
 Run-2 Physics Analysis Workflow using Software for HL-LHC

KyungEon Choi, Peter Onyisi, Marc Tost

One-Color Reproduction
When reproduced in color, the wordmark should appear in

The University of Texas at Austin’s signature color, burnt

orange.

If burnt orange cannot be used, black or gray may be used.

The wordmark can also be reversed out in white, but only

when the background is burnt orange, black or gray.

Back to the Top of the Page

UT Home

Site Policies

Web Privacy Policy

Emergency

Information

Web Accessibility

Policy

Adobe Reader

© The University of Texas at Austin

References

[1] https://iris-hep.org [4] https://rucio.readthedocs.io [7] https://github.com/CoffeaTeam/coffea [10] https://github.com/scikit-hep/cabinetry
[2] https://servicex.readthedocs.io [5] https://github.com/iris-hep/func_adl_servicex [8] https://uproot.readthedocs.io [11] https://github.com/scikit-hep/pyhf
[3] https://github.com/kyungeonchoi/ServiceXDataBinder [6] https://github.com/ssl-hep/TCutToQastleWrapper [9] https://awkward-array.org ACAT 2021

Overview

Coffea

Data access

Columnar analysis

The challenge of handling an order of
magnitude more data from the High-
Luminosity LHC (HL-LHC) demands
novel approaches. Many fascinating
software under development to tackle
the challenge.

This work utilizes software in scientific
python ecosystem, primarily from IRIS-
HEP [1], to investigate an alternative
workflow for the ongoing ATLAS Run-2
physics analysis.

ServiceX [2] is a scalable HEP event data extraction, transformation, and delivery system.

• HEP event data: various input data formats such as ATLAS xAOD, CMS NanoAOD, ROOT

Flat ntuple

• Extraction: user-selected column(s) with event filtering → reduced data over WAN

• Transformation: output in various formats such as awkward arrays, Apache parquets, ROOT

ntuple

• Delivery: on-demand, deliver to a user or stream into Analysis Facility

• Scalable: runs on Kubernetes cluster, scales up workers when necessary

ServiceX

Coffea [7] is a python package for HEP experiment analysis in python ecosystem.

• Makes use of uproot [8] and awkward array [9] to provide an array-based analysis

• Very easy to scale horizontally by making use of modern big-data technologies such as Apache

Spark and Dask

• Supports various input data formats which include Apache parquet and ROOT ntuple

• Features histogramming and plotting tools

Grid site Kubernetes cluster Local Area Network

ServiceX request

ServiceX

Co-located

• Multiple samples can be defined in a
configuration file

• A sample contains Rucio [4] dataset
ID(s), name of tree, selection of
columns and events in FuncADL [5]
or TCut [6] syntax

• A user may write a configuration file
for whole analysis, or per region, or
only for machine learning

• ServiceX supports local data cache →
only new/modified triggers ServiceX
request

ATLAS
DAOD

ROOT
Ntuple

Derived/
Augmented

ROOT Ntuple

Apache
Parquet

ROOT
Histograms Results

Common
Standard workflow
New workflow

Grid

Local Disk
ServiceX Coffea

Analysis workflow

Application to analysis
Start point
• 5 TB of ROOT ntuples on the grid

• More than 400 Rucio datasets

End point
• ROOT histograms for the subsequent statistical analysis

• Nice tools such as cabinetry [10] and pyhf [11] in python

ecosystem allow to perform full analysis in python, but we go
until histogram for this work

ServiceX + Coffea workflow
1. Prepare ServiceX DataBinder configuration file(s) and deliver

files in parquet

• Delivery of ~30 columns from >400 Rucio datasets without

filtering takes about 20 mins and parquet files amounts to
about 3 GB (single tree only)

• Size of parquet files reduces to 70 MB when selections for
the certain control region are applied (single tree only)

• Deliver minimal data since only new/modified will trigger
new ServiceX request

2. Train neural network using ServiceX delivered parquet data and
then implement into coffea

3. Run coffea to produce histograms

• Run over 3 GB of parquets and produce histograms takes

about 1 min using 30 workers

• Viable to run on laptop

Standard workflow
1. C++ based ROOT event loop to produce slimmed/skimmed/

augmented ROOT ntuple.

• Grid job takes about 1 day

• The size of derived ROOT ntuple still large since any update

requires new production

2. C++ based ROOT event loop to produce histograms.

Lessons
‣Need to be familiarized with FuncADL, Awkward array, and other

python tools

‣ Sometimes there are too many ways to solve a problem

‣Mostly done in Jupyter notebook, but not good for collaboration

ServiceX DataBinder [3] is a python package to make ServiceX data delivery requests and
manage ServiceX datasets from a configuration file.

kyungeonchoi /ServiceXDataBinder Public

Code Issues Pull requests Actions Projects 2 Wiki Security Insights Settings

 1 branch 13 tags

ServiceX DataBinder

Release v0.2.3

ServiceX DataBinder is a Python package for making multiple ServiceX requests and managing ServiceX delivered
data from a configuration file.

Installation

Configuration file

The configuration file is a yaml file containing all the information. An example configuration file is shown below:

Input dataset can be defined either by RucioDID or XRootDFiles . You need to make sure whether the ServiceX
backend you specified in ServiceXBackendName supports Rucio and/or XRootD.

ServiceX query can be constructed with either TCut syntax or func-adl.

Options for TCut syntax: Filter and Columns

Option for Func-adl expression: FuncADL

 Filter works only for scalar-type of TBranch.

Output format can be either Apache parquet or ROOT ntuple for uproot backend. Only ROOT ntuple format
is supported for xAOD backend.

Please find other example configurations for ATLAS opendata, xAOD, and Uproot ServiceX endpoints.

The followings are available options:

Option for General Description DataType

ServiceXBackendName
ServiceX backend name in your servicex.yaml file

(name should contain either uproot or xAOD to distinguish the type
of transformer)

String

OutputDirectory Path to the directory for ServiceX delivered files String

OutputFormat
Output file format of ServiceX delivered data (parquet or root for

uproot / root for xaod)
String

ZipROOTColumns
Zip columns that share prefix to generate one counter branch (see

detail at uproot readthedoc)
Boolean

WriteOutputDict
Name of an ouput yaml file containing Python nested dictionary of

output file paths (located in the OutputDirectory)
String

IgnoreServiceXCache
Ignore the existing ServiceX cache and force to make ServiceX

requests
Boolean

Option for
Sample

Description DataType

Name sample name defined by a user String

RucioDID
Rucio Dataset Id (DID) for a given sample;
Can be multiple DIDs separated by comma

String

XRootDFiles
XRootD files (e.g. root://) for a given sample;

Can be multiple files separated by comma
String

Tree Name of the input ROOT TTree (uproot ONLY) String

Filter
Selection in the TCut syntax, e.g. jet_pt > 10e3 && jet_eta < 2.0 (TCut

ONLY)
String

Columns
List of columns (or branches) to be delivered; multiple columns separately by

comma (TCut ONLY)
String

FuncADL func-adl expression for a given sample (func adl ONLY) String

Deliver data

The function deliver() returns a Python nested dictionary:

for uproot backend and parquet output format: out['<SAMPLE>']['<TREE>'] = [List of output
parquet files]

for uproot backend and root output format: out['<SAMPLE>'] = [List of output root files]

for xAOD backend: out['<SAMPLE>'] = [List of output root files]

Useful tools

Create Rucio container for multiple DIDs

The current ServiceX generates one request per Rucio DID. It's often the case that a physics analysis needs to
process hundreds of DIDs. In such cases, the script (scripts/create_rucio_container.py) can be used to
create one Rucio container per Sample from a yaml file. An example yaml file
(scripts/rucio_dids_example.yaml) is included.

Here is the usage of the script:

Acknowledgements

Support for this work was provided by the the U.S. Department of Energy, Office of High Energy Physics under
Grant No. DE-SC0007890

About

No description, website, or topics
provided.

 Readme

 BSD-3-Clause License

Releases 12

v0.2.3 Latest

23 days ago

+ 11 releases

Packages

No packages published
Publish your first package

Languages

Python 100.0%

 main Go to file Add file Code

KyungEon Choi Update example config 19508d6 yesterday 63 commits

scripts Add example yaml file for create Rucio container 26 days ago

servicex_databinder Update version 23 days ago

tests Update pytest 27 days ago

LICENSE Initial commit 3 months ago

README.md Update example config yesterday

config_example_atlasopendata.yml Add support for atlasopendata via xrootd last month

config_example_uproot.yml Update config example for uproot 27 days ago

config_example_xaod.yml Change field name GridDID into RucioDID last month

setup.py Bugfix in setup.py 23 days ago

pip install servicex-databinder

General:
 ServiceXBackendName: uproot
 OutputDirectory: /path/to/output
 OutputFormat: parquet

Sample:
 - Name: ttH
 RucioDID: user.kchoi:user.kchoi.sampleA,
 user.kchoi:user.kchoi.sampleB
 Tree: nominal
 FuncADL: "Select(lambda event: {'jet_e': event.jet_e})"
 - Name: ttW
 RucioDID: user.kchoi:user.kchoi.sampleC
 Tree: nominal
 Filter: n_jet > 5
 Columns: jet_e, jet_pt

1

1

from servicex_databinder import DataBinder
sx_db = DataBinder('<CONFIG>.yml')
out = sx_db.deliver()

usage: create_rucio_containers.py [-h] [--dry-run DRY_RUN]
 infile container_name version

Create Rucio containers from multiple DIDs

positional arguments:
 infile yaml file contains Rucio DIDs for each Sample
 container_name e.g. user.kchoi:user.kchoi.<container-name>.Sample.v1
 version e.g. user.kchoi:user.kchoi.fcnc_ana.Sample.<version>

optional arguments:
 -h, --help show this help message and exit
 --dry-run DRY_RUN Run without creating new Rucio container

README.md

Example ServiceX DataBinder configuration

kyungeonchoi /ServiceXDataBinder Public

Code Issues Pull requests Actions Projects 2 Wiki Security Insights Settings

 1 branch 13 tags

ServiceX DataBinder

Release v0.2.3

ServiceX DataBinder is a Python package for making multiple ServiceX requests and managing ServiceX delivered
data from a configuration file.

Installation

Configuration file

The configuration file is a yaml file containing all the information. An example configuration file is shown below:

Input dataset can be defined either by RucioDID or XRootDFiles . You need to make sure whether the ServiceX
backend you specified in ServiceXBackendName supports Rucio and/or XRootD.

ServiceX query can be constructed with either TCut syntax or func-adl.

Options for TCut syntax: Filter and Columns

Option for Func-adl expression: FuncADL

 Filter works only for scalar-type of TBranch.

Output format can be either Apache parquet or ROOT ntuple for uproot backend. Only ROOT ntuple format
is supported for xAOD backend.

Please find other example configurations for ATLAS opendata, xAOD, and Uproot ServiceX endpoints.

The followings are available options:

Option for General Description DataType

ServiceXBackendName
ServiceX backend name in your servicex.yaml file

(name should contain either uproot or xAOD to distinguish the type
of transformer)

String

OutputDirectory Path to the directory for ServiceX delivered files String

OutputFormat
Output file format of ServiceX delivered data (parquet or root for

uproot / root for xaod)
String

ZipROOTColumns
Zip columns that share prefix to generate one counter branch (see

detail at uproot readthedoc)
Boolean

WriteOutputDict
Name of an ouput yaml file containing Python nested dictionary of

output file paths (located in the OutputDirectory)
String

IgnoreServiceXCache
Ignore the existing ServiceX cache and force to make ServiceX

requests
Boolean

Option for
Sample

Description DataType

Name sample name defined by a user String

RucioDID
Rucio Dataset Id (DID) for a given sample;
Can be multiple DIDs separated by comma

String

XRootDFiles
XRootD files (e.g. root://) for a given sample;

Can be multiple files separated by comma
String

Tree Name of the input ROOT TTree (uproot ONLY) String

Filter
Selection in the TCut syntax, e.g. jet_pt > 10e3 && jet_eta < 2.0 (TCut

ONLY)
String

Columns
List of columns (or branches) to be delivered; multiple columns separately by

comma (TCut ONLY)
String

FuncADL func-adl expression for a given sample (func adl ONLY) String

Deliver data

The function deliver() returns a Python nested dictionary:

for uproot backend and parquet output format: out['<SAMPLE>']['<TREE>'] = [List of output
parquet files]

for uproot backend and root output format: out['<SAMPLE>'] = [List of output root files]

for xAOD backend: out['<SAMPLE>'] = [List of output root files]

Useful tools

Create Rucio container for multiple DIDs

The current ServiceX generates one request per Rucio DID. It's often the case that a physics analysis needs to
process hundreds of DIDs. In such cases, the script (scripts/create_rucio_container.py) can be used to
create one Rucio container per Sample from a yaml file. An example yaml file
(scripts/rucio_dids_example.yaml) is included.

Here is the usage of the script:

Acknowledgements

Support for this work was provided by the the U.S. Department of Energy, Office of High Energy Physics under
Grant No. DE-SC0007890

About

No description, website, or topics
provided.

 Readme

 BSD-3-Clause License

Releases 12

v0.2.3 Latest

23 days ago

+ 11 releases

Packages

No packages published
Publish your first package

Languages

Python 100.0%

 main Go to file Add file Code

KyungEon Choi Update example config 19508d6 yesterday 63 commits

scripts Add example yaml file for create Rucio container 26 days ago

servicex_databinder Update version 23 days ago

tests Update pytest 27 days ago

LICENSE Initial commit 3 months ago

README.md Update example config yesterday

config_example_atlasopendata.yml Add support for atlasopendata via xrootd last month

config_example_uproot.yml Update config example for uproot 27 days ago

config_example_xaod.yml Change field name GridDID into RucioDID last month

setup.py Bugfix in setup.py 23 days ago

pip install servicex-databinder

General:
 ServiceXBackendName: uproot
 OutputDirectory: /path/to/output
 OutputFormat: parquet

Sample:
 - Name: ttH
 RucioDID: user.kchoi:user.kchoi.sampleA,
 user.kchoi:user.kchoi.sampleB
 Tree: nominal
 FuncADL: "Select(lambda event: {'jet_e': event.jet_e})"
 - Name: ttW
 RucioDID: user.kchoi:user.kchoi.sampleC
 Tree: nominal
 Filter: n_jet > 5
 Columns: jet_e, jet_pt

1

1

from servicex_databinder import DataBinder
sx_db = DataBinder('<CONFIG>.yml')
out = sx_db.deliver()

usage: create_rucio_containers.py [-h] [--dry-run DRY_RUN]
 infile container_name version

Create Rucio containers from multiple DIDs

positional arguments:
 infile yaml file contains Rucio DIDs for each Sample
 container_name e.g. user.kchoi:user.kchoi.<container-name>.Sample.v1
 version e.g. user.kchoi:user.kchoi.fcnc_ana.Sample.<version>

optional arguments:
 -h, --help show this help message and exit
 --dry-run DRY_RUN Run without creating new Rucio container

README.md

How to run ServiceX DataBinder

https://iris-hep.org
https://rucio.readthedocs.io
https://github.com/CoffeaTeam/coffea
https://github.com/scikit-hep/cabinetry
https://servicex.readthedocs.io
https://github.com/iris-hep/func_adl_servicex
https://uproot.readthedocs.io
https://github.com/scikit-hep/pyhf
https://github.com/kyungeonchoi/ServiceXDataBinder
https://github.com/ssl-hep/TCutToQastleWrapper
https://awkward-array.org

