
Anomaly detection of I/O behaviors 
in HEP computing cluster 

based on unsupervised machine learning

Lu Wang (wanglu@ihep.ac.cn)

Computing Center, Institute of High Energy Physics, CAS

2021-11-29



2

Outline

1 Introduction

2 Data preparation 

3 Implementation

4 Summary and next steps 



3

⚫ Problematic I/O is a major cause of low efficiency HEP jobs.
◼ Large distance seeks in a large file + small read (<4KB) , small writes + sync in parallel … 

◼ disable the optimizations of distributed storage systems 

◆ client cache, read ahead, write back etc.,

◼ Sometimes these usages are unavoidable, but we need to detect them in time and  control 
their impacts on the overall efficiency  

⚫Traditional diagnosis of these patterns involves monitoring of storage 
servers, alarming of heavy workloads and backtracking of the 
workloads…

◼ Big MTTR (Mean Time to Restoration ), typically in unit of  hours 

⚫We implemented a direct, instant and automatic way of problematic I/O 
detection based on unsupervised machine learning.

Problematic I/O patterns
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⚫I/O pattern Includes operations of both data and metadata 
◼ described by histograms of size, bandwidth and frequency 

⚫ Lustre file system provides a way to attach job identity with I/O 
requests sending to servers 

◼ The identity can be process name, client node name, process id or any ID which can be 
read from a process’s environment variables

◼ We use HT-Condor job ID as job identity   

◼ On login nodes without HT-Condor ID,  Lustre will use the default  identity 
as“procname+uid” 

⚫Lustre servers make statistics of running jobs’ IO patterns in 
memory, and histograms can be queried by “/proc ”interfaces  

I/O pattern of a HEP job(1/2) 

lctl set_param jobid_var=_CONDOR_IHEP_JOB_ID
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⚫On Metadata server

◼ Total running jobs accessing this 
device: 1529 

◼Number of metadata operation: 22

⚫On data server

◼ Total running jobs accessing this 
device: 488

◼Number of data operations: 15

I/O pattern of a HEP job(2/2) 
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⚫With above I/O patterns, we can simply make detection by 
heuristic policies 

◼ The threshold of problematic job for each operation is difficult to determine  

◼ can not adapt to changes of hardware and software

◼ can not detect new  anomalies    

⚫Machine learning provides a data driven way to do this task 

⚫In this case, we used a ML algorithm called Isolation Forest 
◼ Unsupervised, do not need tagged data set for model training 

◼ linear time complexity, low memory requirement, works well in high dimensional 
problems that have a large number of irrelevant attributes, and in situations where 
training sets do not contain any anomalies

Why unsupervised machine learning ?
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⚫On IHEP cluster there are 19 Lustre metadata servers, 135 
Lustre data servers

⚫Lustre provides an open sourced collectD plugin for collection 
of performance metrics, which include those jobstats

◼GitHub - LiXi-storage/barreleye: Lustre Monitoring System

⚫It is both possible for the plugin to in store these metrics on 
local disks or export to remote data collectors 

◼ Local disk file system will run out of inode soon with billions of jobs multiplied 
by tens of metrics

◼we export collectD results to our central ElasticSearch Database

Data collection

https://github.com/LiXi-storage/barreleye
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⚫Data items in ElasticSearch DB

⚫With query results of certain “timestamp range, fsname and device 
name” we can build data samples sorted by job_ID

⚫Since May 2021, We have collected  3.2 billion samples of data 
operation, 0.9 billion samples of metadata operation 

Data Query
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Overall design 

Since we keep the timestamp, we can also made training samples as time series, and train more complicated 
models such as recurrent neural networks in the future. 
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Isolation Forest (1/2) 

⚫Isolation Forest builds a set of proper binary trees from 
dataset: X = {x1, ..., xn} of n instances. 

◼ to build one isolation tree,  recursively divide X by randomly selecting an 
attribute q and a split value p, until either: (i) the tree reaches a height limit, (ii) 
|X| = 1 or (iii) all data in X have the same values.

◼ For a new data point, its path length h(x) of a iTree is the the number of edges x 
traverses an iTree from the root node until the traversal is terminated at an 
external node.

◼ Than its anomaly score is 
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Isolation Forest (2/2)  

⚫Two parameters of Isolation Forest 
◼ number of trees (t)

◼ number of samples used to build a Forest (𝜓)

⚫Experiments show that 
◼ h(x) converges with a small number of trees

◼ Training with sub sampling gives comparable

result with training on full dataset 

◼ Default setting of 𝜓 is 256

⚫very effective on  large, high dimensional data

⚫Widely used, recommended by scikit-learn package

training stage:  
evaluating stage:
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⚫Hyper parameters of IF

◼n_estimators=100, max_samples=256, contamination=0.1

⚫Separate models for Metadata and data operations 

⚫Separate models with samples collected  last day and week  

⚫New job samples are tagged by cron job every 10 mins

⚫Since we have detailed information of HT-Condor job in 
Elasticsearch DB, we can display details of abnormal jobs 

◼uid, submission time, procname etc., 

Implementation details
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⚫Tagged data samples for last 10 mins are reshuffled for 
visualization with matplotlib

⚫The first 5000 samples are reduced to 2-D with PCA and t-SNE

Visualization 
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⚫In the right graph there is a peak write on the BESIII home directory

⚫If we sort jobs during that

time span by its abnormal score

predicted by last day model, 

⚫ Results shown that these abnormal jobs 

largely overlapped with a batch of jobs 

submitted by a same user and

they have large  write_bytes/sec 

Example of workload back trace
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⚫We implemented an automatic detection system of 
problematic I/O behaviors in IHEP cluster

⚫By data driven, unsupervised  machine learning, it can make 
detection with very little prior knowledge of the anomalies  

⚫In the future, this system can be extended to use more 
compressive prediction models and wider applications in IT 
maintenance 

◼Better user interface,  a human tagging entrance and implementation in a web 
framework other than Jupyter notebook

Summary and next steps 
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Thank You!
Questions?


