
Accelerating the Inference
of Machine Learning-based

Track Finding
Pipeline

Alina Lazar
on behalf of the
Exa.TrkX
collaboration

ACAT 2021
12/02/2021

Track Reconstruction
• Current track reconstruction

techniques (variations of Kalman
Filters) approximately scale
quadratically with the number of
events/collisions/particles, since
solving a large combinatorial problem

• Graph Neural Networks (GNNs) offer
the possibility of solving combinatorial
problems in less-than-quadratic time

• Multithreading is essential

2

The Exa.TrkX Track Reconstruction Pipeline
Code available @ https://github.com/HSF-reco-and-software-triggers/Tracking-ML-Exa.TrkX

Construct
graph

Classify
edges

Identify
connected

components

Raw hit data
embedded

Filter doublets,
construct graph

Train/classify
doublets in GNN

Filter, convert to
triplets

Train/classify
triplets in GNN

Graph partitioning
for track labels

1

2 3

Track #1

Track #2

https://github.com/HSF-reco-and-software-triggers/Tracking-ML-Exa.TrkX

Exatrkx Track Reconstruction - Scaling
Computing performance scales linearly with the number of input space
points.

Ju, X., Murnane, D., Calafiura, P., Choma, N., Conlon, S., Farrell, S., Xu, Y., Spiropulu, M., Vlimant, J.R., Aurisano, A. and Hewes, J., 2021.
Performance of a geometric deep learning pipeline for HL-LHC particle tracking. The European Physical Journal C, 81(10), pp.1-14.
https://link.springer.com/article/10.1140/epjc/s10052-021-09675-8 4

CPU GPU

Baseline (python)
Implementation of
the Exa.TrkX
Inference Pipeline

• Runs on both GPUs and CPUs.
• Embedding and filtering models are trained

using the PyTorch deep learning framework.
• The build edges, graph construction is done

using the radius_graph from torch_cluster.
• GNN uses a TensorFlow model.
• DBSCAN from scikit-learn was used to

cluster edges into tracks.
• NVIDIA Volta V100s with 32GB GPU memory
• Record average timing over 500 events from

the TrackML Challenge.
• Peak Memory Usage:

GPU 16.7 GB, CPU 11 GB
5

GPU Elapsed Time (s)
Data Loading 0.0022 ± 0.0003
Embedding 0.02 ± 0.003
Build Edge 11.52 ± 2.65
Filtering 0.67 ± 0.15
GNN 0.17 ± 0.03
Labeling 2.16 ± 0.3
Total Sync 14.57 ± 3.14

Timing
Optimization

Python Inference Pipeline

6

Track Labeling and Mixed Precision

• Graph Building – radius_graph from torch_clusterwas
replaced with faiss’s k-nearest neighbor search for the GPU.

• Track Labeling – DBSCAN was replaced by the graph weakly
connected components algorithm. We used the RAPIDS cuGgraph
on GPU and scikit-network on CPU for the Python implementation.

• Mixed Precision for Pytorch – Instances of
torch.cuda.amp.autocast enable autocasting for chosen
regions. Autocasting automatically chooses the best precision for
GPU operations to improve performance while maintaining
accuracy.

7

Fast Graph Construction
• Started with Faiss (KNN library)
• KNN produces sorted neighbors -

this is unnecessary
• Only need Fixed Radius neighbors
• Cell-by-cell grid search is ~100x

faster than Faiss
• We customized library

(https://github.com/lxxue/FRNN/tr
ee/larged) on Fixed Radius Nearest
Neighbor search algorithm

FAST FIXED-RADIUS NEAREST NEIGHBORS: INTERACTIVE
MILLION-PARTICLE FLUIDS, Hoetzlein (NVIDIA), 2014

Accelerating NN Search on CUDA for Learning Point Clouds, Xue 2020
The complexity of finding fixed-radius
near neighbors. Bentley, et al 1977

8

https://github.com/lxxue/FRNN/tree/larged

Inference Accelerator Technologies on GPUs

1. Baseline radius_graph → faiss KNN
2. DBSCAN clustering → cuGraph connected components
3. Full precision → mixed precision
4. Faiss knn → FRNN radius graph
FRNN + mixed precision + cuGraph: 0.7 ± 0.13 sec →

9

Baseline Imp. (s)

Data Loading 0.0022 ± 0.0003

Embedding 0.02 ± 0.003

Build Edge 11.52 ± 2.64

Filtering 0.67 ± 0.15

GNN 0.17 ± 0.03

Labeling 2.16 ± 0.3

Total Time 14.57 ± 3.14

cuGraph

0.0023 ± 0.0003

0.02 ± 0.002

0.53 ± 0.07

0.67 ± 0.15

0.17 ± 0.03

0.11 ± 0.01

1.53 ± 0.26

FRNN

0.0022 ± 0.0003

0.0067 ± 0.0007

0.04 ± 0.01

0.37 ± 0.08

0.17 ± 0.03

0.09 ± 0.008

0.7 ± 0.13

AMP

0.0022 ± 0.0003

0.0067 ± 0.0007

0.53 ± 0.07

0.37 ± 0.08

0.17 ± 0.03

0.09 ± 0.008

1.17 ± 0.18

Faiss

0.0021 ± 0.0003

0.02 ± 0.002

0.54 ± 0.07

0.67 ± 0.15

0.17 ± 0.03

2.14 ± 0.3

3.56 ± 0.55

Inference Timing – CPU
• Dual Intel Xeon 8268s Cascade Lakes @2.9GHz with 48 cores/node and 178 GB/node.
• The pipeline steps automatically use multiprocessing when running on multiple cores.
• No optimizations have yet been made to the CPU implementation.
• The CPU-based timing results are still not competitive with the optimized GPU results.

10

Towards Realistic Python to C++ Conversion

• Provide a mechanism to integrate
the Exa.trkX pipeline with C++-
based event reconstruction
workflows.

• Deep learning inference runs
predominantly on the GPUs.

• Python’s threading model is limited
by the Global Interpreter Lock (GIL),
slowing down throughput.

• By converting the pipeline to C++,
we can overcome Python threading
drawbacks.

11

GIL

Python to C++ with ONNX Runtime

• Converted embedding and filtering to
ONNX models, GNN to torchscript and to
ONNX models, FRNN to C++ using libtorch,
and cuGraph to libcugraph

• Technical challenges we had to solve:
• Used a Docker container to get all the

dependencies to work together.
• Integrated libtorch, ONNX Runtime,

libcugraph (Rapids AI)
• Blocker: The physics performance of GNN

ONNX is compromised by bug in ONNX
implementation of scatter_add onnx
operator.

12

Embedding

Build Edges

Filtering

GNN

Embedding

Build Edges

Filtering

GNN ONNX

LabelingLabeling

C++ Integration with ACTS

13

Integration
of Exa.TrkX
Inference
with

Acts - A Common Tracking Software

Experiment-independent toolkit for track
reconstruction (for future detectors)

Open-source platform for implementing new
tracking techniques and hardware architectures

To be useful Exa.TrkX inference must be
integrated with experiment tracking pipelines,
and ACTS is an experiment-neutral one.

14
Ai, X., 2019. Acts: A common tracking software. arXiv preprint arXiv:1910.03128.
https://arxiv.org/pdf/1910.03128.pdf

Exa.TrkX Integration with

15

Event
Generator Digitization Spacepoint

Formation

Track
Finding

Initial track
parameter
estimation

Track FittingTrack
Performance

Track Reconstruction Stages

Conclusions

• Implemented Faiss KNN for graph construction, replaced DBSCAN
with weakly connected components, mixed precision speeds up GPU
running time, fixed radius NN for building the radius-based graph

• Event GPU-based inference runs in sub-second time
• Running inference on multiple CPU cores speeds up running the

pipeline, but it still takes ~17x longer.
• We have an implementation of the inference pipeline running in

C++, in a multithreading environment
• This allows the integration of the pipeline with other tracking

frameworks such as the ACTS framework.
• The C++ pipeline currently runs on CUDA and GPUs

16

Future Plans

• Optimize the performance of the ONNX Runtime
• Run the half precision ONNX models in the C++ inference pipeline.
• Run the pipeline with tensorRT as the provider for the ONNX

Runtime (requires special compilation of the ONNX Runtime)
• Working with Nvidia experts and other HEP groups to accelerate

GNNs with tensorRT
• Reduce the number of software library dependencies for Python

and C++

17

Thank you!

18

Exa.TrkX Collaboration Members:

•Maria Spiropulu, Jean-Roch Vlimant (Caltech)
•Giuseppe Cerati, Lindsey Gray, Thomas Klijnsma, Jim Kowalkowski (FNAL)
•Paolo Calafiura (PI), Xiangyang Ju, Daniel Murnane (LBNL)
•Nick Choma, Sean Conlon, Steven Farrell, Yaoyuan Xu (LBNL)
•Ankit Agrawal, Alexandra Day, Claire Lee, Wei-keng Liao, (Northwestern)
•Gage DeZoort, Savannah Thais (Princeton)
•Pierre Cote De Soux, François Drielsma, Kasuhiro Terao, Tracy Usher (SLAC)
•Adam Aurisano, Jeremy Hewes (UCincinnati)
•Markus Atkinson, Mark Neubauer (UIUC)
•Aditi Chauhan, Alex Schuy, Shih-Chieh Hsu (UWashington)
•Alex Ballow, Alina Lazar (Youngstown State)

GitHub Repository for C++ implementation: exatrkx/exatrkx-
acat2021: The exa.trkx pipeline used for the C++ inference

studies presented at ACAT 2021 (github.com)
Docker Container: exatrkx-acat2021/docker at main ·

exatrkx/exatrkx-acat2021 (github.com)

Exa.TrkX Project

Background image of first and last slide source: Manuchi via Pixabay
https://pixabay.com/illustrations/background-abstract-line-2462435/

Thank you!

More details on Exa.TrkX at this conference:
Poster #643, Graph Neural Network for Large Radius Tracking
Poster #774, A Comprehensive Comparison of GNN
Architectures for Jet Tagging
Poster #730, Graph Neural Network for Object Reconstruction
in Liquid Argon Time Projection Chambers

https://github.com/exatrkx/exatrkx-acat2021
https://github.com/exatrkx/exatrkx-acat2021/tree/main/docker
https://pixabay.com/illustrations/background-abstract-line-2462435/

	Accelerating the Inference of Machine Learning-based Track Finding �Pipeline
	Track Reconstruction
	The Exa.TrkX Track Reconstruction Pipeline
	Exatrkx Track Reconstruction - Scaling
	Baseline (python) Implementation of the Exa.TrkX Inference Pipeline
	Timing Optimization
	Track Labeling and Mixed Precision
	Fast Graph Construction
	Inference Accelerator Technologies on GPUs
	Inference Timing – CPU
	Towards Realistic Python to C++ Conversion
	Python to C++ with ONNX Runtime
	C++ Integration with ACTS
	Integration of Exa.TrkX Inference with
	Exa.TrkX Integration with
	Conclusions
	Future Plans
	Thank you!	
	Exa.TrkX Project	

