## **Introducing Qibo**

from quantum circuits to machine learning arXiv:2009.01845

Stefano Carrazza 29th November 2021

ACAT 2021

## Introduction

From a practical point of view, we are moving towards new technologies, in particular hardware accelerators:



#### Moving from general purpose devices $\Rightarrow$ application specific

#### Challenges

#### However, there are several challenges:

- simulate efficiently algorithms on classical hardware for QPU?
- control, send and retrieve results from the QPU?
- error mitigation, keep noise and decoherence under control?



### How can we interact with QPU?

#### Solution:

Construct a Quantum Middleware:





Quantum Middleware

### How can we interact with QPU?

#### Solution:

Construct a Quantum Middleware:





Quantum Middleware

 $\Rightarrow$  Qibo: an open-source full-stack middleware.

# Introducing Qibo

**Qibo** is an open-source full stack **API** for quantum simulation and hardware control. It is platform **agnostic** and supports **multiple backends**.



https://github.com/qiboteam/qibo

https://arxiv.org/abs/2009.01845





- Single piece of code
- Automatic deployment on simulators and quantum devices
- Plugin backends mechanism





Interface for users: model definition and execution.

Implementation of algorithms based on quantum operations.

Backend specialization for classical and quantum hardware.

Code abstraction for circuit and gates representation.



This layout opens the possibility to support:

- multiple classical and quantum hardware specifications
- hardware accelerators for simulation (single-GPU and multi-GPU)

#### numpy



#### pip install gibo

Simulator based on tensordot and linear algebra operations.

#### Features:

- Cross-architecture (x86, arm64, etc). .
- Cross-platform. ٠
- Fast for single-threaded operations.

### tensorflow

#### pip install tensorflow

Simulator based on tensorflow primitives (einsum, matmul).

#### Features:

- . Multithreading CPU.
- Single GPU. •
- Gradient descent on quantum circuits. .

#### gibotf

#### pip install gibotf

**Tensor**Flow

Simulator based on tensorflow custom operators in C++ and CUDA.

#### Features:

- Excellent single node performance. •
- Multithreading CPU. •
- Multi-GPU •
- Low memory footprint. ٠

## **qibojit**

**DVIDIA** CUDA

**O** 







CUPV

**Tensor**Flow

Simulator based on numba and cupy operations.

#### Features:

- Excellent single node performance. ٠
- Multithreading CPU, single GPU and multi-GPU .
- Cross-platform (just-in-time compilation) ٠
- Works on NVIDIA and AMD GPUs. .

## **Computational models in Qibo**

#### Computational models in Qibo



## **Quantum Circuits**

#### Quantum circuits

The quantum circuit model considers a sequence of unitary quantum gates:

$$\left|\psi'\right\rangle = U_2 U_1 \left|\psi\right\rangle \quad \rightarrow \quad \left|\psi\right\rangle - U_1 - U_2 - \left|\psi'\right\rangle$$

#### Quantum circuits

The quantum circuit model considers a sequence of unitary quantum gates:

$$\left|\psi'\right\rangle = U_2 U_1 \left|\psi\right\rangle \quad \rightarrow \quad \left|\psi\right\rangle - U_1 - U_2 - \left|\psi'\right\rangle$$

For example a Quantum Fourier Transform with 4 qubits is represented by



Models based on Grover's algorithms and Shor's factorization algorithms.

#### Quantum gates

| • | Sing | le-qubit | gates |
|---|------|----------|-------|
|---|------|----------|-------|

- Pauli gates
- Hadamard gate
- Phase shift gate
- Rotation gates
- Two-qubit gates
  - Conditional gates
  - Swap gate
  - fSim gate
- Special gates: Toffoli

| Operator                         | Gate(s)       |    | Matrix                                                                                                                                                                                                                                                                    |
|----------------------------------|---------------|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pauli-X (X)                      | - <b>x</b> -  |    | $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$                                                                                                                                                                                                                            |
| Pauli-Y (Y)                      | - <b>Y</b> -  |    | $\begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$                                                                                                                                                                                                                           |
| Pauli-Z (Z)                      | $-\mathbf{z}$ |    | $\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$                                                                                                                                                                                                                           |
| Hadamard (H)                     | <b>– H</b> –  |    | $\frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1\\ 1 & -1 \end{bmatrix}$                                                                                                                                                                                                         |
| Phase (S, P)                     | - <b>s</b> -  |    | $\begin{bmatrix} 1 & 0\\ 0 & i \end{bmatrix}$                                                                                                                                                                                                                             |
| $\pi/8~(\mathrm{T})$             | - <b>T</b> -  |    | $\begin{bmatrix} 1 & 0 \\ 0 & e^{i\pi/4} \end{bmatrix}$                                                                                                                                                                                                                   |
| Controlled Not<br>(CNOT, CX)     |               |    | $\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$                                                                                                                                                                          |
| Controlled Z (CZ)                | - <b>Z</b> -  |    | $\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix}$                                                                                                                                                                         |
| SWAP                             |               | _* | $\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$                                                                                                                                                                          |
| Toffoli<br>(CCNOT,<br>CCX, TOFF) |               |    | $\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0$ |

The final state of circuit evaluation is given by:

$$\psi'(\sigma_1,\ldots,\sigma_N) = \sum_{oldsymbol{ au'}} G(oldsymbol{ au},oldsymbol{ au'}) \psi(\sigma_1,\ldots,oldsymbol{ au'},\ldots,\sigma_N),$$

where the sum runs over qubits targeted by the gate.

- Linear algebra approach.
- Possibility to parallelize and optimize operations.

#### Quantum circuit performance results



Quantum Fourier Transform performance.

### Multi-GPU trade-off



Quantum Fourier Transform performance.

## **Variational Quantum Circuits**

## Variational Quantum Circuits

Typical variational quantum circuits and data re-uploading algorithms:



Define new parametric model architectures for quantum hardware:

⇒ Variational Quantum Circuits & Quantum Machine Learning

### Variational circuit

Variational circuits are inspired by the structure of variational circuits used in **quantum machine learning**.



Qibo implements the gate fusion of four  $R_y$  and the controlled-phased gate,  $C_z \Rightarrow$  Qibo provides multi-qubit gate operators for CPU and GPU

#### Benchmarks



Variational circuit simulation performance comparison in single and double precision.

### Summary of circuit-based built-in models in Qibo

- Variational quantum eigensolver
- Quantum approximate optimization algorithm (QAOA)
- Feedback-based algorithm for quantum optimization (FALQON)
- Quantum Neural Networks
  - Variational quantum classifier
  - Variational quantum regressor
  - Style-based quantum GAN



arXiv:2110.06933, arXiv:2011.13934

## **Quantum Annealing**

#### **Qibo** features

#### • Annealing quantum processors

- Hamiltonian database
- Time evolution of quantum states
- Adiabatic Evolution simulation
- Scheduling determination
- Trotter decomposition

$$i\hbar \frac{\partial}{\partial t} |\psi(t)\rangle = H(s)|\psi(t)\rangle$$
$$H(t) = (1 - s(t))H_0 + s(t)H_1,$$



### Adiabatic evolution



Adiabatic evolution performance using Qibo and TFIM for extact and Trotter solution.

## Quantum hardware control

Ideally, we would like to:

- **1** Define a circuit and/or algorithm.
- 2 Send and retrieve results from QPU:



However, from a hardware perspective this requires:

- Convert circuit into microwave pulse sequences.
- Operate multiple remote FPGA boards.
- Perform system calibration periodically.
- Schedule all operations.
- Reconstruct measurements (e.g. tomography).
- Store results / perform hybrid calculations.



System layout from arXiv:2101.00071

## Outlook

Qibo is currently a framework for research:

- publicly available as an open-source code: https://github.com/qiboteam/qibo
- **2** Designed with several **abstraction** layers.
- **3** For fast prototyping of quantum algorithms.

|                 | O WyGete? - Tear I                 | Tranplina Explore - Marketplace Pricing -                                                                                 |                    | () Sign in Sign up                                              |         |       |
|-----------------|------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--------------------|-----------------------------------------------------------------|---------|-------|
| odip / mastodip |                                    |                                                                                                                           |                    | Q Tetholore                                                     | it ne 🕫 | V Pan |
| Eade 🔿 Interi   | III D Pallingenta (E) (C) Aut      | ins 🗇 Projekta 🔅 Becarily 🖂 Longita                                                                                       |                    |                                                                 |         |       |
|                 | P mater + P thisscher              | 0.00                                                                                                                      | Go to file Coole + | About                                                           |         |       |
|                 | 😝 anarata Urge put reque           | 🙀 managama Margar pull response MAM from spherosers finalmentas 🚃 🛷 ministras                                             |                    | A homework for quantum computing<br>with hordware acceleration. |         |       |
|                 | arva                               | destup                                                                                                                    | H hours app        | 🖉 gibo readibadoes.is                                           |         |       |
|                 | an dec                             | adding special galax section                                                                                              | 20 days ago        | ges quarters quarters computing                                 |         |       |
|                 | examples                           | Pix adiabatic/bat initial state                                                                                           | 2 months ago       | quarter sites quarter electron<br>quarter arrenting             |         |       |
|                 | a scight                           | Merge pull sequent #447 hore qualaxechomatrix                                                                             | 21 days app        | ED Beadma                                                       |         |       |
|                 | D allarere                         | Mega hericult aegodik bacah                                                                                               | 3 months apo       | (b) Assche 2.6 Literate                                         |         |       |
|                 | D apterns                          | theing pylinit instructions.                                                                                              | 14 months ago      | di shara na nama                                                |         |       |
|                 | <ul> <li>Anadhedoca yet</li> </ul> | adding load the doca configuration                                                                                        | 12 months ago      | Releases (1)                                                    |         |       |
|                 | D LICENSE                          | Update LODNE                                                                                                              | 13 monthe ago      | D. 08x818 (Loss)                                                |         |       |
|                 | D FEACHE/HI                        | updating pithub-orgname                                                                                                   | 0 monthe ago       | 11114                                                           |         |       |
|                 | D Meerse                           | ignore warning in teels                                                                                                   | 14 monthe ago      | - 12 minutes                                                    |         |       |
|                 | D sequinements.M                   | Mega pull request #200 hors Quartum Titlightee                                                                            | A monthe app       |                                                                 |         |       |
|                 | D seturate                         | adding glogit                                                                                                             | 2 months app       | Peckapes                                                        |         |       |
|                 | E RADIE and                        |                                                                                                                           |                    | his panhagen published                                          |         |       |
|                 | -                                  |                                                                                                                           |                    | Contributors II                                                 |         |       |
|                 | -                                  |                                                                                                                           |                    | 🔕 (0) (0) 🖪 😤 🔮 (2)                                             |         |       |
|                 |                                    | RO                                                                                                                        |                    | 00                                                              |         |       |
|                 |                                    | HERE Desired THE LA COLONIAL SHIELDS                                                                                      |                    | Languages                                                       |         |       |
|                 |                                    | stack API for quantum simulation and quantum hardware cont                                                                |                    |                                                                 |         |       |
|                 | Gone of the key features of        |                                                                                                                           | 0.                 | <ul> <li>Pytes III.III</li> </ul>                               |         |       |
|                 |                                    |                                                                                                                           |                    |                                                                 |         |       |
|                 |                                    | Longuage for the construction and execution of quantum circu<br>and quantum hardware control based on plag and play backe |                    |                                                                 |         |       |
|                 |                                    | code-base of quantum algorithms applications presented with                                                               |                    |                                                                 |         |       |
|                 |                                    | kends with GPU, multi-GPU and GPU with multi-threading sup<br>the implementation of new simulation and hardware backend ( |                    |                                                                 |         |       |

We provide several tutorials for:

- Variational circuits
- Grover's algorithm
- Adiabatic evolution
- Quantum Singular Value Decomposer
- ...

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Application tutorials                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | O Edit on GitHe                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Application tutorials                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | In this section we present some examples of quantum circuit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | s applied to specific problems. |
| olona<br>OCLAMENTATION<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR<br>VEGTOR | Staffer of visitifiend quarterin circuit depth for contexp<br>Conver Adjustment for solved gristification (Yr backens<br>Conver Adjustment for solved gristification)<br>Visitistical Quarterin Guarterina quarterina<br>Data meginalating for a university quarterina<br>Quarterina quarterina quarterina (Sangher<br>Quarterina quarterina)<br>Quarterina quarterina quarterina<br>Quarterina quarterina<br>Quarterina<br>Quarterina quarterina<br>Quarterina quarte | n                               |
| ge Hash function<br>tional Quantum Classifier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Previous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Next                            |
| reuploading for a universal<br>am classifier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                 |
| tum autoencoder for data<br>ression                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | © Copyright 2020 by Quantum-TII team Revision 6c981ea1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                 |
| tum Singular Value<br>mposer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Built with Sphirux using a theme provided by Read the Docs.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                 |
| ring the tangle of three-qubit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                 |
| turn unary approach to option                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                 |

#### Visit:

https://qibo.readthedocs.io/en/stable/code-examples/applications.html

Thank you for your attention.

#### Rational:

Deliver variational quantum states  $\rightarrow$  explore a large Hilbert space.





#### Rational:

Deliver variational quantum states  $\rightarrow$  explore a large Hilbert space.





#### Idea:

Quantum Computer is a machine that generates variational states.

 $\Rightarrow \textbf{Variational Quantum Computer!}$ 

### Solovay-Kitaev Theorem

Let  $\{U_i\}$  be a dense set of unitaries. Define a circuit approximation to V:

 $|U_k \dots U_2 U_1 - V| < \delta$ 

Scaling to best approximation

$$k \sim \mathcal{O}\left(\log^c \frac{1}{\delta}\right)$$

where c < 4.



 $\Rightarrow$  The approximation is efficient and requires a finite number of gates.

#### Example for adiabatic quantum computation:

Lets consider the evolution Hamiltonian:

 $H(t) = (1 - s(t))\mathbf{H}_0 + s(t)\mathbf{H}_1,$ 

where

- $H_0$  is a Hamiltonian whose ground state is easy to prepare and is used as the initial condition,
- $H_1$  is a Hamiltonian whose ground state is hard to prepare
- s(t) is a scheduling function.

According to the adiabatic theorem, for proper choice of s(t) and total evolution time T, the final state  $|\psi(T)\rangle$  will approximate the ground state of the "hard" Hamiltonian  $H_1$ .