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Motivation.

•Normalizing flows are a powerful brand of generative models.
• They map simple to complex distributions.
• They allow for efficient sampling of complex PDFs…
• … and include density estimation by construction! 

• In HEP we find complex Probability Distribution Functions (PDFs)  EVERYWHERE!
• What do we want to do with them? -> (Re)-interpret, preserve, sample, combine, invert, … 
• Can Normalizing Flows (NFs)  help us on these endeavours?…

(Some) Applications on HEP already on the market:
• Numerical integration (arXiv:2001.05486, arXiv:2001.05478)
• Unfolding  (arXiv:2006.06685)
• Calorimeter shower simulation (arXiv:2106.05285)
•Event generation (arXiv:2001.10028, arXiv:2110.13632)
•…

IN THIS TALK:
We want to find out…
•How far can we go dimension-wise?
•Can NFs learn the high-dimensional 
Likelihood functions of LHC results?



Introduction.

Normalizing direction

Generative direction

BASIC PRINCIPLE: 
Following the change of variables formula, perform a series of bijective, continuous, invertible 
transformations on a simple probability density function (pdf) to obtain a complex one. 

Z Y

Y = g(Z)

Z = f(Y )
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See review 
Ivan K. et. al.
arXiv:1908.09257



THE RULES OF THE GAME:

• The transformations must be invertible
• They should be sufficiently expressive
• And computationally efficient (including Jacobian)

THE OBJECTIVE:

To perform the right transformations to accurately estimate the complex underlying 
distribution of some observed data. 

THE STRATEGY

     Let Neural Networks learn the parameters of 
              Autoregressive Normalizing Flows.
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Choosing the transformations
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Autoregressive Flows
Coupling Flows : 

•Dimensions are divided in two sets:  and 
• We transform  with bijectors trained with .
• The bijector parameters are functions of a NN.
• The Jacobian J is triangular ->   
•Jacobian is easily computed!
•Direct sampling AND density estimation.
•Less expressive.

xA xB

xB xA

detJ = ΠiJii

Autoregressive Flows : 

•Dimension  is transformed with bijectors trained with 
• Bijector parameters are trained with Autoregressive NNs.
• The Jacobian J is also triangular thus…
•Jacobian is easily computed!
•Direct sampling OR density estimation.
•More expressive.

xi y1:i−1

The loss function:
−log(pAF(targetdist))

arXiv:1908.09257

arXiv:1908.09257
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Our  Autoregressive Flows
RealNVP MAF A-NSF

Real-Valued Non-Volume 
Preserving (arXiv:1605.08803)

Masked Autoregressive
Flow (arXiv:1705.07057)

(Autoregressive)
Neural Spline Flows (arXiv:1906.04032)

Coupling Flow Autoregressive Flow Autoregressive Flow
Affine Affine Rational Quadratic Spline

arXiv:1906.04032

y(x; μ, b) = μ ⋅ x + b



(PDF agnostic) metrics.

- Two-sample 1D Kolgomonov - Smirnov test (ks test):

Dn,m = supx |Fn(x) − Fm(x) |

-Computes the p-value for two sets of 1D samples coming from the same unknown distribution.
-We average over ks test estimations and compute the median over dimensions.
-Optimal value 0.5

l( fn, fm) = ∫
∞

−∞
|Fn − Fm |

- 1D Wasserstein distance (Earth mover’s distance)

-Computes the minimum energy required to transform  into 
-We compute the median over dimensions.
-Optimal value 0.0

fn fm https://sbl.inria.fr/doc/Earth_mover_distance-user-manual.html

https://en.wikipedia.org/wiki/Kolmogorov-Smirnov_test
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Testing the Flows.

Uncorrelated Mixture of Gaussians Correlated Gaussians
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Toy distributions from 4 to 100 dims:



Uncorrelated Mixture of Gaussians
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N bijectors Hidden layers N samples
MAF 3, 5, 10 128x3, 256x3 100k, 300k

RealNVP 10 128x3, 256x3 100k, 300k
A-NSF (8knots) 2 128x3, 256x3 100k

PRELIMINARY

PRELIMINARY

Wasserstein distance KS test



Correlated Gaussians
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N bijectors Hidden layers N samples

MAF 3, 10 32x3, 64x3, 128x3 100k, 300k

RealNVP 3, 10 32x3, 64x3, 128x3 100k, 300k

PRELIMINARY
PRELIMINARY

Wasserstein distance KS test
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Learning LHC Likelihoods.
Let’s get real…
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EW-fit (32 dims)
REAL DISTRIBUTION
NF DISTRIBUTION

THE RESEMBLANCE IS GREAT!

Likelihood of global EW-fit at LHC:
18 parameters of interest (Wilson coefficients)
14 nuisance parameters (uncertainties)

Weapon of choice:
MAF, 3 Bijectors, 128x3 layers, 650k samples 

Metrics:
Wasserstein distance: .000315
KS test:  0.484
Training time: 2.8 hrs.

Data provided by authors -> arXiv:1710.05402

PRELIMINARY
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LHC-like New Physics search (95 dims).

…

…

…

REAL DISTRIBUTION
NF DISTRIBUTION

Likelihood of LHC-like New Physics search:
1 parameter of interest.
94 nuisance parameters.

Weapon of choice:
MAF, 3 Bijectors, 128x3 layers, 500k samples 

Metrics:
Wasserstein distance: .0067
KS test:  0.507
Training time: 9.3 mins

ANOTHER GREAT RESEMBLANCE!

arXiv:1911.03305
arXiv:1809.05548

PRELIMINARY
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Conclusion.

•We presented for the first time Unsupervised  Learning of LHC Likelihood functions
using Normalizing Flows!!

At high dimensions…
•A-NSF can vey effectively describe (uncorrelated) high-dimensional complex distributions.
•Fully correlated distributions are harder to describe, but autoregressive flows hold their ground.

 

…more to come

•Can Normalizing Flows (NFs)  help us on these endeavours?…YES
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THANK YOU!
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BACK UP
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Correlated Gaussians Mixture of Gaussians

Training time.
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Are correlations well learned?

Frobenius norm.

| |A | | = (∑
i,j

abs(ai,j)2)1/2

A = CorrNF − Corrreal

where

WARNING: Not dimension-scaled
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Normalization might be required!

On probability volumes

EXAMPLE: EW-Fit.

REAL dist.

NF dist.

KL divergence=-195.5, however
Correlation between log probs=.996

195.5



Introduction.

pY(y) = pZ( f(y)) |det(Df(y)) | = pZ( f(y)) |det(Dg( f(y)) |−1
Df(y) =

∂f
∂y

Dg(z) =
∂g
∂z

Y = g(Z)

f = f1 ∘ . . . fN−1 ∘ fN

detDf(y) = ΠN
i=1det(Dfi(xi)) xi = gi ∘ . . . ∘ g1(z) = fi+1 ∘ . . . ∘ fN(y)

f = g−1

logp(𝒟 |Θ) =
M

∑
i=1

logpY(y(i) |Θ) =
M

∑
i=1

logpZ( f(y(i) |θ) |ϕ) + log |detDf(y(i) |θ) |

Let’s get formal…

- If Z is a random variable with pdf      ,  g is an invertible function such that                   
and                 ,  then we can obtain the pdf    of the random variable Y as  pY

pZ

- N transformations are possible since…

- Since  is parametrised by  and the bijector  by , we can compute the log probability 
of some measured data   given the parameters   as

pZ ϕ g θ
𝒟 = {y(i)}M

i=1 Θ = (θ, ϕ)

where

where

Jacobians
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