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Track Reconstruction 
• Current track reconstruction 

techniques (variations of Kalman 
Filters) approximately scale 
quadratically with the number of 
events/collisions/particles, since 
solving a large combinatorial problem

• Graph Neural Networks (GNNs) offer 
the possibility of solving combinatorial
problems in less-than-quadratic time

• Multithreading is essential
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The Exa.TrkX Track Reconstruction Pipeline
Code available @ https://github.com/HSF-reco-and-software-triggers/Tracking-ML-Exa.TrkX
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Exatrkx Track Reconstruction - Scaling
Computing performance scales linearly with the number of input space 
points.

Ju, X., Murnane, D., Calafiura, P., Choma, N., Conlon, S., Farrell, S., Xu, Y., Spiropulu, M., Vlimant, J.R., Aurisano, A. and Hewes, J., 2021. 
Performance of a geometric deep learning pipeline for HL-LHC particle tracking. The European Physical Journal C, 81(10), pp.1-14.
https://link.springer.com/article/10.1140/epjc/s10052-021-09675-8 4
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Baseline (python) 
Implementation of 
the Exa.TrkX 
Inference Pipeline

• Runs on both GPUs and CPUs.
• Embedding and filtering models are trained 

using the PyTorch deep learning framework.
• The build edges, graph construction is done 

using the radius_graph from torch_cluster.
• GNN uses a TensorFlow model.
• DBSCAN from scikit-learn was used to 

cluster edges into tracks.
• NVIDIA Volta V100s with 32GB GPU memory
• Record average timing over 500 events from 

the TrackML Challenge. 
• Peak Memory Usage:  

GPU 16.7 GB, CPU 11 GB
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GPU Elapsed Time (s)
Data Loading 0.0022 ± 0.0003
Embedding 0.02 ± 0.003
Build Edge 11.52 ± 2.65
Filtering 0.67 ± 0.15
GNN 0.17 ± 0.03
Labeling 2.16 ± 0.3
Total Sync 14.57 ± 3.14



Timing 
Optimization

Python Inference Pipeline
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Track Labeling and Mixed Precision

• Graph Building – radius_graph from torch_clusterwas 
replaced with faiss’s  k-nearest neighbor search for the GPU.

• Track Labeling – DBSCAN was replaced by the graph weakly 
connected components algorithm. We used the RAPIDS cuGgraph
on GPU and scikit-network on CPU for the Python implementation.  

• Mixed Precision for Pytorch – Instances of 
torch.cuda.amp.autocast enable autocasting for chosen 
regions. Autocasting automatically chooses the best precision for 
GPU operations to improve performance while maintaining 
accuracy.
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Fast Graph Construction
• Started with Faiss (KNN library)
• KNN produces sorted neighbors -

this is unnecessary
• Only need Fixed Radius neighbors
• Cell-by-cell grid search is ~100x 

faster than Faiss
• We customized library 

(https://github.com/lxxue/FRNN/tr
ee/larged) on Fixed Radius Nearest 
Neighbor search algorithm

FAST FIXED-RADIUS NEAREST NEIGHBORS: INTERACTIVE 
MILLION-PARTICLE FLUIDS, Hoetzlein (NVIDIA), 2014

Accelerating NN Search on CUDA for Learning Point Clouds, Xue 2020
The complexity of finding fixed-radius 
near neighbors. Bentley, et al 1977
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Inference Accelerator Technologies on GPUs

1. Baseline radius_graph → faiss KNN
2. DBSCAN clustering → cuGraph connected components
3. Full precision → mixed precision
4. Faiss knn → FRNN radius graph
FRNN + mixed precision + cuGraph:  0.7 ± 0.13 sec → 
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Baseline Imp. (s)

Data Loading 0.0022 ± 0.0003

Embedding 0.02 ± 0.003

Build Edge 11.52 ± 2.64

Filtering 0.67 ± 0.15

GNN 0.17 ± 0.03

Labeling 2.16 ± 0.3

Total Time 14.57 ± 3.14

cuGraph

0.0023 ± 0.0003

0.02 ± 0.002

0.53 ± 0.07

0.67 ± 0.15

0.17 ± 0.03

0.11 ± 0.01

1.53 ± 0.26

FRNN

0.0022 ± 0.0003

0.0067 ± 0.0007

0.04 ± 0.01

0.37 ± 0.08

0.17 ± 0.03

0.09 ± 0.008

0.7 ± 0.13

AMP

0.0022 ± 0.0003

0.0067 ± 0.0007

0.53 ± 0.07

0.37 ± 0.08

0.17 ± 0.03

0.09 ± 0.008

1.17 ± 0.18

Faiss

0.0021 ± 0.0003

0.02 ± 0.002

0.54 ± 0.07

0.67 ± 0.15

0.17 ± 0.03

2.14 ± 0.3

3.56 ± 0.55



Inference Timing – CPU
• Dual Intel Xeon 8268s Cascade Lakes @2.9GHz with 48 cores/node and 178 GB/node.
• The pipeline steps automatically use multiprocessing when running on multiple cores. 
• No optimizations have yet been made to the CPU implementation.
• The CPU-based timing results are still not competitive with the optimized GPU results.
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Towards Realistic Python to C++ Conversion

• Provide a mechanism to integrate 
the Exa.trkX pipeline with C++-
based event reconstruction 
workflows.

• Deep learning inference runs 
predominantly on the GPUs.

• Python’s threading model is limited 
by the Global Interpreter Lock (GIL), 
slowing down throughput. 

• By converting the pipeline to C++, 
we can overcome Python threading 
drawbacks.
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Python to C++ with ONNX Runtime

• Converted embedding and filtering to 
ONNX models, GNN to torchscript and to 
ONNX models, FRNN to C++ using libtorch, 
and cuGraph to libcugraph

• Technical challenges we had to solve:
• Used a Docker container to get all the 

dependencies to work together.
• Integrated libtorch, ONNX Runtime, 

libcugraph (Rapids AI)
• Blocker: The physics performance of GNN 

ONNX is compromised by bug in ONNX 
implementation of scatter_add onnx
operator.
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C++ Integration with ACTS
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Integration 
of Exa.TrkX
Inference 
with 

Acts - A Common Tracking Software

Experiment-independent toolkit for track 
reconstruction (for future detectors)

Open-source platform for implementing new 
tracking techniques and hardware architectures

To be useful Exa.TrkX inference must be 
integrated with experiment tracking pipelines, 
and ACTS is an experiment-neutral one.
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Ai, X., 2019. Acts: A common tracking software. arXiv preprint arXiv:1910.03128. 
https://arxiv.org/pdf/1910.03128.pdf



Exa.TrkX Integration with 

15

Event 
Generator Digitization Spacepoint 

Formation

Track 
Finding

Initial track 
parameter 
estimation

Track FittingTrack 
Performance

Track Reconstruction Stages



Conclusions

• Implemented Faiss KNN for graph construction, replaced DBSCAN 
with weakly connected components, mixed precision speeds up GPU 
running time, fixed radius NN for building the radius-based graph 

• Event GPU-based inference runs in sub-second time
• Running inference on multiple CPU cores speeds up running the 

pipeline, but it still takes ~17x longer.
• We have an implementation of the inference pipeline running in 

C++, in a multithreading environment
• This allows the integration of the pipeline with other tracking 

frameworks such as the ACTS framework.
• The C++ pipeline currently runs on CUDA and GPUs
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Future Plans

• Optimize the performance of the ONNX Runtime
• Run the half precision ONNX models in the C++ inference pipeline.
• Run the pipeline with tensorRT as the provider for the ONNX 

Runtime (requires special compilation of the ONNX Runtime)
• Working with Nvidia experts and other HEP groups to accelerate 

GNNs with tensorRT
• Reduce the number of software library dependencies for Python 

and C++
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Thank you!
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GitHub Repository for C++ implementation: exatrkx/exatrkx-
acat2021: The exa.trkx pipeline used for the C++ inference 

studies presented at ACAT 2021 (github.com)
Docker Container: exatrkx-acat2021/docker at main · 

exatrkx/exatrkx-acat2021 (github.com)

Exa.TrkX Project

Background image of first and last slide source: Manuchi via Pixabay
https://pixabay.com/illustrations/background-abstract-line-2462435/

Thank you!

More details on Exa.TrkX at this conference:
Poster #643, Graph Neural Network for Large Radius Tracking
Poster #774, A Comprehensive Comparison of GNN 
Architectures for Jet Tagging
Poster #730, Graph Neural Network for Object Reconstruction 
in Liquid Argon Time Projection Chambers

https://github.com/exatrkx/exatrkx-acat2021
https://github.com/exatrkx/exatrkx-acat2021/tree/main/docker
https://pixabay.com/illustrations/background-abstract-line-2462435/
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