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(" Introduction

* The propagation of the systematic uncertainties on the
final results is often a challenging task in frontier
physics

* Considering Dark Matter (DM) direct detection

experiments, we developed a general method to fulfill
this task using Bayesian networks and linear algebra

¢ The final spectrum is expressed as an analytical

function of the calibration parameters, allowing to
simultaneously fit both the parameters of interest and
the calibration parameters

¢ We implemented the statistical
aspects using BAT [1], and
linear algebra on GPU with
CUDA [2]

[1]F. Beaujean et al. “Bayesian analysis toolkit: BAT.” https://github.com/bat/bat
[R] NVIDIA, CUDA, https://developer.nvidia.com/cuda-toolkit
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4 Bayesian Networks

* Bayesian networks are a graphical way to represent the
probability

e The probabilistic (solid arrows) or deterministic (dashed
arrows) connections between observables are made
explicit in the description of the likelihood (direct
probability: cause — effect)

¢ The Bayesian inference is an information flow from the
observed nodes to the parameter of interest
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(Systematic uncertainties in DM

Typical DM direct detection experiment:

* Working principle: counting the number of possible DM
interactions in the active volume that produce a certain
amount of detectable quanta depending on the recoil energy

e Data: a spectrum of detectable quanta Nq, measure of the
energy of the interaction

* Response model: relates the event original observable (e.g.
the energy release) to the number of the detected quanta by

means of a set of calibration parameters.

direct detection

We developed a method to compute the expected spectrum as
an analytical function of the theoretical spectrum and the
calibration parameters implemented with CUDA on GPUs
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¢ Our method allows
computing the
expected spectra
for any detector
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* The procedure tries to fit the data weighting the results
with the p.d.f. of the specific response model returning the
posterior p.d.f. (implemented in BAT)
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¢ The propagation of the
uncertainties on the final
result is automatic by
marginalizing the
posterior

* The fit updates the
knowledge on the
calibration parameters.

Posterior p.d.f

304 306

e The typical impact of the
uncertainties on the ‘

Excluded
sensitivity is as large as '

a factor of 3
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