem by an order of magnitude
 - Minimal loss of information

CLUE: A Fast Parallel Clustering Algorithm for High Granularity Calorimeters in High Energy Physics

See Poster by E. Brondolin
CLUE: Layer Clustering

TICL’s modularity starts with the Layer Clustering:

- Input Hits, output layer clusters
- Swappable plugins for 2D clustering algo
- CLUE [1] default clustering algo:
 - Energy Density Based
 - Removes Noise
 - Reduces dimensionality of the problem by an order of magnitude
 - Minimal loss of information

CLUE: A Fast Parallel Clustering Algorithm for High Granularity Calorimeters in High Energy Physics
CLUE: Layer Clustering

TICL’s modularity starts with the Layer Clustering:

- Input Hits, output layer clusters
- Swappable plugins for 2D clustering algo
- CLUE [1] default clustering algo:
 - Energy Density Based
 - Removes Noise
 - Reduces dimensionality of the problem by an order of magnitude
 - Minimal loss of information

CLUE: A Fast Parallel Clustering Algorithm for High Granularity Calorimeters in High Energy Physics
CLUE: Layer Clustering

TICL’s modularity starts with the Layer Clustering:

- Input Hits, output layer clusters
- Swappable plugins for 2D clustering algo
- CLUE [1] default clustering algo:
 - Energy Density Based
 - Removes Noise
 - Reduces dimensionality of the problem by an order of magnitude
 - Minimal loss of information
 - Blazing fast:
 - 0.8% of total offline reconstruction on single CPU core @PU200
 - 2 orders of magnitude faster on small GPU NVIDIA T4
 - See presentation by B. Alves

CLUE: A Fast Parallel Clustering Algorithm for High Granularity Calorimeters in High Energy Physics
HGCAL Reconstruction

Uncalib. Hits → Hits → 2D LayerClusters → L1 objects → Tracks → Pattern Recognition → PID → Pruning

Seeding region

Timing → Energy regression → ParticleFlow Interpretation

MIP tracksters

Trackster Splitting

CMS

CERN
Seeding regions

- Plugin to filter and mask LayerClusters in input
 - Layerclusters \((x, y, z, E, \text{time}, \text{hits})\) can be filtered
 - using HGCAL internal information
 - Min/max number of Hits in a layercluster
 - By layer id
 - By previous iteration
 - using external information:
 - Tracks
 - L1 objects
 - Timing
 - Mask is a floating-point number ranging between 0 and 1
Pattern recognition: Tracksters

Tracksters are small Direct Acyclic Graphs whose nodes are layerClusters.

Pattern recognition can be any algorithm that connects layer clusters together to produce a Trackster aiming at reconstructing single clusters (not necessarily full particles!)

- Currently implemented plugins in CMSSW
 - Cellular Automaton
 - CLUE3D
 - FastJet
 - SimTracksters
 - MIP

- Tracksters can be linked to a seeding object if needed, and filled with:
 - LayerClusters & Fraction
 - Energy-weighted PCA decomposition
 - Regressed energy
 - Probabilities for all particle-id classes (allowing for fallback if needed)
 - Timing

- If a trackster passes some customizable filter, then all its layerclusters are masked out.
 - The mask is saved in the event and can be used by a later iteration or by validation to know which LCs are left
 - Nothing prevents one to develop a single global iteration
PID and Energy regression

- Particle ID is applied using a single Convolutional Neural Network
- TensorFlow C++ interface
- PID probabilities and energy value as output

Ratio of the reconstructed to the true electron energy before (left) and after (right) the energy correction, shown for different η regions in PU200

Confusion matrix for electromagnetic showers and hadron showers in events with PU=0 (left) and in events with <PU> = 200 (right)
Graph studies

- Tracksters are graphs
 - LayerClusters as nodes
 - Edges depend on algorithm used
- **Enabler for different studies** for:
 - PID/Energy regression
 - Pruning
 - Weakly connected subcomponent: analysis and splitting
 - Topology, shower shape, missing information
 - Energy flow
 - Linking, ParticleFlow Interpretation

Shower reconstructed by CA (left) or CLUE3D (center and right)
HGCAL Reconstruction

Uncalib. Hits

Hits

2D LayerClusters

L1 objects

Tracks

PID

Energy regression

Pruning

ParticleFlow Interpretation

Seeding region

Timing

MIP tracksters

Pattern Recognition

Trackster Splitting

Define Seed Region

Apply Filter LC by Mask

Mask Selected LC

Clustering

Linking

Original LC
Particle Flow interpretation

Linking
• PCA and pT/Energy/timing/PID enables compatibility between Tracksters and Tracks
MIP reconstruction
• link energy blobs
• muons
• calibration
• muon-seeded tracking

TICL Candidate is then fed to Particle Flow
TICL iterations for HLT TDR studies

Multiple iterations and configurations implemented for the CMS Phase 2 HLT TDR studies
Conclusion

- TICL is a flexible framework in release under active development
 - New pattern recognitions can be plugged in and validated automatically
 - Relieves the developer from bringing the idea from proof of concept to production by defining interfaces
- Full HGCAL Reconstruction using TICL takes about 5% of total Phase-2 offline reconstruction on single CPU core @ PU200
 - Unique playground for new ideas and technologies in CMSSW
- Porting of existing algos to GPUs and Portability in CMSSW advanced
- Robust PID/ER/PCA are key to achieve best ParticleFlow Interpretation