
Evaluation of Portable Programming Models to Accelerate LArTPC Detector Simulations

Zhihua Dong*, Kyle Knoepfel†, Meifeng Lin*a, Brett Viren*, Haiwang Yu*, Kwangmin Yu*

*Brookhaven National Laboratory, Upton, NY 11973, USA

†Fermi National Accelerator Laboratory, Batavia, IL 60510, USA
https://www.anl.gov/hep-cce

Abstract

The Liquid Argon Time Projection Chamber (LArTPC) technology is widely used in high energy
physics experiments, including the upcoming Deep Underground Neutrino Experiment (DUNE).
Accurately simulating LArTPC detector responses is essential for analysis algorithm development and
physics model interpretations. Accurate LArTPC detector response simulations are computationally
demanding, and can become a bottleneck in the analysis workflow. Compute accelerators such as
General-Purpose Graphics Processing Units (GPGPUs) have the potential to speed up the simulations
significantly compared to the traditional CPU-only processing, often at the cost of specialized code
refactorization and porting. With the rapid evolution and increased diversity of the computer
architecture landscape, it is highly desirable to have a portable solution that also maintains reasonable
performance. We report our ongoing effort in evaluating using Kokkos as a portable programming
model for LArTPC simulations in the context of the Wire-Cell Toolkit, a new C++ library for
LArTPC simulations, data analysis, reconstruction and visualization.

Introduction

The recorded digitized TPC signal from each wire plane can be modeled as a
two-dimensional (2D) convolution of the distribution of the arriving ionization
electrons and the impulse detector response:

M(t, x) =

∫ ∞

−∞

∫ ∞

−∞
R(t − t′, x − x′) · S(t′, x′)dt′dx′ + N(t, x), (1)

t: sampling time; x: wire position

M(t, x): a measurement, such as an
analog-to-digital converter (ADC)
value at a given x and t.

R(t − t′, x − x′): impulse detector
response, including both the field
response that describes the induced
current by a moving ionization electron
and the electronics response from the
shaping circuit.

S(t′, x′): the charge distribution of
the arriving ionization electrons,

N(t, x): electronics noise.

Cathode 
Plane

Edrift 

U V Y

Liquid Argon TPC

Y wire plane waveforms

V wire plane waveforms
Sense Wires

t

Inco
ming N

eutri
no

Charged Particles

Figure 1: Illustration of a three-wire plane LArTPC
and its signal formation.

We focus on the signal simulation part highlighted in red since it is more
computationally demanding than the noise term. In the Wire-Cell Toolkit [1], the 2D
convolution is calculated by Fourier transforming S(t, x) to the frequency domain,
applying a multiplicative correction, and then performing inverse Fourier transform
back to the time-space domain:

S(t, x) FT−−−−→ S(ωt, ωx),

M(ωt, ωx) = R(ωt, ωx) · S(ωt, ωx),

M(ωt, ωx) IFT−−−−−→ M(t, x),

(2)

The calculation consists of three key computational tasks:

Rasterization: Energy deposition is rasterized into small patches of size
∼ 20 × 20.

Scatter-Adding: Summation of energy depositions into a larger grid of
∼ 10, 000 × 10, 000.

Convolution: Add detector responses using Eq. (2) with Fourier Transformations.

Kokkos

Kokkos [2] is a C++ abstraction library targeting performance portability. It
supports several different node architectures and memory models by allowing
users to define their own execution and memory spaces. It maps C++ source
code to different backends during build time to achieve portability.

Serial backend, which executes single-threaded on a host device.

Host-parallel backend, which executes multithreaded on the host device.

Device-parallel backend, which executes on an external device (e.g. a GPU).

For the host-parallel backends, Kokkos currently supports OpenMP or POSIX
threads (pthreads) for CPUs. The device-parallel backends include CUDA for
NVIDIA GPUS, HIP for AMD GPUs, OpenMP target offloading and SYCL.

Implementation Details

To better experiment with the Kokkos abstraction layer, we developed the
standalone Wire-Cell-Gen-Kokkos module [3]. In our vCHEP21 presentation [4],
we showed results for a partial porting as a demonstration. Here we report the
results of a full porting that implements all the main computational tasks in
Kokkos, with the data flow between host (CPU) and device (GPU) shown below.

Host

Device

× 100k

depo: 1
pos: 20 × 2 × 100k patch:

20 × 20
× 100krasterize

depo: 1
pos: 20 × 2 

grid:
10k × 10k × 1

grid:
10k × 10k × 1

scatter
add FT grid:

10k × 10k × 1

Figure 2: Data flow for the full Kokkos porting.

Extensions to the toolkit: We added a C++ KokkosEnv context manager
component to initialize and finalize Kokkos as well as special build system
support.

Changes to data representation: Data layout transformation to use dense
matrix representation instead of sparse vectors.

FFT Wrapper API: Since Kokkos does not provide an API to optimized
vendor FFT libraries (FFTW, cuFFT, etc.), we implemented our own FFT
wrapper similar to the Synergia group [5].

Code example:

code listing

mflin228

November 2021

1 Introduction

Kokkos :: deep_copy(resp_f_w_k , resp_f_w_k_h); // data copying
resp_f_w_k = KokkosArray :: dft_cc(resp_f_w_k , 1); // Discrete Fourier transform

auto data_c = KokkosArray :: dft_rc(f_data , 0);
data_c = KokkosArray :: dft_cc(data_c , 1);

// S(f) * R(f)
Kokkos :: parallel_for(

Kokkos :: MDRangePolicy <Kokkos ::Rank <2, Kokkos :: Iterate ::Left >>({0, 0}, {data_c.extent (0), data_c.
extent (1)}),
KOKKOS_LAMBDA(const KokkosArray ::Index& i0, const KokkosArray ::Index& i1) {

data_c(i0, i1) *= resp_f_w_k(i0 , i1);});

// transfer wire to time domain
data_c = KokkosArray :: idft_cc(data_c , 1);

// extract M(channel) from M(impact)
Kokkos :: parallel_for(

Kokkos :: MDRangePolicy <Kokkos ::Rank <2, Kokkos :: Iterate ::Left >>({0, 0}, {acc_data_f_w.extent (0),
acc_data_f_w.extent (1)}),
KOKKOS_LAMBDA(const KokkosArray ::Index& i0, const KokkosArray ::Index& i1) {

acc_data_f_w(i0, i1) = data_c ((i0 + 1) * 10, i1);});

1

Result Validation and Performance Benchmarking

Validation: Waveforms after convolution with field response are tapped out from
CPU reference implementation and Kokkos porting with different backends, shown in
Figure 3. For both CUDA and OMP backends, the differences are at 0.01% level,
which are likely caused by subtle implementation differences and should not affect
any downstream analyses.

1100 1125 1150 1175 1200 1225 1250 1275 1300
time [tick]

2

1

0

1

2

3 1e 9

CPU-ref
Kokkos-OMP

1100 1125 1150 1175 1200 1225 1250 1275 1300
time [tick]

7.5

5.0

2.5

0.0

2.5

5.0

7.5

1e 13

diff.

1100 1125 1150 1175 1200 1225 1250 1275 1300
time [tick]

2

1

0

1

2

3 1e 9

CPU-ref
Kokkos-CUDA

1100 1125 1150 1175 1200 1225 1250 1275 1300
time [tick]

7.5

5.0

2.5

0.0

2.5

5.0

7.5

1e 13

diff.

Figure 3: Waveform comparisons from CPU-ref and Kokkos with OpenMP and CUDA backends.

Benchmarking: The same code was tested on three different architectures:
24-core AMD Ryzen Threadripper 3960X for reference CPU implementation
(CPU-ref) and Kokkos with OpenMP backend running 48 threads (Kokkos-OMP48),
NVIDIA V100 GPU for Kokkos-CUDA and AMD Raedon Pro VII for Kokkos-HIP.

Computation [secs] CPU-ref Kokko-CUDA Kokkos-HIP Kokkos-OMP48

Rasterization 10.45 0.05 0.04 0.15
ScatterAdd 1.14 0.0006 0.007 0.013
FFT 5.44 0.71 2.50 13.3
Total Time 18.04 0.99 2.77 13.7

Table 1: Timing for the main computational tasks on different architectures averaged over 10 runs each.

FFT is not parallelized for CPU-ref or Kokkos-OMP48. The slowdown may be due
to implementation difference. Detailed investigation is ongoing.

We get an overall speedup of 18× on V100, and 7× on Raedon Pro VII.

The GPUs are still under utilized and can be shared by several parallel processes to
gain further speedup using e.g. CUDA MPS.

Conclusions / Future Plans

We have implemented the LArTPC signal simulation in Kokkos for portability
across different architectures.

Speedups have been achieved using GPUs with room for further improvements.

We will look into other portable programming models, e.g. OpenMP and SYCL.

References

[1] https://github.com/WireCell/wire-cell-toolkit

[2] H.C. Edwards, C.R. Trott, 2013 Extreme Scaling Workshop (xsw 2013) (2013), pp. 18–24

[3] https://github.com/WireCell/wire-cell-gen-kokkos

[4] Haiwang Yu et al., EPJ Web Conf., 251 (2021) 03032

[5] https://web.fnal.gov/sites/Synergia/

aSpeaker. Email: mlin@bnl.gov. Work supported by US Department of Energy, Office of Science, Office of High Energy
Physics under the High Energy Physics Center for Computational Excellence (HEP-CCE), a collaboration between Argonne
National Laboratory, Brookhaven National Laboratory, Fermilab and Lawrence Berkeley National Laboratory. ACAT2021, 11/28/2021-12/03/2021

https://github.com/WireCell/wire-cell-toolkit
https://github.com/WireCell/wire-cell-gen-kokkos
https://web.fnal.gov/sites/Synergia/

