

Adapting the CMS Software framework for GPU algorithms

The reconstruction, offline and at the HLT, is preformed with the CMS Software (CMSSW) framework
[3]. Its collision event data based architecture provides different types of modules that can contain
algorithms for reconstruction, analysis, and event filtering.

For the reconstruction of a quantity, a module of the EDProducer type typically takes some data product
from the event is input, as well as some eventual additional parameters like, e.g. calibration constants, and
produces a new data product as its output, that is then put back into the event.

External workers

To accommodate for offloading of work from the CPU to GPUs or other accelerators a modification of
the EDProducer for external workers splits the process into two steps. The acquire() function loads
the input data, starts an asynchronous execution on the GPU, and returns. The produce() function is called
when the CMSSW framework is notified about the completion of the GPU task and puts the result back into
the event. While the external work is performed the CMSSW task scheduler can execute other tasks on the
CPU.

SwitchProducers

SwitchProducers are used to detect the presence of a GPU during runtime of a job and execute the
GPU enabled producers possible, falling back to the CPU producers if the job runs on a machine without GPU
[4].

GPU-friendly data formats

New data formats for digis and (uncalibrated) RecHits implemented as Structs-of-Arrays (SoA) to
profit from high memory bandwidth of GPUs and read variables from several objects in one operation.
Conversion modules produce traditional Array-of-Structs (AoS) data formats to be used by downstream
CPU modules

Event Setup (ES) data formats for GPU algorithms

ES data contain conditions present during data taking and are loaded from a database. GPU optimized
SoA versions of the various ECAL conditions formats were implemented. The conditions necessary for
the algorithm running on the GPU are packaged in the acquire() function and transferred to the device
together with the event data.

Developing GPU-compliant algorithms for CMS ECAL
local reconstruction during LHC Run 3 and Phase 2

T. Reis for the CMS Collaboration
STFC Rutherford Appleton Laboratory - Harwell Campus, Didcot, OX11 0QX, United Kindgom

ACAT 2021 – 29th Nov. - 3rd Dec. 2021, Daejeon (Republic of Korea), virtual

The case for heterogeneous computing in CMS

The higher LHC luminosity expected in Run 3 (2022+) and the consequently larger number of
simultaneous proton-proton collisions (pileup) per event pose significant challenges for the CMS event
reconstruction. This is particularly important for event filtering at the CMS High Level Trigger (HLT),
where complex reconstruction algorithms must be executed within a strict time budget.

This problem will become even more acute during Phase 2 of the LHC (2027+), where significantly
higher luminosity, pileup and input rates will be delivered to the HLT than foreseen during Run 3. The
processing power required to perform online event reconstruction in this environment exceeds the
expected increase in processing power for conventional CPUs, requiring an alternative approach.

CMS is investigating the widespread use of heterogeneous architectures, including GPU
accelerators, to satisfy the needs of the Phase 2 reconstruction. A prototype system will be operated at
the HLT during LHC Run 3 to validate the approach and to gain experience in optimising the
reconstruction algorithms to the different processor architectures.

The local reconstruction algorithm of the CMS electromagnetic calorimeter (ECAL) [1] is
among the first to be implemented on heterogeneous platforms since it is well suited for parallel execution.

Implementation of the ECAL local reconstruction

All three steps of the ECAL local reconstruction are implemented in a consecutive way as GPU
algorithms using the CUDA toolkit for NVIDIA GPUs [5]. This avoids costly data transfers
between host and device and data formatting between the SoA data format and the legacy AoS
formats on CPU

The unpacking module

The packed raw data from the 54 ECAL front end drivers (FEDs) is accumulated on the host in one
piece of memory that is then transferred to the device. The kernel to unpack the raw data is
executed and the number of unpacked digis is transferred back to the host. The unpacked digis could
be transferred back to the host by a separate module if needed. There are as many blocks used as
there are non-empty FEDs in the event, each having 32 threads. A loop over all channels in a FED with
a stride of 32 unpacks 32 channels in parallel.

The amplitude reconstruction module

The minimisation and amplitude reconstruction is split into several kernels. Kernels for the
reconstruction of the pulse time exist but are not executed at the HLT to save time. The kernels are
chosen to maximise the parallelism at different stages of the minimisation and avoid
recomputation of of common variables.

The rechits producer module

The various calibration constants and scale factors are provided by the ES and applied to the
uncalibrated rechits to obtain the correct energies deposited in the channels. Some features of the
CPU algorithm still need to be implemented in the GPU algorithm

Performance

A comparison between the CPU version and the GPU version of the local reconstruction was
performed on an Intel Xeon Gold 6148 machine (32 CPU cores) with and NVIDIA V100 GPU [6]. A 4x
speed-up was measured, with a throughput of ~2000 events/s for the GPU algorithm processing 8 events
in parallel compared to around 500 events/s for the CPU-only algorithm using all 32 cores.

An event-by-event and channel-by-channel comparison of the reconstructed energies show a relative
difference between CPU and GPU values of less than 10-4. For the disagreements between CPU and
GPU reconstructions the input signal typically shows high noise or pedestal issues and the amplitude
reconstructed by CPU and GPU algorithms does not correspond well to the pulse amplitude.

Tests with a Run 3 HLT menu and Run2018 data on a 2 x AMD EPYQ 7502 machine equipped with
an NVIDIA Tesla T4 GPU show an overall CPU usage reduction of 24% for all GPU enabled algorithms. The
ECAL algorithm runtime is reduced from 24.5 ms for the CPU-only version to 7.4 ms when
utilising the GPU.

The ECAL local reconstruction on GPU was used for data taking at the CMS HLT during
collisions runs in October 2021.

The amplitude reconstruciton module The rechits module

The CMS Electromagnetic Calorimeter local Reconstruction

The lead tungstate (PbWO4) electromagnetic
calorimeter of the CMS experiment consists of
61200 crystals in the barrel section and 7324
crystals in each of the two endcaps, for a total of
75848 channels.

The analogue pulse from a crystal is sampled
every 25 ns and a fixed number of samples is read
out for energy reconstruction when a trigger signal
arrives.

The ECAL local reconstruction algorithm has three steps

● Unpacking of the raw data from the detector into so called digis. Digis are collection of
consecutive samples from a single ECAL channel.

● Amplitude reconstruction. Uncalibrated reconstruction hits (RecHits) for the triggered event
are calculated for each channel read out from the digis. Eventual overlapping signals from previous
or later events (out-of-time pileup) are subtracted from the central event amplitude with the multifit
algorithm [2].

● Calculation of energies from the uncalibrated RecHits. Various scale factors and calibrations
are applied and RecHits in GeV units are obtained

The multifit algorithm is the central part of
the ECAL local reconstruction. It involves the
iterative minimisation of a χ2 function

Cut away view of the CMS ECAL detector.

References

[1] CMS Collaboration, The CMS electromagnetic calorimeter project: Technical Design Report, CERN-LHCC-97-033 (1997)
[2] CMS Collaboration, Reconstruction of signal amplitudes in the CMS electromagnetic calorimeter in the presence of overlapping proton-proton interactions, JINST 15 (2020) 10, P10002
[3] https://github.com/cms-sw/cmssw/ (accessed 2021-11-23)
[4] A. Bocci et al., Bringing heterogeneity to the CMS software framework, EPJ Web Conf. 245 (November, 2020) 05009
[5] NVIDIA, CUDA C++ Programming Guide, https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html (accessed 2021-11-23)
[6] CMS Collaboration, The Phase-2 Upgrade of the CMS Data Acquisition and High Level Trigger Technical Design Report, CERN-LHCC-2021-007

Observed samples and fitted sum of in-time
and out-of-time pulses.

Amplitudes Aj

(1 in-time and 9 out-of-time)Sample vector S

Correlation matrix

Pulse templates pj

Data products and CMSSW
framework producers of the ECAL
local reconstruction on CPU and
GPU. The dotted and solid arrows
between the CPU and GPU data
formats represent possible and
actual conversions between data
formats, respectively.

Runtime fractions of different object reconstructions in a Run 3 HLT menu for CPU-only (left) and GPU
enabled menu (right). The ECAL local reconstruction contribution is highlighted by the orange frame.

χ
2
=(∑

j=0

N BX

A j p⃗ j− S⃗)
T

C−1(∑
j=0

N BX

A j p⃗ j−S⃗)

C=Cnoise⊕∑
j=0

N BX

A j
2C pulse

j

https://github.com/cms-sw/cmssw/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

	Slide 1

