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— Context —
Fluctuating membranes

d -dim extended objects embedded in a D-dim space
subject to small quantum and/or thermal
fluctuations.

Applications:

cond-mat: graphene, silicene, phosphorene ...

bio: living cells surfaces (phospholipid bilayers)

hep: worldsheet, branes ... Figure: Generic fluctuating membrane

Figure: Fluctuating graphene Figure: Cell bi-layered membrane

— Model —
Model parametrization in d=2
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Fields parametrization:

h(x⃗) ≡ height displacement (flexuron)

u⃗(x⃗) ≡ longitudinal displacement (phonon)

R⃗(x⃗) = (x⃗ + u⃗(x⃗), h(x⃗)) ≡ coordinates
with x⃗ = (x , y) and u⃗(x⃗) = (ux(x⃗), uy(x⃗))

S [u⃗, h] =
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uij ≡ stress tensor ; fluctuations with respect to the flat configuration R⃗ (0)(x⃗) = (x⃗ , 0)
λ, µ ≡ coupling constants ≡ Lamé coefficients

In short: massless and highly derivative scalar two-field and two-coupling theory.

What to compute?

Σ ≡ flexuron self-energy, Π ≡ phonon polarization.

(λ∗, µ∗) ≡ Lamé coefficients at a stable fixed point.

η ≡ elastic critical exponent ≡ field anomalous dimension.

η = 0 in Gaussian approx, but do corrections induce η > 0? (is there a stable phase?)

— Perturbative approach —

Feynman rules and diagrams

Flexuron propagator ≡ �⃗k
α β Phonon propagator ≡ �⃗k
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What has been done?

One-loop (hand computations) [Aronovitz & Lubensky, ’88]

Σ1 = and Π1 =

Two-loop (partially automated) [Coquand, Mouhanna, Teber, ’20]

Σ2 = + + + +

Π2 = + +

Three-loop (highly automated) [Metayer, Mouhanna, Teber, ’21] (this work)

Σ3 = + + + + + + + +

+ + + + + + + +

+ + + + + + + +

+ + + + + + + + +

Π3 = + + + + + + + +

+ + + + + + + +

+ + +

— Technical details —
Conventions and method

Computations were carried out up to 3-loop for an arbitrary d-dim membrane embedded in a D-dim
space (co dimension dc = D − d ≥ 0) in dim-reg (d = 4− 2ε). Numerator algebra was performed with
Mathematica (double tensorial structure). Integrals were computed via IBP reduction methods using Litered
[Lee ’13] and master integrals were known from other models. Finally renormalization was achieved using
Schwinger-Dyson equations with these conventions:

h = Z 1/2hr , u = Z ur , λ = M2εZλ λr , µ = M2εZµ µr

βλ ∼
∂Zλ
∂M

, βµ ∼
∂Zµ
∂M

, η ∼ ∂Z

∂M

finite = (p4 − Σ)Z , finite = (p2µ− Π⊥)Z
2, finite = (p2(λ + 2µ)− Π∥)Z

2 .

See [Metayer, Mouhanna, Teber, ’21] for more details.

— Results —
Fixed points

∃ points in the (λ, µ) plane where the membrane is scale
invariant (fractal deformations). At these fixed points, beta
functions vanish while the anomalous dimensions take
universal values.

Fixed points:

P1 ≡ Gaussian & unstable,

P2 ≡ shearless & unstable,

P3 ≡ vanishing bulk modulus & unstable,

P4 ≡ non-trivial & stable.

At P4, the couplings are (3-loop):

λ∗ = −0.1018 and µ∗ = 0.4696

P4 is stable and may govern a low-energy phase!

unstable region

Figure: RG flow diagram

Elastic critical exponent

At the stable fixed point P4 and in physical conditions (ε = 1):

η =
24

25
1−loop

− 144

3125
2−loop

− 4(1286928ζ3 − 568241)

146484375
3−loop

with ζ3 ≈ 1.202

η = 0.8872 up to 3-loop and η > 0 =⇒ ∃ stable phase!

Comparisons: η is universal =⇒ benchmarking other computation methods:

η Exact (ε = 1) (Re-)expanded in ε

3-loop (this work) 0.887 0.96 ε− 0.046 ε2 − 0.0267 ε3

SCSA 0.821 0.96 ε− 0.048 ε2 − 0.0279 ε3

NPRG 0.849 0.96 ε− 0.037 ε2 − 0.0266 ε3

Numerical 0.85

SCSA ≡ Self consistent screening approximation, NPRG ≡ Non-perturbative RG

Overview of other quantities accessible with λ∗, µ∗ and η

Quantities derived from λ and µ:

Young modulus ≡ Y =
2µ(dλ + 2µ)

(d − 1)λ + 2µ

Poisson ratio ≡ ν =
expT
expL

=
λ

(d − 1)λ + 2µ
Bulk modulus ≡ B = λ + 2µ/d

p-wave modulus ≡ M = λ + 2µ

s-wave sound velocity ≡ cs =
√
µ/ρ ...

Crit. exponents depend only on η:

µ(p) ∼ λ(p) ∼ p4−d−2η

Bending/rigidity modulus ≡ κ(p) ∼ p−η

Young modulus ≡ Y (p) ∼ p4−d−2η

Roughness exponent ≡ ψ = (4− d − η)/2

Lower-crit dim ≡ Dlc = 2− η

νσ =
1

d − 2 + η
, δσ =

2− η

d − 2 + η
...

— Related models —

Effective flexural model:
Done at 3-loop in [Metayer, Mouhanna, Teber, ’21]. Same physical results with a different approach
=⇒ reinforce results and scheme-independence.

Disordered model:
Adding impurities or defects in the membrane. New technical challenges (5 couplings, new replica
tensorial structures, factor > 10 in computation time ...). Done at 3-loop in [Metayer, Mouhanna, to be
published]. New stable fixed points, new non-perturbative fixed point? ...

Other related models
Interfaces? Fluid membranes? Elastic-electronic couplings? ...
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