

Design of a request/response buffering application
for I/O intensive workloads
Florian Grötschla, Giovanna Lehmann Miotto, Roland Sipos

Wednesday, 1st December 2021 ACAT 2021 2

Overview

1. Detector readout challenges

2. Specification and design principles

3. Components and implementation details

4. Demonstration

5. Outlook

Wednesday, 1st December 2021 ACAT 2021 3

Readout challenges

1. Wide range of frontend electronics: TPC electronics, SiPM
readout, pixel chips, etc.

2. Variety of aggregator I/O devices: COTS servers, PCIe
FPGA carrier boards, NICs, etc.

3. Payload characteristics: different arrival rate and payload size
combinations (fixed/variable)

4. Quasi real-time performance: Requirement for high
throughput (∼100GBit/s), low latency, and scalability

Wednesday, 1st December 2021 ACAT 2021 4

Frontends

Wednesday, 1st December 2021 ACAT 2021 5

Readout specification

• Support all possible front-end types: be agnostic about data
rate and payload size

• Buffer received data for a specified/maximum amount of time

• Respond to data requests (with time-windows)
→ Buffered data can be indexed to maintain search-ability

• In-flight data processing: Error and consistency checks with
custom algorithms (e.g.: hit-finding) also supported

• Persist data on command for requested time

Wednesday, 1st December 2021 ACAT 2021 6

Readout components

• Readout Type: A wrapper for the raw data that provides
functionalities needed by the buffer and other components

• Latency Buffer: Provide data structure for data buffering and
lookup mechanism of indexed data

• Frame Processor: Pre- and post-processing of raw input data

• Request Handler: Respond to data requests, handle recording

• Readout Model: Contains all other components, calls
interface implementations and hands off resources (e.g.: buffer)

Wednesday, 1st December 2021 ACAT 2021 7

Dataflow diagram

Frontend
(TPC)

Frontend
(PDS)

Data
reception

Pre-processing
pipeline Latency Buffer

Process data

Parallel
post-processing

Data request/response
mechanism

Data recording
(persistency)Local data store

Front-end
domain

Data processing domain Buffering and
storage domain

Data request/response
domain

Raw
Raw Raw

Software
framework

Issue
requestData lookup

Extracted
data

Data
response

Data lookup

Write data

Wednesday, 1st December 2021 ACAT 2021 8

Concepts and models

• Diverse set of frontends, having varied characteristics in payload
arrival rate, size, and order

• Main goal: Avoid reimplementation and code duplication for
different frontends
→ Keep the core functionalities fully generic

• Concepts: Well defined interfaces

• Models: Interchangeable implementations of the concepts

Wednesday, 1st December 2021 ACAT 2021 9

Latency buffers

• Stores data and provides lookup routine based on unique
identifier (e.g.: timestamp) in frames

• Fixed rate queue: Offset calculation for lookup mechanism
→ Implementation based on Folly lock-free queue
→ Extension with binary search capability

• Skiplist: Uses Folly concurrent skiplist for non-ordered data

• Memory allocation strategies supported: NUMA aware, aligned

All implementations are interchangeable!

Wednesday, 1st December 2021 ACAT 2021 10

https://github.com/facebook/folly
https://github.com/facebook/folly

Frame Processor

• Preprocessing pipeline: Tasks can be registered to a
sequence of operations that are executed for every payload

• Parallel postprocessing: One thread for every registered
function is created that is fed with the payloads

• Preprocessing can change frame, postprocessing works on a
constant pointer

• Postprocessing works directly on a pointer to the frame in the
latency buffer, no extra copies are involved

Wednesday, 1st December 2021 ACAT 2021 11

Request handling

• Request handler threads deep-copy data from latency buffer

• Read-only, so handle them in parallel via thread pool

• Periodic cleanup thread removes old data from latency buffer

• Synchronize cleanup and requests to avoid interference

• Waiting requests: Postpone requests that are for not yet
present data

Wednesday, 1st December 2021 ACAT 2021 12

Data recording
• High bandwidth requirement imposes optimized implementation
(exploit kernel features like O DIRECT)

• Use of boost streams and support for compression
• 2 recording modes are supported

• Deep-copy: From latency buffer to boost stream and writer
• Zero-copy: From aligned latency buffers, directly to storage device

Latency Buffer Local data storeAligned buffer

Aligned Latency
Buffer Local data store

Deep copy

Zero copy

Wednesday, 1st December 2021 ACAT 2021 13

https://www.boost.org/doc/libs/1_75_0/libs/iostreams/doc/guide/generic_streams.html

Demonstration

• The library is successfully integrated and used in different
scenarios

• With payload software emulators (fixed rate & size, variable rate & size)
• With FPGA carrier boards (FELIX readout)

• For the TPC readout of DUNE Vertical-Drift ColdBox (WIB frontend)
• With NICs

• For the photodector of ProtoDUNE-SP (SSP frontend)

• Successful tests of the recording implementations using different
storage media

Wednesday, 1st December 2021 ACAT 2021 14

https://atlas-project-felix.web.cern.ch/atlas-project-felix/

Performance snapshot

Server: 2S Intel Cascade Lake (Xeon(R) Gold 6242), 64 cores with 192GB RAM
Left: memory I/O: < 60% bandwidth utilization, Right: total CPU load per socket: 50%

Workload: Receiving at 166kHz x 5568 Bytes x 10 links = 8.6 GB/s and software hit finding

Wednesday, 1st December 2021 ACAT 2021 15

Recording performance

Left: same setup as before, Right: 3 consecutive recordings of 100 seconds each
Writing 10 links (8.6GB/s) to a software RAID0 of 4 NVMe SSDs (Samsung 970 Pro 1TB)

Wednesday, 1st December 2021 ACAT 2021 16

Outlook

• Main focus is on scalability and resource locality studies
→ Optimize CPU and memory bandwidth utilization via
dynamic thread affinity balancers
→ Improve performance on multi-socket systems, exploiting
NUMA awareness and socket interconnect capabilities

• Integretation of the generic readout library into other DAQ
software frameworks (e.g.: DAQling)

Wednesday, 1st December 2021 ACAT 2021 17

http://cds.cern.ch/record/2756295

home.cern

http://home.cern

Modularity through templating
Readout for WIB

auto readout_model = ReadoutModel<

// Readout Type: WIB Struct

WIBSS,

// Request Handler

DefaultRequestHandlerModel<WIBSS,

FixedRateQueueModel<WIBSS>>,

// Latency buffer

FixedRateQueueModel<WIBSS>,

// Frame Processor

WIBFrameProcessor>(run_marker);

readout_model.init(args);

Readout for DAPHNE

auto readout_model = ReadoutModel<

// Readout Type: DAPHNE Struct

DAPHNESS,

// Request Handler

DAPHNEListRequestHandler,

// Latency buffer

SkipListLatencyBufferModel<DAPHNESS>,

// Frame Processor

DAPHNEFrameProcessor>(run_marker);

readout_model.init(args);

Wednesday, 1st December 2021 ACAT 2021 19

	Overview
	Challenges
	Components
	Overview
	Outlook

