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Treatment of  systematic uncertainties 
with Bayesian networks
Dark Matter direct detection as a case study

Introduction
• The propagation of the systematic uncertainties on the 

final results is often a challenging task in frontier 
physics 

• Considering Dark Matter (DM) direct detection 
experiments, we developed a general method to fulfill 
this task using Bayesian networks and linear algebra 

• The final spectrum is expressed as an analytical 
function of the calibration parameters, allowing to 
simultaneously fit both the parameters of interest and 
the calibration parameters

[1]F. Beaujean et al. “Bayesian analysis toolkit: BAT.” https://github.com/bat/bat  
[2] NVIDIA, CUDA, https://developer.nvidia.com/cuda-toolkit

Bayesian Networks
• Bayesian networks are a graphical way to represent the 

probability


• The probabilistic (solid arrows) or deterministic (dashed 
arrows) connections between observables are made 
explicit in the description of the likelihood (direct 
probability: cause  effect)


• The Bayesian inference is an information flow from the 
observed nodes to the parameter of interest

→

Systematic uncertainties in DM direct detection
Typical DM direct detection experiment: 

• Working principle: counting the number of possible DM 
interactions in the active volume that produce a certain 
amount of detectable quanta depending on the recoil energy


• Data: a spectrum of detectable quanta , measure of the 
energy of the interaction


• Response model: relates the event original observable (e.g. 
the energy release) to the number of the detected quanta by 
means of a set of calibration parameters.

Nq

Impact of the systematic 
uncertainties on the spectra

We developed a method to compute the expected spectrum as 
an analytical function of the theoretical spectrum and the 
calibration parameters implemented with CUDA on GPUs

Sfin
i (Nq = i, θcal) = ∑

j
∑

k

ℳ2
ijℳ

1
jk(θcal) Sth

k (E = Ek)
Final expected spectrum Detector response Theor. spectrum

{
ℳ1

jk(θcal) = p(N (0)
q = j |Ek, θcal)

ℳ2
ij = p(Nq = i |N (0)

q = j )

quenching factor, ionization, 
recombination, Fano factor, 

…

Efficiency, resolution, …
xi

λi

Sfin
i

S(0)
j

Sth
k

θcal

ℳ1(θcal)

ℳ2

rS

rB

Data

𝒫

Expected 
values

Expected signal 
and backgrounds 

spectra

Interm. 
step

Theor.

spectrum

Background 
rate

Signal 
rate

Calibration parameters: 
the constraints from the 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Resulting sensitivity

• Our method allows 
computing the 
expected spectra 
for any detector 
response 
configuration 
sampling the prior 

 p (θcal)

• The procedure tries to fit the data weighting the results 
with the p.d.f. of the specific response model returning the 
posterior p.d.f. (implemented in BAT)

• It is possible to take 
into account the 
bin-by-bin 
correlations, and 
propagate the 
uncertainties and 
correlations of θcal

• The propagation of the 
uncertainties on the final 
result is automatic by 
marginalizing the 
posterior
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• The  typical impact of the 
uncertainties  on the 
sensitivity is as large as 
a factor of 3

• The fit updates the 
knowledge on the 
calibration parameters.

• We implemented the statistical 
aspects using BAT [1], and 
linear algebra on GPU with 
CUDA [2]
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p(x, rs) = p(x |rs)p(rs)
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Probability decomposition

Inference after observation


