Loop integral evaluation with pySecDec

Vitaly Magerya

Institute for Theoretical Physics, Karlsruhe Institute of Technology

ACAT 2021, Daejeon, South Korea
Where does \textit{pySecDec} fit in?

Basic steps of calculating scattering matrix elements:

1. Generate Feynman diagrams for the process.
 \[\mathcal{M} = \ldots + \ldots + \ldots + \ldots \]

2. Project the diagrams onto scalar integrals.
 \[\mathcal{M} = C_1 + C_2 + C_3 + C_4 + \ldots \]

3. Reduce the number of integrals using IBP relations.
 \[\mathcal{M} = C'_1 + C'_2 + C'_3 + \ldots \]

4. \textit{Evaluate the loop integrals.}
 * Analytically: hard to impossible at two loops if masses are present.
 * \textit{Numerically:}
 * \textit{Sector decomposition:} \textit{pySecDec}, \textit{FIESTA}.
 * Mellin-Barnes representation: \textit{MB}, \textit{AMBRE}.
 * Numerical differential equations: e.g. \textit{DIFFEXP} + \textit{pySecDec/FIESTA/MB}.

5. Integrate over kinematics.
 * A whole field of study by itself.
Sector decomposition in short

\[I = \int_0^1 dx \int_0^1 dy \, (x + y)^{-2+\varepsilon} = ? \]

Problem: the integrand diverges at \(x, y \to 0 \), can’t integrate numerically.

Solution:

1. Factorize the divergence in \(x \) and \(y \) with sector decomposition:

 \[I = \int \ldots \times \left(\theta (x > y) + \theta (x < y) \right) = \int_0^1 dx \int_0^x dy \, (x + y)^{-2+\varepsilon} + \left(\begin{array}{c} x \\ y \end{array} \right) \]

 Sector 1 \hspace{2cm} Sector 2

2. Rescale the integration region in each sector back to a hypercube:

 \[I \overset{y \to xy}{=} \int_0^1 dx \, x^{-1+\varepsilon} \int_0^1 dy \, (1 + y)^{-2+\varepsilon} + \left(\begin{array}{c} x \\ y \end{array} \right) \]

 Factorized pole

3. Extract the pole at \(x \to 0 \) analytically, expand in \(\varepsilon \):

 \[I = -\frac{2}{\varepsilon} \int_0^1 dy \, (1 + y)^{-2+\varepsilon} = -\frac{2}{\varepsilon} \int_0^1 dy \left(\frac{1}{(1+y)^2} - \frac{\ln(1+y)}{(1+y)^2} \varepsilon + \mathcal{O} (\varepsilon^2) \right) \]

4. Integrate each term in \(\varepsilon \) numerically (they all converge now).
pySecDec overview

pySecDec: library for *numerically evaluating parametric integrals* via sector decomposition and Monte Carlo integration. [Heinrich et al '21, '18, '17]

* https://github.com/gudrunhe/secdec
* Written in *Python*, C++, FORM.
* Multiple sector decomposition methods: iterative, geometric.
* Multiple integration algorithms:
 * Best: *Randomized Quasi-Monte Carlo (QMC)*; [Borowka et al '18]
 * Integration error $\sim \frac{1}{N_{\text{samples}}}$ (classical Monte Carlo has $\sim \frac{1}{N^{1/2}_{\text{samples}}}$);
 * Works on CPUs and GPUs (with CUDA);
 * Classic: *VEGAS/SUAVE/DIVONNE/CUHRE (CUBA), CQUAD (GSL).*
* Installation via the *standard Python package* installer (Linux, Mac):
 * pip3 install --user pySecDec

Recent new features:
* Adaptive sampling of whole amplitudes (weighted sums of integrals).
* Built-in asymptotic expansion of integrals.
Using pySecDec for a single Feynman integral

Generate the integration library:
```python
import pySecDec as psd
if __name__ == '__main__':
    psd.loop_package(
        name='dia1',
        loop_integral=psd.LoopIntegralFromPropagators(
            loop_momenta=['l1', 'l2', 'l3'],
            propagators=[
                '(l1)**2',
                '(l2)**2',
                '(l3)**2',
                '(l1 + q)**2',
                '(l2 + q)**2',
                '(l3 + q)**2',
                '(l1 - l2)**2',
                '(l1 - l3)**2 - mw2'
            ],
            powerlist=[1,1,1,1,1,1,1,1],
            replacement_rules=[('q*q', 'mz2')]
        ),
        real_parameters=['mz2', 'mw2'],
        requested_orders=[0],
        decomposition_method='geometric')
```

Inspect the generated code:
```bash
$ ls dia1/
dia1_data/ dia1_integral/ pylink/
src/ Makefile Makefile.conf
README dia1.hpp integral_names.txt
integrate_dia1.cpp
```

Compile it for the CPU:
```bash
$ cd dia1 && make
```
or for both CPU and GPU (with CUDA):
```bash
$ export SECDEC_WITH_CUDA_FLAGS='-arch=sm_80' CXX=nvcc
$ cd dia1 && make
```

Run it:
```python
from pySecDec.integral_interface import IntegralLibrary
if __name__ == '__main__':
    lib = IntegralLibrary('dia1/dia1_pylink.so')
    lib.use_Qmc(verbosity=1)
    mz2 = 1.0
    mw2 = 0.78
    _, _, result = lib([mz2, mw2], epsrel=1e-7, verbose=True)
    print(result)
```

The result:
```plaintext
+ ((6.82645729748523067e+00,-1.60711801420445148e+01)
+/- (8.07205205949069617e-07,7.55815020343424309e-07))
+ 0(eps)
```
Expected performance for 3-loop EW integrals

pySecDec1 + QMC integration times for 3-loop self-energy integrals:2

<table>
<thead>
<tr>
<th>Diagram</th>
<th>Relative precision</th>
<th>10^{-3}</th>
<th>10^{-4}</th>
<th>10^{-5}</th>
<th>10^{-6}</th>
<th>10^{-7}</th>
<th>10^{-8}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GPU</td>
<td>15s</td>
<td>20s</td>
<td>40s</td>
<td>200s</td>
<td>13m</td>
<td>50m</td>
</tr>
<tr>
<td></td>
<td>CPU</td>
<td>10s</td>
<td>50s</td>
<td>400s</td>
<td>4000s</td>
<td>180m</td>
<td>1200m</td>
</tr>
<tr>
<td></td>
<td>GPU</td>
<td>18s</td>
<td>19s</td>
<td>30s</td>
<td>20s</td>
<td>1.2m</td>
<td>2m</td>
</tr>
<tr>
<td></td>
<td>CPU</td>
<td>5s</td>
<td>14s</td>
<td>60s</td>
<td>50s</td>
<td>12m</td>
<td>16m</td>
</tr>
<tr>
<td></td>
<td>GPU</td>
<td>6s</td>
<td>11s</td>
<td>12s</td>
<td>30s</td>
<td>3m</td>
<td>24m</td>
</tr>
<tr>
<td></td>
<td>CPU</td>
<td>5s</td>
<td>10s</td>
<td>50s</td>
<td>800s</td>
<td>60m</td>
<td>800m</td>
</tr>
</tbody>
</table>

[Same diagrams as in Dubovyk, Usovitsch, Grzanka ’21]

In short: seconds to minutes per integral to achieve practical precision.

1Version 1.5 + work-in-progress + AVX2.

2GPU: NVidia A100 40GB; CPU: AMD EPYC 7302 with 32 threads.
CPU vs GPU with pySecDec

pySecDec3 integrand sampling speed on different devices:

In short:

* Top consumer-grade GPU (RTX 2080 Ti) \approx server-grade CPU.
* Top server-grade GPU (A100) $\approx 10 \times$ server-grade CPU.

3Version 1.5 + work-in-progress + AVX2.
Adaptive sampling of amplitudes

<table>
<thead>
<tr>
<th>Amplitude term</th>
<th>Naive sampling</th>
<th>Naive error</th>
<th>Better sampling</th>
<th>Better error</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10^6 samples</td>
<td>$1 \cdot 10^{-6}$</td>
<td>$\frac{1}{2} \cdot 10^6$ samples</td>
<td>$2 \cdot 10^{-6}$</td>
</tr>
<tr>
<td>10</td>
<td>10^6 samples</td>
<td>$10 \cdot 10^{-6}$</td>
<td>$\frac{1}{2} \cdot 10^6$ samples</td>
<td>$20 \cdot 10^{-6}$</td>
</tr>
<tr>
<td>50</td>
<td>10^6 samples</td>
<td>$50 \cdot 10^{-6}$</td>
<td>$2 \cdot 10^6$ samples</td>
<td>$25 \cdot 10^{-6}$</td>
</tr>
<tr>
<td>Total</td>
<td>$3 \cdot 10^6$</td>
<td>$51 \cdot 10^{-6}$</td>
<td>$3 \cdot 10^6$</td>
<td>$32 \cdot 10^{-6}$</td>
</tr>
</tbody>
</table>

[Example assumes integration error $= 1/n$]

pySecDec now automatically optimizes the total integration time based on
* how fast each integral can be sampled,
* how well it converges,
* how large its coefficient is.

⇒ Automatic *speedup for amplitudes* (weighted sums of integrals).
⇒ Automatic speedup for single integrals too (sums of sectors).
⇒ Used in e.g. 2-loop $gg \to ZZ$ (2011.15113) and $gg \to ZH$ (2011.12325);

see also: talk by Chaitanya Paranjape on Thursday.
Performance improvements by pySecDec version

Time to integrate $m_W m_Z^2$ to 7 digits of precision with pySecDec + QMC:

![Graph showing time to integrate for different versions and platforms]

Speedup sources:

* **v1.5**: adaptive sampling, automatic contour deformation adjustment;
* **dev**: separation of real and complex variables in the integrand code;
* **wip**: removal of the indirection from the integrand code, vectorization.

The latest release is fast; **the next release will be faster.**
Asymptotic expansion, briefly

\[I \equiv \frac{s}{m} = ? \]

Problem: when \(s/m^2 \ll 1 \) numerical integration converges poorly.

* General problem when scale ratios are not \(\approx 1 \).

Solution: asymptotic expansion in scale ratios. [Beneke, Smirnov '98, Jantzen '11]

* Takes out extreme ratios from the integrand:

\[I = (\cdots + \cdots) \left(\frac{s}{m^2} \right)^{-1} + (\cdots + \cdots + \cdots + \cdots) \left(\frac{s}{m^2} \right)^0 + \mathcal{O} \left(\frac{s}{m^2} \right) \]

* Now implemented in pySECDEC (through `pySecDec.loop_regions`).

* E.g. time to integrate the above triangle to \(10^{-3} \) accuracy:

![Graph showing time in minutes vs. m^2/s]
Summary

pySecDec provides:

* Numerical evaluation of massive multi-loop integrals.
 * 3-loop massive integrals at 6 digits in seconds to minutes.
* Dependable results when other methods fail.

The latest release (v1.5) introduces: [Heinrich '21]

* Optimized evaluation of amplitudes (weighted sums of integrals).
 * Proven in several 2-loop calculations.
 * Automatically applicable to single integrals too.
* Asymptotic expansion of integrals for extreme kinematics.

Future releases will bring:
* Even better performance.
pySecDec provides:

- Numerical evaluation of *massive multi-loop integrals*.
 - 3-loop massive integrals at 6 digits in seconds to minutes.
- Dependable results when other methods fail.

The latest release (v1.5) introduces: [Heinrich '21]

- Optimized evaluation of *amplitudes* (weighted sums of integrals).
 - Proven in several 2-loop calculations.
 - Automatically applicable to single integrals too.
- *Asymptotic expansion* of integrals for extreme kinematics.

Future releases will bring:

- Even better performance.

Thank you for your attention.
Backup slides
The need for higher loop corrections

Error predictions on key electroweak parameters:

<table>
<thead>
<tr>
<th>Errors</th>
<th>Γ_Z, MeV</th>
<th>m_W, MeV</th>
<th>R_b, 10^{-5}</th>
<th>$\sin^2\theta^l_{\text{eff}}$, 10^{-5}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimental</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>current</td>
<td>2.3</td>
<td>12</td>
<td>66</td>
<td>14</td>
</tr>
<tr>
<td>FCC-ee</td>
<td>0.1</td>
<td>0.7</td>
<td>6.0</td>
<td>0.5</td>
</tr>
<tr>
<td>CEPC</td>
<td>0.5</td>
<td>1.0</td>
<td>4.3</td>
<td>2.3</td>
</tr>
<tr>
<td>Theoretical</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>current, \leq 2 loops</td>
<td>0.4</td>
<td>4</td>
<td>10</td>
<td>4.5</td>
</tr>
<tr>
<td>future?, \leq 3 loops</td>
<td>0.15</td>
<td>1.0</td>
<td>5</td>
<td>1.5</td>
</tr>
</tbody>
</table>

Up to 3-loop theory is needed to match the experimental precision of the future colliders.
Generate the integration library:

```python
import pySecDec as psd
if __name__ == '__main__':
    # First term
    term1 = psd.LoopPackage(
        name='integral1',
        loop_integral=psd.LoopIntegralFromPropagators(...),
        real_parameters=[...])
    coeff1 = psd.Coefficient(
        numerators=['1 + 2*eps^3', ...],
        denominators=['-3 + 2*eps', '-1 + 2*eps', ...],
        parameters=[])  # Second term
    term2 = ...
    coeff2 = ...
    ...
    # The amplitude
    psd.sum_package('amplitude',
                    [term1, term2, ...],
                    regulators=['eps'],
                    requested_orders=[0],
                    coefficients=[[coeff1, coeff2, ...]],
                    real_parameters=[...])
```

Compile an run: same as for a single integral.

⇒ Under the hood single integrals are implemented the same as sums.
Using pySecDec with asymptotic expansion

Generate the integration library:

```python
import pySecDec as psd
if __name__ == '__main__':
    # find the regions and expand the integral up to O(s)
    terms = psd.loop_regions(
        name="triangle2L",
        loop_integral=
            psd.LoopIntegralFromPropagators(
                loop_momenta=['l1', 'l2'],
                external_momenta=['p1', 'p2'],
                propagators=[
                    '(l1 + p1)**2',
                    '(l1 - p2)**2',
                    '(l2 + p1)**2',
                    '(l2 - p2)**2',
                    'l2**2',
                    '(l1 - l2)**2 - msq'
                ],
                replacement_rules=[
                    ('p1*p1', 0),
                    ('p2*p2', 0),
                    ('p1*p2', 's/2')
                ],
                smallness_parameter="s",
                decomposition_method="geometric",
                expansion_by_regions_order=0)
    # generate the library
    psd.sum_package("triangle2L_by_regions",
        terms,
        regulators=['eps'],
        requested_orders=[0],
        real_parameters=['s', 'msq'])
```

Compile an run: same as for a single integral.

⇒ Adaptive amplitude optimization is enabled automatically.