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In recent years fully-parametric fast simulation methods based on
generative models have been proposed for a variety of high-energy
physics detectors. By their nature, the quality of data-driven models
degrades in the regions of the phase space where the data are
sparse. Since machine-learning models are hard to analyze from the
physical principles, the commonly used testing procedures are
performed in a data-driven way and can’t be reliably used in such
regions. In our work we propose three methods to estimate the
uncertainty of generative models inside and outside of the training
phase space region, along with data-driven calibration techniques.
Test of the proposed methods on the LHCb RICH fast simulation is
also presented.

See the talk on LHCb RICH fast simulation
Towards Reliable Neural Generative Modeling of Detectors, 30
Nov 8:20 UTC
1. The computational costs of detailed simulation based on

Geant4 will be unsustainable for the upcoming runs at the major
LHC experiments [1]

2. Fast data-driven simulation works by training a machine learning
model to approximate the detector response [4]

3. The relationship between the detector readout 𝑦 and the
parameters of the particles 𝑥 is not bijective, instead of 𝑦 = 𝑓 𝑥
we need to learn 𝑝 𝑦 𝑥

4. Machine learning introduces another source of uncertainty and
possible mistakes. We propose ML models that are aware
how wrong they are.

Abstract

Fast data-driven simulation

Generative adversarial networks (GAN) Results: extrapolation scan

• We present
• Methods for estimating uncertainty of GANs with adversarial 

ensembles and MC dropout
• Although in this work we only use Cramer GAN, both 

methods are applicable to any GAN
• The ensembles have a desirable theoretical property: 

each model converges to local minimum of the 
unperturbed problem

• A method for summarizing ensemble-based uncertainty 
estimation algorithms into a single model

• The methods are evaluated on the LHCb RICH dataset
• For most of the bins, efficiency on the test data lies inside the 

error bounds of the efficiency of the model
• In the extrapolation case, the uncertainly increases while 

getting further from the training region. However, the 
uncertainty does not increase sufficiently to account for the 
discrepancy in the furthest test regions.

Cramer (Energy) distance [3]:
𝐶(𝔓| 𝔔 = 2𝔼 𝔛 − 𝔜 ! − 𝔼 𝔛 − 𝔛" ! − 𝔼 𝔜 − 𝔜" !,

𝔛, 𝔛"~𝔓 – real data distribution, 𝔜,𝔜′~𝔔 – model
Cramer GAN:
Let 𝐺 𝑍 : 𝑍 → 𝑌 be the generator, 𝐷 𝑌 : 𝑌 → 𝑅# be the discriminator, 
𝒚$~𝑃 be a sample from the data and 𝒚%, 𝒚%" ~𝐺 𝑍 be two 
independent samples from the generator. The loss functions:
𝐿& = 𝑓 𝒚$ − 𝑓 𝒚% ,
𝐿' = −𝐿& + 𝜆(∥ 𝛻()𝑓(A𝑦) ∥! − 1)!,
where 𝑓 𝒚 = 𝐷 𝒚 − 𝐷(𝒚%" ) !

− 𝐷 𝒚 ! and
G𝒚 = 𝜖𝒚𝒓 + 1 − 𝜖 𝒚𝒈 , 𝜖 ~ 𝑈(0, 1) are the interpolation points for the 
gradient penalty

Conclusion
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Challenges of the data-driven approach

1. An ML model is imperfect and training sample is finite
2. Training data are available only for a part of the phase space

Test case: LHCb RICH

1. Input variables: track momentum (𝑃), pseudorapidity (η) and the
number of tracks in the event

2. Output: 5 particle class likelihoods, expressed as differential
logarithmic likelihoods (DLL)

3. Quantile transformation is applied to make all input and output
features normal

4. Model: Cramer GAN with 5 fully-connected layers
N. B. The production version of the LHCb RICH GAN uses 10
layers [2]

Results: uniform train/test split

The aim of the test is to access the performance of the models in
the regions of the phase space where there are no data. We
emulate this situation by splitting the data into train and test parts in
𝑃 and 𝜂 space

Adversarial ensembles for uncertainty

MC Dropout

Ensemble summarization

Kinematic distribution of pions in the LHCb Run 2 calibration
sample used in this study

Ensembles use proportionally more resources for prediction than a 
single model, which is undesirable for fast simulation. We address 
this by approximating the ensemble with a single model as 
following. Assume that for given track parameters distribution of 
each output variable 𝑦, is close to a Gaussian, then

𝜎-.-/0 = 𝜎12-312415! + 𝜎464-78/-15!

• 𝜎12-312415! - variance of distribution of 𝑦, for the reference model
• 𝜎464-78/-15! - systematic uncertainty in the training procedure
Then 𝜎464-78/-15 =
9
!
(𝔼724 𝑦,

9 − 𝑦,
! !

− 𝔼37: 𝑦,
9 − 𝑦,

! !
),

where 𝔼724 and 𝔼37: are the average operators computed across 
data produced by reference model and ensemble model 
respectively, and 𝑦,

(9) and 𝑦,
(!) are two examples independently 

sampled from the corresponding model.

We train a neural network regression to approximate 𝝈𝐬𝐲𝐬𝐭𝐞𝐦𝐚𝐭𝐢𝐜
from ensemble, thus allowing uncertainty computation with 
just a single model

Applying dropout at inference time provides a virtual ensemble [6]
• Bernoulli dropout: neuron zeroed with probability p
• Structured Bernoulli dropout: neuron with neighborhood of size k 

zeroed with probability p

Training and testing datasets used for the extrapolation scan. The regions are separated 
by straight lines in the normalized space. Pions from LHCb Run 2 calibration sample. Each 

test band contains the same number of examples

[5]

An ensemble of several GANs with the following loss functions and 
training procedure:

𝑓 𝒚 = 𝐷 𝒚 − 𝐷(𝒚%" ) ! − 𝐷 𝒚 !

𝐿& = 𝑓 𝒚$ − 𝑓 𝒚% − 𝛼 𝐷 𝒚% − 𝐷(𝒚∪𝒈) !
𝒚∪𝒈 is a concatenation of the predictions of the ensemble, 
corresponding to a model with averaged probability density
Training schedule:
1. Train Cramer GANs with the classic loss (𝛼 = 0)
2. Reinitialize the generators with random weights, retain the 
discriminators weights, set (𝛼 = 10)
3. Train both the generators and the discriminators with our loss, 
decrease 𝛼 according to a schedule

Distribution of the RichDLLs in a region without training data (the 
testing region #9 of the extrapolation scan). Models differ from each 

other and the data.

Distribution of the RichDLLs in a region with training data
(the training region of the extrapolation scan). Models are 

consistent with the data and each other

Background efficiency at 90% overall signal efficiency as a function of momentum. The 
data are uniformly split into training and testing parts

Background efficiency at 90% overall signal efficiency as a function of the extrapolation 
scan test band index
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