
Anomaly detection of I/O behaviors
in HEP computing cluster

based on unsupervised machine learning

Lu Wang (wanglu@ihep.ac.cn)

Computing Center, Institute of High Energy Physics, CAS

2021-11-29

2

Outline

1 Introduction

2 Data preparation

3 Implementation

4 Summary and next steps

3

⚫ Problematic I/O is a major cause of low efficiency HEP jobs.
◼ Large distance seeks in a large file + small read (<4KB) , small writes + sync in parallel …

◼ disable the optimizations of distributed storage systems

◆ client cache, read ahead, write back etc.,

◼ Sometimes these usages are unavoidable, but we need to detect them in time and control
their impacts on the overall efficiency

⚫Traditional diagnosis of these patterns involves monitoring of storage
servers, alarming of heavy workloads and backtracking of the
workloads…

◼ Big MTTR (Mean Time to Restoration), typically in unit of hours

⚫We implemented a direct, instant and automatic way of problematic I/O
detection based on unsupervised machine learning.

Problematic I/O patterns

4

⚫I/O pattern Includes operations of both data and metadata
◼ described by histograms of size, bandwidth and frequency

⚫ Lustre file system provides a way to attach job identity with I/O
requests sending to servers

◼ The identity can be process name, client node name, process id or any ID which can be
read from a process’s environment variables

◼ We use HT-Condor job ID as job identity

◼ On login nodes without HT-Condor ID, Lustre will use the default identity
as“procname+uid”

⚫Lustre servers make statistics of running jobs’ IO patterns in
memory, and histograms can be queried by “/proc ”interfaces

I/O pattern of a HEP job(1/2)

lctl set_param jobid_var=_CONDOR_IHEP_JOB_ID

5

⚫On Metadata server

◼ Total running jobs accessing this
device: 1529

◼Number of metadata operation: 22

⚫On data server

◼ Total running jobs accessing this
device: 488

◼Number of data operations: 15

I/O pattern of a HEP job(2/2)

6

⚫With above I/O patterns, we can simply make detection by
heuristic policies

◼ The threshold of problematic job for each operation is difficult to determine

◼ can not adapt to changes of hardware and software

◼ can not detect new anomalies

⚫Machine learning provides a data driven way to do this task

⚫In this case, we used a ML algorithm called Isolation Forest
◼ Unsupervised, do not need tagged data set for model training

◼ linear time complexity, low memory requirement, works well in high dimensional
problems that have a large number of irrelevant attributes, and in situations where
training sets do not contain any anomalies

Why unsupervised machine learning ?

7

Outline

1 Introduction

2 Data preparation

3 Implementation

4 Summary and next steps

8

⚫On IHEP cluster there are 19 Lustre metadata servers, 135
Lustre data servers

⚫Lustre provides an open sourced collectD plugin for collection
of performance metrics, which include those jobstats

◼GitHub - LiXi-storage/barreleye: Lustre Monitoring System

⚫It is both possible for the plugin to in store these metrics on
local disks or export to remote data collectors

◼ Local disk file system will run out of inode soon with billions of jobs multiplied
by tens of metrics

◼we export collectD results to our central ElasticSearch Database

Data collection

https://github.com/LiXi-storage/barreleye

9

⚫Data items in ElasticSearch DB

⚫With query results of certain “timestamp range, fsname and device
name” we can build data samples sorted by job_ID

⚫Since May 2021, We have collected 3.2 billion samples of data
operation, 0.9 billion samples of metadata operation

Data Query

10

Outline

1 Introduction

2 Data preparation

3 Implementation

4 Summary and next steps

11

Overall design

Since we keep the timestamp, we can also made training samples as time series, and train more complicated
models such as recurrent neural networks in the future.

12

Isolation Forest (1/2)

⚫Isolation Forest builds a set of proper binary trees from
dataset: X = {x1, ..., xn} of n instances.

◼ to build one isolation tree, recursively divide X by randomly selecting an
attribute q and a split value p, until either: (i) the tree reaches a height limit, (ii)
|X| = 1 or (iii) all data in X have the same values.

◼ For a new data point, its path length h(x) of a iTree is the the number of edges x
traverses an iTree from the root node until the traversal is terminated at an
external node.

◼ Than its anomaly score is

13

Isolation Forest (2/2)

⚫Two parameters of Isolation Forest
◼ number of trees (t)

◼ number of samples used to build a Forest (𝜓)

⚫Experiments show that
◼ h(x) converges with a small number of trees

◼ Training with sub sampling gives comparable

result with training on full dataset

◼ Default setting of 𝜓 is 256

⚫very effective on large, high dimensional data

⚫Widely used, recommended by scikit-learn package

training stage:
evaluating stage:

14

⚫Hyper parameters of IF

◼n_estimators=100, max_samples=256, contamination=0.1

⚫Separate models for Metadata and data operations

⚫Separate models with samples collected last day and week

⚫New job samples are tagged by cron job every 10 mins

⚫Since we have detailed information of HT-Condor job in
Elasticsearch DB, we can display details of abnormal jobs

◼uid, submission time, procname etc.,

Implementation details

15

⚫Tagged data samples for last 10 mins are reshuffled for
visualization with matplotlib

⚫The first 5000 samples are reduced to 2-D with PCA and t-SNE

Visualization

16

⚫In the right graph there is a peak write on the BESIII home directory

⚫If we sort jobs during that

time span by its abnormal score

predicted by last day model,

⚫ Results shown that these abnormal jobs

largely overlapped with a batch of jobs

submitted by a same user and

they have large write_bytes/sec

Example of workload back trace

17

Outline

1 Introduction

2 Data preparation

3 Implementation

4 Summary and next steps

18

⚫We implemented an automatic detection system of
problematic I/O behaviors in IHEP cluster

⚫By data driven, unsupervised machine learning, it can make
detection with very little prior knowledge of the anomalies

⚫In the future, this system can be extended to use more
compressive prediction models and wider applications in IT
maintenance

◼Better user interface, a human tagging entrance and implementation in a web
framework other than Jupyter notebook

Summary and next steps

19

Thank You!
Questions?

