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for New Physics Searches
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Complex events LHC

Candidate event tth

ATLAS

Theoretical picture of 
underlying dynamics
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Big Data at the LHC

Tremendous amount of 
highly complex data

However, theoretically 
very precise description 

of data

Highly performant data 
analysis techniques

High-Energy Physics

ATLAS/CMS 200 events/s 
passing triggers

ATLAS/CMS 2 PB/year of data

Machine Learning

Ideal 
interplay

Large number of 
techniques well suited to 

physical properties  
(RNN=time/ordering, 

CNN=space/orientation)
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‣ SUSY Superpartners
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‣ GUTs Z’, W’

‣ SUSY Superpartners
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‣ Ex-Dim KK-tower

‣ GUTs Z’, W’

‣ SUSY Superpartners
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‣ Composite top partner

‣ Ex-Dim KK-tower

‣ GUTs Z’, W’

‣ SUSY Superpartners
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‣ Ex-Dim KK-tower

‣ GUTs Z’, W’

‣ SUSY Superpartners

‣ Higgs portal/reps scalars

‣ Composite top partner
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Most models predict TEV scale 
resonances

Often similar but not identical features -> 
difficult to exhaust in bottom-up approach

‣ Not thought of ??

‣ Ex-Dim KK-tower

‣ GUTs Z’, W’

‣ SUSY Superpartners

‣ Higgs portal/reps. scalars

‣ Composite top partner
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Regression Classification

Clustering Autoencoder

Supervised

Unsupervised

Fine-grained 
small net

Large net
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Anomaly detection vs classification

Need to be able to say what is anomalous

individual event   vs     entire sample

[Aarrested 
et al ’21]
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Anomaly detection vs classification

• Kullback-Leibler divergence

Measures the difference between 
two probability distributions

• Means Square Error

Many different approaches to perform anomaly detection:

• Kernel density estimation

• K-means distance

And many different ways to assign anomaly score, e.g. 

• PCA (SVD)

• Also possible to combine for anomaly score
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Most popular NN-based anomaly detection method

Autoencoder

• in first step input is encoded into information bottleneck

• between input/output layer and bottleneck can be several hidden layers  
(conv./deep NNs) -> highly non-linear

• Reconstructed output is then compared with input via loss-function (often MSE)

• NN is trained such that input and output high degree of similarity
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Loss = difference

input/output

• after bottleneck decoding step

[Kingma, Welling ’13]
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Convolutional Autoencoder
[Farina, Nakai, Shih ’18]

[Heimel et al ’18]

• Combination of CNN with Autoencoder has shown very good performance 
in jet anomaly detection

• CNN is space/orientation aware information compressor

• CNN is space/orientation aware information compressor

top quark
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Graph neural network autoencoder

• Graphs are powerful ways of representing data

Jet image - CNN Jet graph - CNN

‣  Restricted to Euclidean features
‣  Extremely sparse and comp. wasteful
‣  Difficult going D>2 -> more wasteful

‣  fixed length vector

‣  Domain can be chosen suitable for problem
‣  Easily extended to D>2
‣  Variable length vector no problem

• Graph: Models set of objects (nodes) and their 
relationship (edges)

Jet
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• Graph specified by node and edge features -> adjacency matrix

• Input to graph autoencoder:

multiple 
adjacency 

matrices for 
each graph

Total Loss: with

[Atkinson, Bhardwaj, Englert, 
Ngairangbam, MS ’21]
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Autoencoders provide two ways for anomaly detection

First optimise 
for latent space 

dimension

here 6

Latent space 
contains plenty of 

information to 
perform 

classification task

compare  
input vs output

use latent 
space
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Quantum autoencoder

•  Quantum algorithms can enhance ML performance
See talks by

J. Lykken

B. Sanders•  General structure of any QC algorithm:

• Operator expressed in terms of individual gates

operator acts on  
Hilbert space states

H ! WW ⇤ (193)

5.6 � (194)

U |xi = | 1i (195)

h 2|  1i (196)

14

measurement of 
observable   

corresponds to exp. 
value of operator

H ! WW ⇤ (193)

5.6 � (194)

U |xi = | 1i (195)

| h 2|  1i |
2 (196)

U (197)

Û (198)

14

H ! WW ⇤ (193)

5.6 � (194)

U |xi = | 1i (195)

| h 2|  1i |
2 (196)

U (197)

Û (198)

14

H ! WW ⇤ (193)

5.6 � (194)

U |xi = | 1i (195)

| h 2|  1i |
2 (196)

U (197)

Û (198)

D
Û
E

 
=

h |U | i

h | i
(199)

14

statistical statement 
need to evaluate often

Need to encode Hilbert 
space and operator suitable 

for quantum system
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•  Implementation of a quantum autoencoder

Figure 1: A scematic representation of a quantum autoencoder circuit. (Figure from ref[1], to be
changed later)

• Encoding and decoding in the quantum version are essentialy implemented by a

unitary operators, which conserves probability.

Quantum machine learning models have unitary operations acting on quantum states,

thereby conserving probability. To implement a data compression at the encoder output,

some qubits at the encoder output have to be discarded[1]. Freshly prepared qubits are

fed into the decode in place of the discarded ones, and the new unitary operator(decoder)

reconstructs the input state with the partial information from the encoder. Thus, we

would like to implement an autoencoder with a single unitary transformation: U(✓) for the

encoder, and its hermitian conjugate U(✓)† for the decoder.

To build a working autoencoder, define n+k input qubits, with n being the number of

input bits the encoder/decoder takes. k < n is the number of bits that the decoder takes

without connecting to the encoder network, i.e the decoder will take n � k qubit outputs

from the encoder network to reconstruct the same input. For checking, set n = 2, and

k = 1.

2 Classical Autoencoders

Autoencoders are neural networks utilised in various applications of unsupervised learning.

They learn to map input vectors x to a compressed latent vector z via an encoder. This

latent space feeds into a decoder that reconstructs the inputs. Denoting the encoder and

decoder networks as E(⇥E ,x) and D(⇥D, z) with ⇥E and ⇥D denoting the learnable

parameters of the respective network, we have

z = E(⇥E ,x) , x̂ = D(⇥D, z) , (2.1)

where x̂ denote the reconstructed output vector. The whole network is trained via gradient

descent to reduce a faithful distance L, between the reconstructed output x̂ and the input

vector x. For instance L can be the root-mean squared error,

L(x, x̂) =

sP
i=n

i=1 (x̂
i � xi)2

N
, (2.2)

where x̂
i and x

i are the i
th component of the reconstructed and input vectors respectively,

and n is their dimension. A faithful encoding should have an optimal latent dimension

– 2 –

input 
feature 
state

reconstructed 
output

measure fidelity

Figure 6: ROC curve between signal acceptance vs background rejection for Quantum Autoen-
coder(QAE) and Classical Autoencoder(CAE) for various values of mH and di↵erent latent dimen-
sions for a training datasize of 10k samples. The trend across latent dimensions is same for both
QAE and CAE with QAEs performing better in all cases.

5.3 Anomaly detection

We now explore the performance of the autoencoders for a search scenario of for di↵erent

signal strengths.

– 12 –

•  For network training quantum gradient descent is beneficial [Blance, MS 
’20]

•  Find improved performance over classical autoencoder and 
extremely fast training [Ngairangbam, MS, Takeuchi ‘next week]
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Unsupervised learning prone to un

• In general, performance curves etc should often be taken with 
some grain of salt  (data vs pseudo-data)

•Known uncertainties should be taken into account if possible 

•  Adversially trained NNs can help making performance 
estimates insensitive to uncertainties

syst. exp. uncertainties theory uncertainties
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Example for uncertainties for 
anomaly detection with autoencoder

signal: pp->Z’->tt bkg: pp->tt
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Background Lower, AUC = 0.733

smeared jet energy for bkg

• only train on bkg (anomaly detection)

• to benchmark sensitivity first 
without adversarial

• syst. uncertainties via jet, MET smearing
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• We can remove dependance on 
smearing by applying an adversary 
that will try to classify the direction 
of smearing 

• The two networks are in a zero-sum 
game - an increase in adversary 
performance will result in the 
autoencoder being penalised.
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curves merge
curves merge

Robust, yet sensitive, anomaly detection with adversarial autoencoders

sensitivity 
ok
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Summary

• Anomaly detection is important discipline to ensure no 
new physics is missed at LHC

• Autoencoders are the most popular NN realisation of 
anomaly detection methods

• Autoencoders can be combined with other network 
methods to incorporate physics knowledge:

Adversarials - to desensitise against known unknowns

CNN - spacial knowledge
RNN - time/orderings
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