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Readout challenges

1. Wide range of frontend electronics: TPC electronics, SiPM
readout, pixel chips, etc.

2. Variety of aggregator I/O devices: COTS servers, PCIe
FPGA carrier boards, NICs, etc.

3. Payload characteristics: different arrival rate and payload size
combinations (fixed/variable)

4. Quasi real-time performance: Requirement for high
throughput (∼100GBit/s), low latency, and scalability

Wednesday, 1st December 2021 ACAT 2021 4



Frontends
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Readout specification

• Support all possible front-end types: be agnostic about data
rate and payload size

• Buffer received data for a specified/maximum amount of time

• Respond to data requests (with time-windows)
→ Buffered data can be indexed to maintain search-ability

• In-flight data processing: Error and consistency checks with
custom algorithms (e.g.: hit-finding) also supported

• Persist data on command for requested time
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Readout components

• Readout Type: A wrapper for the raw data that provides
functionalities needed by the buffer and other components

• Latency Buffer: Provide data structure for data buffering and
lookup mechanism of indexed data

• Frame Processor: Pre- and post-processing of raw input data

• Request Handler: Respond to data requests, handle recording

• Readout Model: Contains all other components, calls
interface implementations and hands off resources (e.g.: buffer)
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Dataflow diagram
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Concepts and models

• Diverse set of frontends, having varied characteristics in payload
arrival rate, size, and order

• Main goal: Avoid reimplementation and code duplication for
different frontends
→ Keep the core functionalities fully generic

• Concepts: Well defined interfaces

• Models: Interchangeable implementations of the concepts
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Latency buffers

• Stores data and provides lookup routine based on unique
identifier (e.g.: timestamp) in frames

• Fixed rate queue: Offset calculation for lookup mechanism
→ Implementation based on Folly lock-free queue
→ Extension with binary search capability

• Skiplist: Uses Folly concurrent skiplist for non-ordered data

• Memory allocation strategies supported: NUMA aware, aligned

All implementations are interchangeable!
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Frame Processor

• Preprocessing pipeline: Tasks can be registered to a
sequence of operations that are executed for every payload

• Parallel postprocessing: One thread for every registered
function is created that is fed with the payloads

• Preprocessing can change frame, postprocessing works on a
constant pointer

• Postprocessing works directly on a pointer to the frame in the
latency buffer, no extra copies are involved
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Request handling

• Request handler threads deep-copy data from latency buffer

• Read-only, so handle them in parallel via thread pool

• Periodic cleanup thread removes old data from latency buffer

• Synchronize cleanup and requests to avoid interference

• Waiting requests: Postpone requests that are for not yet
present data
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Data recording
• High bandwidth requirement imposes optimized implementation
(exploit kernel features like O DIRECT)

• Use of boost streams and support for compression
• 2 recording modes are supported

• Deep-copy: From latency buffer to boost stream and writer
• Zero-copy: From aligned latency buffers, directly to storage device

Latency Buffer Local data storeAligned buffer

Aligned Latency
Buffer Local data store

Deep copy

Zero copy
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Demonstration

• The library is successfully integrated and used in different
scenarios

• With payload software emulators (fixed rate & size, variable rate & size)
• With FPGA carrier boards (FELIX readout)

• For the TPC readout of DUNE Vertical-Drift ColdBox (WIB frontend)
• With NICs

• For the photodector of ProtoDUNE-SP (SSP frontend)

• Successful tests of the recording implementations using different
storage media
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Performance snapshot

Server: 2S Intel Cascade Lake (Xeon(R) Gold 6242), 64 cores with 192GB RAM
Left: memory I/O: < 60% bandwidth utilization, Right: total CPU load per socket: 50%

Workload: Receiving at 166kHz x 5568 Bytes x 10 links = 8.6 GB/s and software hit finding
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Recording performance

Left: same setup as before, Right: 3 consecutive recordings of 100 seconds each
Writing 10 links (8.6GB/s) to a software RAID0 of 4 NVMe SSDs (Samsung 970 Pro 1TB)
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Outlook

• Main focus is on scalability and resource locality studies
→ Optimize CPU and memory bandwidth utilization via
dynamic thread affinity balancers
→ Improve performance on multi-socket systems, exploiting
NUMA awareness and socket interconnect capabilities

• Integretation of the generic readout library into other DAQ
software frameworks (e.g.: DAQling)
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http://cds.cern.ch/record/2756295


home.cern
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Modularity through templating
Readout for WIB

auto readout_model = ReadoutModel<

// Readout Type: WIB Struct

WIBSS,

// Request Handler

DefaultRequestHandlerModel<WIBSS,

FixedRateQueueModel<WIBSS>>,

// Latency buffer

FixedRateQueueModel<WIBSS>,

// Frame Processor

WIBFrameProcessor>(run_marker);

readout_model.init(args);

Readout for DAPHNE

auto readout_model = ReadoutModel<

// Readout Type: DAPHNE Struct

DAPHNESS,

// Request Handler

DAPHNEListRequestHandler,

// Latency buffer

SkipListLatencyBufferModel<DAPHNESS>,

// Frame Processor

DAPHNEFrameProcessor>(run_marker);

readout_model.init(args);
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