Algebraic Geometry and P-Adic Numbers for Scattering Amplitude Ansätze

Giuseppe De Laurentis

Albert-Ludwigs-Universität Freiburg

In collaboration with Ben Page

ACAT 2021

Giuseppe De Laurentis

ALGEBRAIC GEOMETRY AND P-ADIC NUMBERS FOR SCATTERING AMPLITUDE ANSÄTZE

1/12

THE %-LEVEL PRECISION FRONTIER

• Ultimate aim: reduce theory uncertainty in $d\hat{\sigma} \sim d\Pi |\mathcal{A}|^2$ [ATLAS '18, Les Houches '19]

○◇□〉◇□〉◇□〉◇□〉 ▲□〉 ▲□〉

Giuseppe De Laurentis

Freiburg University

THE %-LEVEL PRECISION FRONTIER

• Ultimate aim: reduce theory uncertainty in $d\hat{\sigma} \sim d\Pi |\mathcal{A}|^2$ [ATLAS '18, Les Houches '19]

▶ %-level precision in QCD requires 2-loop amplitudes $(\alpha_S(M_Z)^2 \sim 0.01)$

$$\underbrace{\mathcal{A}^{(2)}}_{\mathsf{Amplitude}} \longrightarrow \underbrace{\mathcal{R}^{(2)}}_{\mathsf{Remainder}} = \sum_{i} \underbrace{\mathcal{C}_{i}(\lambda, \tilde{\lambda})}_{\mathsf{Rational}} \underbrace{\mathcal{F}_{i}(\lambda, \tilde{\lambda})}_{\mathsf{Transcendental}} \xrightarrow{\text{(ϵ-deg}}_{\mathsf{Rechange}}$$

(e-dependance well known) [Catani '98, Becher-Neubert '09]

Freiburg University

• • • • • • • • • • • •

THE %-LEVEL PRECISION FRONTIER

• Ultimate aim: reduce theory uncertainty in $d\hat{\sigma} \sim d\Pi |\mathcal{A}|^2$ [ATLAS '18, Les Houches '19]

▶ %-level precision in QCD requires 2-loop amplitudes $(\alpha_S(M_Z)^2 \sim 0.01)$

$$\underbrace{\mathcal{A}^{(2)}}_{\mathsf{Amplitude}} \longrightarrow \underbrace{\mathcal{R}^{(2)}}_{\mathsf{Remainder}} = \sum_{i} \underbrace{\mathcal{C}_{i}(\lambda, \tilde{\lambda})}_{\mathsf{Rational}} \underbrace{\mathcal{F}_{i}(\lambda, \tilde{\lambda})}_{\mathsf{Transcendental}}$$

(e-dependance well known) [Catani '98, Becher-Neubert '09]

• In this work consider the rational coefficients $\mathcal{C}_i(\lambda, \tilde{\lambda})$

(a) < (a)

1. Motivation		
000		

 \blacktriangleright \mathcal{C}_i can be stably evaluated over $\mathbb{F}_{\underline{p}}$, but need \mathbb{C} for pheno finite fields

●◇●◇ 単画 《画》《画》《画》《曰》

Giuseppe De Laurentis

Freiburg University

1. Motivation		
000		

 \blacktriangleright \mathcal{C}_i can be stably evaluated over $\underbrace{\mathbb{F}_p}_p$, but need \mathbb{C} for pheno finite fields

• Strategy: reconstruct \mathcal{C}_i from \mathbb{F}_p samples

[von Manteuffel-Schabinger '15, Peraro '16]

A = > 4

Giuseppe De Laurentis

Freiburg University

1. Motivation		
000		

 \blacktriangleright \mathcal{C}_i can be stably evaluated over \mathbb{F}_p , but need \mathbb{C} for pheno finite fields

• Strategy: reconstruct \mathcal{C}_i from \mathbb{F}_p samples

[von Manteuffel-Schabinger '15, Peraro '16]

・ロ・・(型・・(型・・(ロ・))
 ・・(型・・(ロ・))

Giuseppe De Laurentis

Freiburg University

1. Motivation		
000		

- \blacktriangleright \mathcal{C}_i can be stably evaluated over \mathbb{F}_p , but need \mathbb{C} for pheno finite fields
- Strategy: reconstruct C_i from \mathbb{F}_p samples
- [von Manteuffel-Schabinger '15, Peraro '16]

イロト イボト イヨト イヨト

- Sampling becomes a bottleneck for high-multiplicity

PREVIEW OF RESULTS

- Testing ground for current work $\mathcal{R}^{(2)}_{qar{q}
 ightarrow 3\gamma}$
- [Chawdhry at al., '19] Abreu at al. '20]
- Main result: drastically reduced ansatz size (i.e. required samples)

Remainder	$\left \begin{array}{c} \mathcal{R}^{(2,0)}_{\gamma^-\gamma^+\gamma^+} \end{array} ight $	$\left \begin{array}{c} \mathcal{R}^{(2,N_f)}_{\gamma^-\gamma^+\gamma^+} \end{array} ight $	$\mathcal{R}^{(2,0)}_{\gamma^+\gamma^+\gamma^+}$	$\mathcal{R}^{(2,N_f)}_{\gamma^+\gamma^+\gamma^+}$
Old Ansatz Size	36401	2315	6665	841
New Ansatz Size	566	20	18	6

Table: Results from the current computation

Plus 317 \mathbb{Q}_p warm-up evaluations - number only dependent on multiplicity p-adic numbers

Giuseppe De Laurentis

(日)

2. Geometry of Spinor Space		
•00		

Structure of the rational coefficients

$$\mathcal{C}_i(\lambda,\tilde{\lambda}) = \frac{\mathcal{N}_i(\lambda,\tilde{\lambda}) \leftarrow \text{ can we say anything about } \mathcal{N}?}{\prod_j \mathcal{D}_j(\lambda,\tilde{\lambda})^{q_{ij}} \leftarrow \mathcal{D}_j \text{ are well understood}}$$

Giuseppe De Laurentis

Freiburg University

2. Geometry of Spinor Space		
000		

Structure of the rational coefficients

$$\mathcal{C}_i(\lambda,\tilde{\lambda}) = \frac{\mathcal{N}_i(\lambda,\tilde{\lambda}) \leftarrow \text{ can we say anything about } \mathcal{N}?}{\prod_j \mathcal{D}_j(\lambda,\tilde{\lambda})^{q_{ij}} \leftarrow \mathcal{D}_j \text{ are well understood}}$$

• Example of constraints from singular limits [GDL-Maître '19] $\mathcal{A}_{q^+,g^+,g^+,\bar{q}^-,g^-,g^-}^{(0)} = \frac{\mathcal{N} \leftarrow \mathbf{143 \ linear \ d.o.f.}}{\langle 12 \rangle \langle 23 \rangle \langle 34 \rangle [45] [56] [61] s_{345}}$

(日)

2. Geometry of Spinor Space •00		

Structure of the rational coefficients

$$\mathcal{C}_i(\lambda,\tilde{\lambda}) = \frac{\mathcal{N}_i(\lambda,\tilde{\lambda}) \leftarrow \text{ can we say anything about } \mathcal{N}?}{\prod_j \mathcal{D}_j(\lambda,\tilde{\lambda})^{q_{ij}} \leftarrow \mathcal{D}_j \text{ are well understood}}$$

 $\begin{array}{l} \langle 12 \rangle \sim \varepsilon \\ \& \qquad \Rightarrow \\ \langle 23 \rangle \sim \varepsilon \end{array}$

Giuseppe De Laurentis

Freiburg University

イロト イボト イヨト イヨト

2. Geometry of Spinor Space •00		

Structure of the rational coefficients

$$\mathcal{C}_i(\lambda,\tilde{\lambda}) = \frac{\mathcal{N}_i(\lambda,\tilde{\lambda}) \leftarrow \text{ can we say anything about } \mathcal{N}?}{\prod_j \mathcal{D}_j(\lambda,\tilde{\lambda})^{q_{ij}} \leftarrow \mathcal{D}_j \text{ are well understood}}$$

$$\begin{array}{ll} \langle 12\rangle\sim\varepsilon\\ \&\qquad\Rightarrow\quad\mathcal{A}\to\varepsilon^?\\ \langle 23\rangle\sim\varepsilon\end{array}$$

Giuseppe De Laurentis

Freiburg University

(日)

2. Geometry of Spinor Space		
000		

Structure of the rational coefficients

$$\mathcal{C}_i(\lambda,\tilde{\lambda}) = \frac{\mathcal{N}_i(\lambda,\tilde{\lambda}) \leftarrow \text{ can we say anything about } \mathcal{N}?}{\prod_j \mathcal{D}_j(\lambda,\tilde{\lambda})^{q_{ij}} \leftarrow \mathcal{D}_j \text{ are well understood}}$$

• Example of constraints from singular limits [GDL-Maître '19] $\mathcal{A}_{q^+,g^+,g^+,\bar{q}^-,g^-,g^-}^{(0)} = \frac{\mathcal{N} \leftarrow 143 \text{ linear d.o.f.}}{\langle 12 \rangle \langle 23 \rangle \langle 34 \rangle [45] [56] [61] s_{345}}$ $\langle 12 \rangle \sim \varepsilon \qquad |2 \rangle \sim \varepsilon \Rightarrow \mathcal{A} \sim \varepsilon^{-2}$

$$\begin{array}{ccc} \& & \Rightarrow & \mathcal{A} \to \varepsilon^? & \Rightarrow \\ \langle 23 \rangle \sim \varepsilon & & \end{array}$$

Freiburg University

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨ▶ ヨヨ シのの

2. Geometry of Spinor Space		
000		

Structure of the rational coefficients

$$\mathcal{C}_i(\lambda,\tilde{\lambda}) = \frac{\mathcal{N}_i(\lambda,\tilde{\lambda}) \leftarrow \text{ can we say anything about } \mathcal{N}?}{\prod_j \mathcal{D}_j(\lambda,\tilde{\lambda})^{q_{ij}} \leftarrow \mathcal{D}_j \text{ are well understood}}$$

Example of constraints from singular limits [GDL-Maître '19] $\mathcal{A}^{(0)}_{q^+,g^+,g^-,g^-,g^-} = \frac{\mathcal{N} \leftarrow \mathbf{143 \ linear \ d.o.f.}}{\langle 12 \rangle \langle 23 \rangle \langle 34 \rangle [45] [56] [61] s_{345}}$ $\begin{array}{ll} \langle 12 \rangle \sim \varepsilon & |2 \rangle \sim \varepsilon \Rightarrow \mathcal{A} \sim \varepsilon^{-2} \\ \& & \Rightarrow & \mathcal{A} \rightarrow \varepsilon^{?} & \Rightarrow & \text{or} \\ \langle 23 \rangle \sim \varepsilon & & \langle 12 \rangle \sim \langle 23 \rangle \sim \langle 13 \rangle \sim \varepsilon \Rightarrow \underbrace{\mathcal{A} \sim \varepsilon^{-1}}_{C} \end{array}$

Constraint! $(\mathcal{N} \sim \varepsilon)$

Freiburg University

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨ▶ ヨヨ シのの

Giuseppe De Laurentis

Algebraic geometry and p-adic numbers for scattering amplitude ansätze

2. Geometry of Spinor Space		
•00		

Structure of the rational coefficients

$$\mathcal{C}_i(\lambda,\tilde{\lambda}) = \frac{\mathcal{N}_i(\lambda,\tilde{\lambda}) \leftarrow \text{ can we say anything about } \mathcal{N}?}{\prod_j \mathcal{D}_j(\lambda,\tilde{\lambda})^{q_{ij}} \leftarrow \mathcal{D}_j \text{ are well understood}}$$

$$\begin{array}{ccc} \& & \Rightarrow & \mathcal{A} \to \varepsilon^? & \Rightarrow & \text{or} \\ \langle 23 \rangle \sim \varepsilon & & & \langle 12 \rangle \sim \langle 23 \rangle \sim \langle 13 \rangle \sim \varepsilon \Rightarrow \underbrace{\mathcal{A} \sim \varepsilon^{-1}}_{\text{Constraint!} (\mathcal{N} \sim \varepsilon)} \end{array}$$

Why is there "branching"?

Giuseppe De Laurentis

ALGEBRAIC GEOMETRY AND P-ADIC NUMBERS FOR SCATTERING AMPLITUDE ANSÄTZE

5/12

イロト イヨト イヨト

2. Geometry of Spinor Space		
000		

A CRASH COURSE ON ALGEBRAIC GEOMETRY

▶ Polynomial ring: $R = \mathbb{F}[x, y, z] \quad \leftarrow \text{ polynomials in } x, y, z \text{ over field } \mathbb{F}$

· < ㅁ > < 圊 > < 볼 > < 볼 > < 빌 = 의 오 이

Giuseppe De Laurentis

Freiburg University

1. Motivation 000	2. Geometry of Spinor Space 0●0	3. P-Adic Num oo	bers 4. Ansätze 00	5. Summary O	
A CRASH COURSE ON ALGEBRAIC GEOMETRY • Polynomial ring: $R = \mathbb{F}[x, y, z] \leftarrow \text{polynomials in } x, y, z \text{ over field } \mathbb{F}$					
	Algebra \sim Ideals		Geometry \sim	Varieties	
$I = \langle p_1, \dots$	$\left\langle x \right\rangle = \left\{ ax:a \in \mathbb{F}[x,y], ight.$ In general: $\left. , p_k \right\rangle_A = \left\{ \sum_{i=1}^k a_i p_i:a_i \right\}$	$[z]\}$ $_i \in A \Big\}$		VUI	

シック・目前・4回・4回・4回・4回・

Giuseppe De Laurentis

Freiburg University

Giuseppe De Laurentis

Freiburg University

Algebraic geometry and p-adic numbers for scattering amplitude ansätze

2. Geometry of Spinor Space		
000		

 \blacktriangleright Polynomial ring: $S_n = \mathbb{F}[|1\rangle, [1|, \dots, |n\rangle, [n|] \leftarrow \text{component wise}$

Giuseppe De Laurentis

Freiburg University

2. Geometry of Spinor Space		
000		

- \blacktriangleright Polynomial ring: $S_n = \mathbb{F}[|1\rangle, [1|, \dots, |n\rangle, [n|] \leftarrow \text{component wise}$
- Example using a Schouten identity:

 $|3\rangle \langle 12\rangle + |1\rangle \langle 23\rangle = |2\rangle \langle 13\rangle$

A B > < B</p>

Giuseppe De Laurentis

EL OQO

2. Geometry of Spinor Space		
000		

- \blacktriangleright Polynomial ring: $S_n = \mathbb{F}[|1\rangle, [1|, \dots, |n\rangle, [n|] \leftarrow \text{component wise}$
- Example using a Schouten identity:

$$\begin{split} &|3\rangle\langle 12\rangle+|1\rangle\langle 23\rangle=|2\rangle\langle 13\rangle\\ \Rightarrow &|2\rangle\langle 13\rangle\in \left\langle \langle 12\rangle, \left\langle 23\rangle\right\rangle_{S_n} \end{split}$$

Freiburg University

4 王

2. Geometry of Spinor Space		
000		

- \blacktriangleright Polynomial ring: $S_n = \mathbb{F}[|1\rangle, [1|, \dots, |n\rangle, [n|] \leftarrow \text{component wise}$
- Example using a Schouten identity:

$$\begin{split} &|3\rangle\langle 12\rangle + |1\rangle\langle 23\rangle = |2\rangle\langle 13\rangle \\ \Rightarrow &|2\rangle\langle 13\rangle \in \left\langle \left\langle 12\right\rangle, \left\langle 23\right\rangle \right\rangle_{S_n} \\ \Rightarrow &\left\langle \left\langle 12\right\rangle, \left\langle 23\right\rangle \right\rangle_{S_n} = \underbrace{\left\langle |2\rangle\right\rangle_{S_n}}_{\sim \text{ soft}} \cap \underbrace{\left\langle \left\langle 12\right\rangle, \left\langle 23\right\rangle, \left\langle 13\right\rangle \right\rangle_{S_n}}_{\sim \text{ collinear}} \end{split}$$

Freiburg University

4 王

2. Geometry of Spinor Space		
000		

- \blacktriangleright Polynomial ring: $S_n = \mathbb{F}[|1\rangle, [1|, \dots, |n\rangle, [n|] \leftarrow \text{component wise}$
- Example using a Schouten identity:

$$\begin{split} &|3\rangle\langle 12\rangle + |1\rangle\langle 23\rangle = |2\rangle\langle 13\rangle \\ \Rightarrow &|2\rangle\langle 13\rangle \in \left\langle \langle 12\rangle, \left\langle 23\right\rangle \right\rangle_{S_n} \\ \Rightarrow &\left\langle \langle 12\rangle, \left\langle 23\right\rangle \right\rangle_{S_n} = \underbrace{\left\langle |2\rangle\right\rangle_{S_n}}_{\sim \text{ soft}} \cap \underbrace{\left\langle \langle 12\rangle, \left\langle 23\right\rangle, \left\langle 13\right\rangle \right\rangle_{S_n}}_{\sim \text{ collinear}} \end{split}$$

Use computational algebraic geometry to do the decompositions

< ∃ >

2. Geometry of Spinor Space		
000		

- \blacktriangleright Polynomial ring: $S_n = \mathbb{F}[|1\rangle, [1|, \dots, |n\rangle, [n|] \leftarrow \text{component wise}$
- Example using a Schouten identity:

$$\begin{split} &|3\rangle\langle 12\rangle + |1\rangle\langle 23\rangle = |2\rangle\langle 13\rangle \\ \Rightarrow &|2\rangle\langle 13\rangle \in \left\langle \langle 12\rangle, \left\langle 23\right\rangle \right\rangle_{S_n} \\ \Rightarrow &\left\langle \langle 12\rangle, \left\langle 23\right\rangle \right\rangle_{S_n} = \underbrace{\left\langle |2\rangle\right\rangle_{S_n}}_{\sim \text{ soft}} \cap \underbrace{\left\langle \langle 12\rangle, \left\langle 23\right\rangle, \left\langle 13\right\rangle \right\rangle_{S_n}}_{\sim \text{ collinear}} \end{split}$$

- Use computational algebraic geometry to do the decompositions
- 10 symmetry-inequivalent irreducible varieties (5 pt. massless)

Giuseppe De Laurentis

(日)

2. Geometry of Spinor Space		
000		

- \blacktriangleright Polynomial ring: $S_n = \mathbb{F}[|1\rangle, [1|, \dots, |n\rangle, [n|] \leftarrow \text{component wise}$
- Example using a Schouten identity:

$$\begin{split} &|3\rangle\langle 12\rangle + |1\rangle\langle 23\rangle = |2\rangle\langle 13\rangle \\ \Rightarrow &|2\rangle\langle 13\rangle \in \left\langle \langle 12\rangle, \left\langle 23\right\rangle \right\rangle_{S_n} \\ \Rightarrow &\left\langle \langle 12\rangle, \left\langle 23\right\rangle \right\rangle_{S_n} = \underbrace{\left\langle |2\rangle\right\rangle_{S_n}}_{\sim \text{ soft}} \cap \underbrace{\left\langle \langle 12\rangle, \left\langle 23\right\rangle, \left\langle 13\right\rangle \right\rangle_{S_n}}_{\sim \text{ collinear}} \end{split}$$

- Use computational algebraic geometry to do the decompositions
- 10 symmetry-inequivalent irreducible varieties (5 pt. massless)
- counting multiplicities w.r.t. symmetry group we get 317 varieties

三日 のへの

 \blacktriangleright \mathcal{C}_i can't be evaluated on singular varieties

Giuseppe De Laurentis

Freiburg University

	3. P-Adic Numbers	
	00	

- $\blacktriangleright \ \mathcal{C}_i$ can't be evaluated on singular varieties
- We need phase-space points close to a singular variety

Freiburg University

		3. P-Adic Numbers		
000	000	•0	00	

- \mathcal{C}_i can't be evaluated on singular varieties
- ▶ We need phase-space points close to a singular variety
- Floating-point numbers (\mathbb{R}) could be unstable, can we use \mathbb{F}_p ?

1. Motivation	2. Geometry of Spinor Space	3. P-Adic Numbers	
			 -

- \mathcal{C}_i can't be evaluated on singular varieties
- We need phase-space points close to a singular variety
- Floating-point numbers (\mathbb{R}) could be unstable, can we use \mathbb{F}_p ?
- Finite-field absolute value takes one of two values:

 $|k=0|_{\mathbb{F}_p} = 0, \quad |k\neq 0|_{\mathbb{F}_p} = 1$

 \implies either on or away from the variety, cannot be close, since there is no concept of scale-difference in \mathbb{F}_p

Giuseppe De Laurentis

イロト イボト イヨト イヨト

	INOR DIACE 3. I -ADIC NUMBERS		
000 000	00	00	0

P-Adic numbers (series in p)

$$x = \sum_{i=-m}^{\infty} a_i p^i = a_{-m} p^{-m} + \dots + a_{-1} p^{-1} + a_0 + a_1 p + a_2 p^2 + \dots$$

しょう 正明 エル・エリ・エピ・エリト

Giuseppe De Laurentis

Freiburg University

000 000 0 00 0			3. P-Adic Numbers		
	000	000	00	00	0

P-Adic numbers (series in p)

$$x = \sum_{i=-m}^{\infty} a_i p^i = a_{-m} p^{-m} + \dots + a_{-1} p^{-1} + a_0 + a_1 p + a_2 p^2 + \dots$$

▶ P-Adic absolute value ($\nu_p(x) = -m$ is called "valuation")

$$|x|_{\mathbb{Q}_p} = p^{-
u_p(x)} = p^m \quad \longleftarrow \;$$
 still discrete, but no longer just 0 or 1

000 000 0 00 0			3. P-Adic Numbers		
	000	000	00	00	0

P-Adic numbers (series in p)

$$x = \sum_{i=-m}^{\infty} a_i p^i = a_{-m} p^{-m} + \dots + a_{-1} p^{-1} + a_0 + a_1 p + a_2 p^2 + \dots$$

▶ P-Adic absolute value ($\nu_p(x) = -m$ is called "valuation")

 $|x|_{\mathbb{Q}_p}=p^{u_p(x)}=p^m\quad \longleftarrow \,\,$ still discrete, but no longer just 0 or 1

$$\mathsf{E}.\mathsf{g}.\colon \ |p^{-\infty}|_{\mathbb{Q}_p}=\infty\,, \quad |p^{\infty}|_{\mathbb{Q}_p}=0\,, \quad \underbrace{|p|_{\mathbb{Q}_p}<|1|_{\mathbb{Q}_p}}_{\mathsf{scale separation!}}$$

Giuseppe De Laurentis

	EIRI OF SPINOR SPACE 3.	. P-ADIC NUMBERS 4	I. ANSATZE – (D. SUMMARY
000 000	0	00 (00 00	Э.,

P-Adic numbers (series in p)

$$x = \sum_{i=-m}^{\infty} a_i p^i = a_{-m} p^{-m} + \dots + a_{-1} p^{-1} + a_0 + a_1 p + a_2 p^2 + \dots$$

▶ P-Adic absolute value ($\nu_p(x) = -m$ is called "valuation")

$$\begin{split} |x|_{\mathbb{Q}_p} &= p^{-\nu_p(x)} = p^m \quad \leftarrow \quad \text{still discrete, but no longer just 0 or} \\ \text{E.g.:} \quad |p^{-\infty}|_{\mathbb{Q}_p} &= \infty \,, \quad |p^{\infty}|_{\mathbb{Q}_p} = 0 \,, \quad \underbrace{|p|_{\mathbb{Q}_p} < |1|_{\mathbb{Q}_p}}_{\text{scale separation!}} \\ \text{``Floating-point'' representation} \qquad \begin{array}{c} \text{computers have finite memory} \end{array}$$

$$x = p^{\nu_p(x)} \left(\sum_{i=0}^{k-1} a_i p^i + \mathcal{O}(p^k) \right)$$

Giuseppe De Laurentis

Freiburg University

< E

	4. Ansätze	
	0	

HILBERT'S NULLSTELLENSATZ

 If a polynomial vanishes everywhere on a variety, then it belongs to the (radical of the) associated ideal

$$\mathcal{N}(\lambda,\tilde{\lambda})|_{\varepsilon \text{ away from } V(I)} \sim \underbrace{\varepsilon}_{p \text{ in } \mathbb{Q}_p}^{k > 0} \quad \Longrightarrow \quad \mathcal{N} \in \sqrt{I}$$

Freiburg University

	4. Ansätze	
	0	

HILBERT'S NULLSTELLENSATZ

 If a polynomial vanishes everywhere on a variety, then it belongs to the (radical of the) associated ideal

$$\mathcal{N}(\lambda,\tilde{\lambda})|_{\varepsilon \text{ away from } V(I)} \sim \underbrace{\varepsilon}_{p \text{ in } \mathbb{Q}_p}^{k > 0} \quad \Longrightarrow \quad \mathcal{N} \in \sqrt{I}$$

But we also know how fast it vanishes, can we use this info?

	4. Ansätze	
	0	

HILBERT'S NULLSTELLENSATZ

If a polynomial vanishes everywhere on a variety, then it belongs to the (radical of the) associated ideal

$$\mathcal{N}(\lambda,\tilde{\lambda})|_{\varepsilon \text{ away from } V(I)} \sim \underbrace{\varepsilon}_{p \text{ in } \mathbb{Q}_p}^{k > 0} \quad \Longrightarrow \quad \mathcal{N} \in \sqrt{I}$$

But we also know how fast it vanishes, can we use this info?

ZARISKI-NAGATA [Zariski '49, Nagata '62, Eisenbud-Hochster '79] • Vanishing to degree k implies membership to $(k^{th} \text{ symbolic})$ power $\mathcal{N}(\lambda,\tilde{\lambda})|_{\varepsilon \text{ away from } V(I)} \sim \varepsilon^k \quad \Longrightarrow \quad \mathcal{N} \in \sqrt{I}^{\langle k \rangle}$

can be computed (normal power + decomposition)

イロト イボト イヨト イヨト

Giuseppe De Laurentis

Algebraic geometry and p-adic numbers for scattering amplitude ansätze

10/12

Combining the Constraints

 \blacktriangleright For each of the 317 irreducible surfaces $V(P_i)$ we know $\mathcal{N} \in P_i^{\langle k_i \rangle}$

◇◇♡◇ 비로 세르⊁세르⊁ 세팅> ▲□>

Giuseppe De Laurentis

Freiburg University

Combining the Constraints

• For each of the 317 irreducible surfaces $V(P_i)$ we know $\mathcal{N} \in P_i^{\langle k_i
angle}$

 $\blacktriangleright~\mathcal{N}$ must simultaneously satisfy all constraints, thus

 $\mathcal{N} \in \bigcap_i P_i^{\langle k_i \rangle}$

Giuseppe De Laurentis

11/12

(日)

Combining the Constraints

• For each of the 317 irreducible surfaces $V(P_i)$ we know $\mathcal{N} \in P_i^{\langle k_i
angle}$

 $\blacktriangleright~\mathcal{N}$ must simultaneously satisfy all constraints, thus

$$\mathcal{N} \in \bigcap_i P_i^{\langle k_i \rangle}$$

We can then use 1. polynomial division and 2. linear algebra to build the correct vector space

 MOTIVATION 000 	2. Geometry of Spinor Space 000	3. P-Adic Numbers 00	4. Ansätze 00	5. Summary
SUMMARY		Som	SOME COMPUTING REFER algebraic geometry: Sing	
We talked	about:	а ру	thon interface: sy p-adics: flint, s	ngular [GDL] sage

- the geometry of varieties in spinor space;
- the decomposition of their algebraic counterparts (ideals);
- p-adic numbers to rescue "closeness" with integer evaluations;
- Zariski-Nagata and symbolic powers to interpret constraints;
- and briefly how to combine the constrains.

Remainder	$\left egin{array}{c} \mathcal{R}^{(2,0)}_{\gamma^-\gamma^+\gamma^+} ight.$	$\left \begin{array}{c} \mathcal{R}^{(2,N_f)}_{\gamma^-\gamma^+\gamma^+} \end{array} ight $	$\mathcal{R}^{(2,0)}_{\gamma^+\gamma^+\gamma^+}$	$\mathcal{R}^{(2,N_f)}_{\gamma^+\gamma^+\gamma^+}$
Old Ansatz Size	36401	2315	6665	841
New Ansatz Size	566	20	18	6

Table: Results from the current computation

BACKUP SLIDES

- * ロ * * @ * * 目 * * 目 * の < ?

Giuseppe De Laurentis

Freiburg University

ADDITIONAL MOTIVATION

► A typical ratio panel from the LHC experiments nowadays [CMS '21]

Figure: m_T in $W(\rightarrow l\nu)\gamma$ – band: theory; data points: experiment.

Theory uncertainty larger than experimental one in most bins

Freiburg University

 Suppress momentum conservation (always present!) (technically, work in quotient ring by mom. cons. ideal)

$$J_{\Lambda_n} = \left\langle \sum_{i=1}^n |i\rangle [i| \right\rangle_{S_n}$$

- At 5-point, use 35 invariants: $\underbrace{\langle ij \rangle}_{10}, \underbrace{\langle ij]}_{10}, \underbrace{\langle i|j+k|i]}_{15}$
- ▶ 11 symmetry-inequivalent pairings (i.e. potentially reducible ideals)
- $\mathsf{E.g.:} \quad \big\langle \langle 12 \rangle, \langle 23 \rangle \big\rangle_{\mathsf{5pt.}} = \underbrace{\langle |2 \rangle \rangle}_{P_1 \, \sim \, \mathsf{soft}} \cap \underbrace{\langle \langle 12 \rangle, \langle 23 \rangle, \langle 13 \rangle, [45] \rangle}_{P_2 \, \sim \, \mathsf{collinear}} \ \cap \underbrace{\langle \langle ij \rangle \, \forall i, j \rangle}_{P_3 \, \sim \, \mathsf{collinear}}$
- 10 symmetry-inequivalent irreducible varieties (3 shown in above)

	P_1	P_2	P_3	P_4	P_5	P_6	P_7	P_8	P_9	P_{10}	\sum
mult.	10	20	2	30	10	60	120	15	30	20	317

Giuseppe De Laurentis

Freiburg University

COMBINING CONSTRAINTS

- ▶ Use 1. polynomial division and 2. linear algebra
- ► Start with the "naive" ansatz ← i.e. the unconstrained vector space
- Perform polynomial division by the Gröbner basis of each $P_i^{\langle k_i \rangle}$ (1.)
- The null-space of remainders satisfies the i^{th} constraint (2.)
- Insersect all null-spaces to satisfy all constraints (2.)

イロト イヨト イヨト イ

LINEAR ALGEBRA WITH CUDA

Solving linear systems over FFs (here: $2^{32} - 1$)

Partially pivoted Gaussian elimination to row echelon form

linear size (square matrix)	approx. timings
1024	0.5s
2048	1s
4096	5s
8192	30s
16384	4m
30000	30m

 \circ 32768 is just beyond what fits on my laptop (4gb) \circ Can probably be optimized: bit-shit tricks, profiling, etc.. Something like a nvidia quadro rtx 8000 has $12\times$ the memory, $2\times$ the cores, $3\times$ FLOPS

< ロ > < 同 > < 三 > < 三 >