
Run

+ name:str
- state:str
- input:Input()
- output:Output()
- algorithms:dict()
- configuration:dict()

+ setup()
+ launch(): return Store
- run(state, store, targets): return Store 
- loop(targets)
- call(obj_name)
- add_algorithm(alg_name, store)
- update_targets(state, store, targets): return list
- update_store(obj_name, store)

Store

+ name:str
- run:Run()
- computed_objects:dict(options:dict())

+ put(name, object, option=None)
+ get(name, option=None)
+ check(name, option=None)
+ clear(option)

Job

+ name:str
+ configuration:dict()
- job:dict() = None
- run:Run() = None

+ setup()
+ launch()
- validate_configuration(configuration)
- build_dependencies(configuration)

Input

+ name
+ store
- file_idx:int = 0
- event_idx:int = 0
- reader_groups:dict(str:list(Reader()))
- ...

+ load()
+ read(obj_name)
+ set_next_event()
+ set_n_events()
+ set_event_idx(idx)
- set_reader(group_name, file_idx)
- ...

Output

+ name
+ store
- writers:dict(str:Writer())
- ...

+ load()
+ write(obj_name)
- ...

Writer

+ name
+ store
- targets:dict()
- ...

+ load()
+ write(obj_name)
- ...

Reader

+ name
+ store
- event_idx:int = 0
- n_events:int = -1

+ load()
+ read(obj_name)
+ get_event_idx()
+ get_n_events()
+ set_next_event()
+ set_n_events()
+ set_event_idx()
- ...

Readers Writers

Algorithms

Algorithm

+ name
+ store

+ initialise()
+ execute()
+ finalise()

Pyrate: a novel system for data transformation, reconstruction and analysis
North SouthNorth South

Federico Scutti, Swinburne University of Technology, ACAT 2021, Daejeon South Korea 
fscutti@swin.edu.au

Developed entirely in python for the SABRE dark 
matter direct detection experiment (~20 analysers). 
About 50 channels. 
• Data transformation: e.g. binary to ROOT. 
• Event reconstruction: Event building, 

calibrations, waveform digitisation for MC etc. 
• Data analysis: event selection, event weighting, 

plotting.

Dynamics

Blackboard design pattern: 
Knowledge sources 

Blackboard 
Control

“Target” objects are resolved in three states where dependencies on other objects are 
resolved dynamically. A lightweight and efficient workflow is achieved where variables 
are shared using a Store element and are only computed once in the run and retrieved later 
as needed. Input, Output and Algorithm classes access the Store. Objects are computed by 
Algorithms only as needed and configured using .yaml files. The Input/Output classes are 
composed of many Readers/Writers for individual files supporting a variety of formats. 


