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Motivation

• High-precision theoretical description of Standard Model processes is of crucial

importance. In particular, the New Physics — new particles and interactions — is

likely to appear as small deviations from SM and therefore can be detected only

with high precision of theoretical predictions at hand.

• From the computational point of view, our ability to obtain high-precision results

depends crucially on multiloop calculation techniques. Complexity grows both

qualitatively and quantitatively in an explosive way with the number of loops

and/or scales.

• New methods and approaches are always required. Using computer power is a

must for at least two last decades. Insights from various fields of mathematics

help a lot.
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Example: form factors

2 loops:

• Dispersion relation

• Feynman parametrization

• Mellin-Barnes parametrization

• pFq expansion in indices, HypExp

[Matsuura, van der Marck, and van Neerven, 1989;

Harlander, 2000]

[Gehrmann, Huber, and Maitre, 2005]
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Example: form factors

3 loops:

[Gehrmann, Heinrich, Huber, and Studerus, 2006; Heinrich, Huber, and Mâıtre, 2008; RL,

Smirnov, and Smirnov, 2010]

• Feynman parametrization

• Mellin-Barnes parametrization, MB, AMBRE [Czakon, 2006; Gluza et al., 2007]

• Recurrence+analyticity in d , [Tarasov, 1996; RL, 2010]

• PSLQ recognition [Ferguson et al., 1998]
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Example: form factors

4 loops:

[Henn, Smirnov, Smirnov, and Steinhauser, 2016; RL, Smirnov, Smirnov, and Steinhauser, 2019;

RL, von Manteuffel, Schabinger, Smirnov, Smirnov, and Steinhauser, 2021]

• ∼ 100 big topologies.

• Linear reducibility, HyperInt [Panzer, 2013]

• Parallelization for IBP reduction,

finite fields reconstruction [von Manteuffel and Schabinger, 2015; Smirnov and

Chuharev, 2020]

• Differential equations, reduction to ε-form [Henn, 2013; RL, 2015], Libra [RL,

2021]

• PSLQ recognition
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Example: form factors

5 loops:

• ∼ 1000 big topologies.

• It looks like no available techniques can help.
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NNLO cross sections

• But from the experimental point of view less loops and more scales are even more

important. In particular NNLO (two-loop) corrections to the cross sections

processes are of a great interest.

• Only very recently multiloop methods have grown to NNLO calculations for more

than 2 scales: 2→ 2 processes with massive particles, 2→ 3 processes with

massless particles.

• Partial results start to appear. One example: e − µ scattering at NNLO [Banerjee

et al., 2020].
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State of the art

Calculational complexity crucially depends on the number of loops and on the number

of scales.PPPPPPPscales

loops
1 loop 2 loops 3 loops 4 loops 5 loops > 6

1 X X X many a few

2 X X some a few

3 X some a few

> 3 X a few

• Massive internal lines add extra complexity.

• State-of-the-art examples:

• 5-loop massless propagators [Georgoudis, Gonçalves, Panzer, Pereira, Smirnov, and Smirnov, 2021].

• 4-loop g − 2 integrals (onshell massive propagators) [Laporta, 2017]

• 4-loop N = 4 SYM form factors [RL, von Manteuffel, Schabinger, Smirnov, Smirnov, and Steinhauser, 2021]

• 3-loop massless boxes [Henn, Mistlberger, Smirnov, and Wasser, 2020]

• 2-loop 5 legs [Badger, Chicherin, Gehrmann, Heinrich, Henn, Peraro, Wasser, Zhang, and Zoia, 2019]

• Massive internal lines add more complexity than just an extra scale:

• 3-loop massive form factors not yet calculated.

• results for two-loop boxes with inner massive lines are mostly not available.

This is basically the minimal complexity of the diagrams required for NNLO precision of

differential cross section for 2→ 2 processes with massive particles.
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Calculation path

1. Diagram generation

Generate diagrams contributing to the chosen order of perturbation theory.

Tools: qgraf [Nogueira, 1993], FeynArts [Hahn, 2001],. . .

2. IBP reduction

Setup IBP reduction, derive differential system for master integrals.

Tools: FIRE6 [Smirnov and Chuharev, 2020], Kira2 [Klappert et al., 2021], LiteRed [RL,

2012], Reduze2 [von Manteuffel and Studerus, 2012],. . .

3. DE Solution

Reduce the system to ε-form, write down solution in terms of polylogarithms.

Fix boundary conditions by auxiliary methods.

Tools: Fuchsia [Gituliar and Magerya, 2017], epsilon [Prausa, 2017], Libra [RL, 2021]

8



IBP reduction: new ideas



IBP identities

Given a Feynman diagram, consider a family

j(n) =

∫
dµL

N∏
k=1

D
−nk
k , dµL =

L∏
k=i

dd li

D1, . . . ,DM — denominators of the diagram,

DM+1, . . . ,DN — irreducible numerators, such that

N = L(L + 1)/2 + L · E .

p1p2

pE

-p1-p2...-pE

From 0 =
∫
dµL

∂
∂li
· qm

∏N
k=1 D

−nk
k one obtains

IBP identities

[cklBkAl + clAl ] j(n) = 0.

Here ckl , cl are some coefficients.

Al j(nl ) = nl j(nl + 1),

B l j(nl ) = j(nl − 1)

IBP identities allow one to express any integral in the family via a finite # of master

integrals. They also allow to construct differential and difference equations for the

latter.
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IBP reduction

Laporta algorithm (FIRE, Kira, Reduze, . . . )

• generate identities for many numeric n ∈ ZN .

• use Gauss elimination and collect reduction rules

to database.

• twist: mapping to finite fields Fp +

reconstruction.⇐= naturally parallelizable

Heuristic search (LiteRed)

1. Generate identities for shifts around n with

symbolic entries.

2. Use Gauss elimination until acceptable rule is

found.

3. Solve Diophantine equations to derive

applicability condition.

Observation: only a small fraction of identities finally

contribute to the reduction rule.
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IBP reduction in parametric representation

Note that N = L(L + 1)/2 + L · E grows quadratically with L, while M, the # of lines

in the diagram, grows only linearly. Parametric representation: only M indices.

Parametric representation

j̃(d)(n1, . . . nM) =

∫ ∏M
k=1 dxkx

nk−1
k

G(x)d/2

G = U+F , where U and

F are Feynman graph

polynomials.

IBP identities relating integrals with the same d require constructing syzygy module

for ideal generated by 〈G , ∂1G , ∂MG〉.

IBP identities from syzygies [RL, 2014]. Baikov rep.: [Zhang, 2014]

Syzygy QG + Q1∂1G + . . .+ QM∂MG = 0 leads to IBP identity

[ d
2
Q(A) + Qk (A)Bk ]j̃(n) = 0

Quite promising, but a fast algorithm for constructing a minimal (rather than

Groebner) basis of syzygy module is very desirable.
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IBP reduction with intersection theory?

[Mastrolia and Mizera, 2019]: use intersection theory for IBP reduction.

• Integral in parametric representation is understood as

bilinear pairing between integration cycle C and differential

form φ. ∫
C
G−νφ = 〈φ|C ] ,

• 〈φ|C ] is invariant under φ→ φ+∇ν φ̃ and/or C → C + ∂C̃ , where

∇ν = d − νG−1dG is twisted differential and ∂C̃ is a boundary (contractable)

cycle.

• Therefore, 〈·|·] is defined on the elements of twisted de Rham cohomology and

twisted homology. Those are finite-dimensional spaces, therefore we can use basis

expansion as IBP.

• Ref. [Cho and Matsumoto, 1995] introduced pairing 〈φ1|φ2〉, correctly defined for

∇ν - and ∇−ν - de Rham cohomologies.

• Unfortunately, 〈φ1|φ2〉 is still very difficult to calculate in general. Perspectives of

this approach are quite unclear to me.
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Differential equations



Differential equations for master integrals

• Differential equations for master integrals have the form

∂x j = M(x , ε)j

• One can try to simplify the equation by transformation j = T j̃ , so that

∂x j̃ = M̃ j̃ , M̃ = T−1 [MT − ∂xT ]

• [Henn, 2013]: there is often a “canonical” basis J = T−1j such that

∂xJ = εS(x)J (ε-form)

• General solution is easily expanded in ε:

U = Pexp

[
ε

∫
dxS(x)

]
=
∑
n

εn
∫∫∫

x>xn>...>x0

dxn . . . dx1S(xn) . . . S(x1)

• Algorithm of finding transformation to ε-form: [RL, 2015]. Implemented in 3

publicly available codes: Fuchsia [Gituliar and Magerya, 2017], epsilon [Prausa,

2017], and recently in Libra [RL, 2021].
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General structure of reduction algorithm

Algorithm proceeds in three major stages, each involving a sequence of “elementary”

transformations.

1. Fuchsification: Eliminating higher-order poles

Input: Rational matrix M (x , ε)

Output: Rational matrix with only simple poles on the extended complex plane,

M (x , ε) =
∑

k
Mk (ε)
x−ak

.

2. Normalization: Normalizing eigenvalues

Input: Matrix from the previous step, M (x , ε) =
∑

k
Mk (ε)
x−ak

.

Output: Matrix of the same form, but with the eigenvalues of all Mk (ε) being

proportional to ε.

3. Factorization: Factoring out ε

Input: Matrix from the previous step.

Output: Matrix in ε-form, M (x , ε) = εS(x) = ε
∑

k
Sk

x−ak
.
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Libra program

• Libra is a Mathematica package useful for treatment of differential systems

which appear in multiloop calculations.

• Tools for reduction to ε-form

• Visual interface

• Algebraic extensions

• Birkhoff-Grothendieck factorization

• Tools for constructing solution

• Determining boundary constants.

• Constructing ε-expansion of Pexp.

• Constructing Frobenius expansion of Pexp.
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Libra tools for reduction to ε-form

• Fuchsification and normalization.

• Automatic tool (useful for simple cases)

In[1]: t=Rookie[M,x,ε];

• Interactive tool (useful for most cases)

In[1]: t=VisTransformation[M,x,ε];

• Factorization.

In[2]: t=FactorOut[M,x,ε,µ];

• General solution

In[3]: U=PexpExpansion[{M,6},x];
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Boundary conditions

Suppose we have found a transformation T (x) = T (x , ε) to ε-form, j = TJ. Then we

can write

J(x) = U(x , x0)J(x0),

j(x) = T (x)U(x , x0)[T (x0)]−1j(x0)

But the point x0 should be somewhat special to simplify the evaluation of j(x0) as

compared to j(x). As a rule, ”special” boils down to ”singular”, i.e., we can expect

simplifications for x0 being a singular point of the differential system. Let it be x0 = 0

for simplicity.

Problem

U(x , x0) diverges when x0 tends to zero. Therefore, we have to consider not

the values, but the asymptotics of j(x0) at x = 0.

Libra can determine which asymptotic coefficients, c, are sufficient to calculate

and find the “adapter” matrix L relating those with the column of boundary

constants, C = Lc.

In[4]: {L,cs}=GetLcs[M,T,{x,0}];
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Algebraic extensions and non-polylogarithmic integrals

• Sometimes, in order to find the transformation to ε-form, one has to extend the

class of transformations by passing from x to y , such that x = x(y) is some

rational function. Libra has tool for it:

In[1]: ChangeVar[ds,x→(4 y*y)/(1 - y*y),y];

• Moreover, in many cases there is no common rationalizing variable. Thus, Libra

implements a more powerful way to treat such algebraic extensions, with

In[1]: AddNotation[ds,y → x(1-y*y) - 4 y*y];

One may add as many notations as needed, and Libra will take care of them

(minimizing their appearance, correctly treating their differentiation).

• Unfortunately, there are cases when the system can not be reduced to ε-form

even with algebraic extensions. Libra implements Birkhoff-Grothendieck

factorization to help to detect such cases (see [RL and Pomeransky, 2017]):

In[1]: {L,T,R}=BirkhoffGrothendieck[t,x];

There is no general approach for such cases in this case. Proper treatment of

transcendental extensions is needed?
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Example of using Libra

One of many 4-loop massless vertex topologies with two off-shell legs.

• Differential system

∂x j =




︸ ︷︷ ︸

374 × 374 matrix

j , where j =



...

...

...

...



• Maximum size of the diagonal blocks is “only” 11× 11.

• No global rationalizing variable. Three algebraic extensions are needed for the

reduction to ε-form:

x1 =
√
x , x2 =

√
x − 1/4, x3 =

√
1/x − 1/4

19



Summary

• Each step towards increasing the # of loops and/or # of scales requires new

methods. Those involve both technological advances (e.g. massive

parallelization) and new algorithms coming various fields of mathematics.

• IBP reduction still remains a bottleneck for many calculations. New ideas of IBP

reduction appear, whether they will be successful is yet to find out.

• Differential equations method is already in very good shape. Exception: the

systems irreducible to ε-form.

Thank you!
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