Membranes elastic degrees of freedom, a multi-loop approach.

S. Metayer ¹, D. Mouhanna ², S. Teber ¹

¹Sorbonne Université, CNRS, Laboratoire de Physique Théorique et Hautes Energies, LPTHE, F-75005 Paris, France. ²Sorbonne Université, CNRS, Laboratoire de Physique Théorique de la Matière Condensée, LPTMC, F-75005 Paris, France.

Context

Fluctuating membranes

d-dim extended objects embedded in a D-dim space subject to small quantum and/or thermal fluctuations.

Applications:

- cond-mat: graphene, silicene, phosphorene ...
- bio: living cells surfaces (phospholipid bilayers)
- hep: worldsheet, branes ...

Figure: Generic fluctuating membrane

Technical details

Conventions and method

Computations were carried out up to 3-loop for an arbitrary d-dim membrane embedded in a D-dim space (co dimension $d_c = D - d \ge 0$) in dim-reg ($d = 4 - 2\varepsilon$). Numerator algebra was performed with Mathematica (double tensorial structure). Integrals were computed via IBP reduction methods using Litered [Lee '13] and master integrals were known from other models. Finally renormalization was achieved using Schwinger-Dyson equations with these conventions:

$$\begin{split} h &= Z^{1/2} h_r, \quad u = Z \, u_r, \quad \lambda = M^{2\varepsilon} Z_\lambda \, \lambda_r, \quad \mu = M^{2\varepsilon} Z_\mu \, \mu_r \\ & \beta_\lambda \sim \frac{\partial Z_\lambda}{\partial M}, \quad \beta_\mu \sim \frac{\partial Z_\mu}{\partial M}, \quad \eta \sim \frac{\partial Z}{\partial M} \\ & \text{finite} = (p^4 - \Sigma) Z, \quad \text{finite} = (p^2 \mu - \Pi_\perp) Z^2, \quad \text{finite} = (p^2 (\lambda + 2\mu) - \Pi_\parallel) Z^2 \, . \end{split}$$
See [Metayer, Mouhanna, Teber, '21] for more details.

Results

Fixed points

 \exists points in the (λ, μ) plane where the membrane is scale invariant (fractal deformations). At these fixed points, beta

Model

Fields parametrization:

- $h(\vec{x}) \equiv \text{height displacement (flexuron)}$
- $\vec{u}(\vec{x}) \equiv \text{longitudinal displacement (phonon)}$
- $\vec{R}(\vec{x}) = (\vec{x} + \vec{u}(\vec{x}), h(\vec{x})) \equiv \text{coordinates}$ with $\vec{x} = (x, y)$ and $\vec{u}(\vec{x}) = (u_x(\vec{x}), u_y(\vec{x}))$

$$S[\vec{u},h] = \int d^2x \left[\frac{1}{2} (\Delta h)^2 + \frac{\mu}{(4\pi)^2} (u_{ij})^2 + \frac{\lambda}{2(4\pi)^2} (u_{ii})^2 \right] \quad \text{with} \quad u_{ij} \approx \frac{1}{2} \left[\partial_i u_j + \partial_j u_i + \partial_i h \partial_j h \right]$$

 $u_{ii} \equiv$ stress tensor ; fluctuations with respect to the flat configuration $\vec{R}^{(0)}(\vec{x}) = (\vec{x}, 0)$ $\lambda, \mu \equiv$ coupling constants \equiv Lamé coefficients

In short: massless and highly derivative scalar two-field and two-coupling theory.

What to compute?

- $\Sigma \equiv$ flexuron self-energy, $\Pi \equiv$ phonon polarization.
- $(\lambda^*, \mu^*) \equiv$ Lamé coefficients at a stable fixed point.
- $\eta \equiv$ elastic critical exponent \equiv field anomalous dimension.
- $\eta = 0$ in Gaussian approx, but do corrections induce $\eta > 0$? (is there a stable phase?)

Perturbative approach

What has been done?

• One-loop (hand computations) [Aronovitz & Lubensky, '88]

• Two-loop (partially automated) [Coquand, Mouhanna, Teber, '20]

functions vanish while the anomalous dimensions take universal values.

Fixed points:

- $P_1 \equiv$ Gaussian & unstable,
- $P_2 \equiv$ shearless & unstable,
- $P_3 \equiv$ vanishing bulk modulus & unstable,
- $P_4 \equiv$ non-trivial & stable.
- At P_4 , the couplings are (3-loop):

$$\mu^{*} = -0.1018$$
 and $\mu^{*} = 0.4696$

P_4 is stable and may govern a low-energy phase!

Elastic critical exponent

At the stable fixed point P_4 and in physical conditions ($\varepsilon = 1$): 144 $4(1286928c_2 - 568241)$ 24

$$\eta = \frac{\frac{21}{25}}{\frac{1-loop}{1-loop}} - \frac{\frac{111}{3125}}{\frac{2-loop}{2-loop}} - \frac{\frac{1(1200320\zeta_3 - 000211)}{146484375}}{\frac{146484375}{3-loop}} \text{ with } \zeta_3 \approx 1.202$$

$$\eta = \mathsf{0.8872}$$
 up to 3-loop and $\eta > \mathsf{0} \implies \exists$ stable phase!

Comparisons: η is universal \implies benchmarking other computation methods:

η	Exact ($\varepsilon = 1$)	(Re-)expanded in $arepsilon$
3-loop (this work)	0.887	$0.96 \varepsilon - 0.046 \varepsilon^2 - 0.0267 \varepsilon^3$
SCSA	0.821	$0.96 \varepsilon - 0.048 \varepsilon^2 - 0.0279 \varepsilon^3$
NPRG	0.849	$0.96arepsilon-0.037arepsilon^2-0.0266arepsilon^3$
Numerical	0.85	

 $\mathsf{SCSA} \equiv \mathsf{Self}$ consistent screening approximation, $\mathsf{NPRG} \equiv \mathsf{Non}\text{-}\mathsf{perturbative}\;\mathsf{RG}$

Overview of other quantities accessible with $\lambda^*\text{, }\mu^*$ and η

Quantities derived from
$$\lambda$$
 and μ :
• Young modulus $\equiv Y = \frac{2\mu(d\lambda + 2\mu)}{(d-1)\lambda + 2\mu}$
• Poisson ratio $\equiv \nu = \frac{\exp_T}{\exp_L} = \frac{\lambda}{(d-1)\lambda + 2\mu}$
• Bulk modulus $\equiv B = \lambda + 2\mu/d$
• p-wave modulus $\equiv M = \lambda + 2\mu$

• Three-loop (highly automated) [Metayer, Mouhanna, Teber, '21] (this work)

• s-wave sound velocity $\equiv c_s = \sqrt{\mu/\rho} \dots$

• Effective flexural model:

Done at 3-loop in [Metayer, Mouhanna, Teber, '21]. Same physical results with a different approach \implies reinforce results and scheme-independence.

• Disordered model:

Adding impurities or defects in the membrane. New technical challenges (5 couplings, new replica tensorial structures, factor > 10 in computation time ...). Done at 3-loop in [Metayer, Mouhanna, to be published]. New stable fixed points, new non-perturbative fixed point? ...

• Other related models

Interfaces? Fluid membranes? Elastic-electronic couplings? ...

