Machine Learning for LHC Theory

ACAT 2021

Al Decoded: Towards Sustainable, Diverse, Performant and Effective Scientific Computing

Anja Butter

ITP, Universität Heidelberg

First principle based precision simulations

Unique advantage of our field!

Precision simulations with limited resources

1. Generate phase space points

2. Calculate event weight

 $w_{event} = f(x_1, Q^2) f(x_2, Q^2) \times \mathcal{M}(x_1, x_2, p_1, \dots, p_n) \times J(p_i(r))^{-1}$

3. Unweighting via $r > w/w_{\max}$ \rightarrow optimal for $w \approx 1$

Event simulation with generative models

- 1. Generative models for phase space sampling
 - Control over phase space density
- 2. Generative models for event generation
 - Amplification beyond training data?
 - Achieve high precision
 - Estimate uncertainties

Generative Adversarial Networks

Discriminator $_{[D(x_r) \to 1, D(x_c) \to 0]}$ $L_D = \langle -\log D(x) \rangle_{x \sim P_{Truth}} + \langle -\log(1 - D(x)) \rangle_{x \sim P_{Gen}} \to -2\log 0.5$

Generator $_{[D(x_c) \rightarrow 1]}$ $L_G = \langle -\log D(x) \rangle_{x \sim P_{Gen}}$

\Rightarrow New statistically independent samples

What is the statistical value of GANned events?

A.B., S. Diefenbacher, G. Kasieczka, B. Nachmann, T. Plehn, R. Winterhalder [2008.06545]

- Camel function
- Sample vs. GAN vs. 5 param.-fit

Evaluation on quantiles:

$$\mathsf{MSE}^* = \sum_{j=1}^{N_{\mathsf{quant}}} \left(p_j - \frac{1}{N_{\mathsf{quant}}} \right)^2$$

What is the statistical value of GANned events?

A.B., S. Diefenbacher, G. Kasieczka, B. Nachmann, T. Plehn, R. Winterhalder [2008.06545]

- Camel function
- Sample vs. GAN vs. 5 param.-fit

Evaluation on quantiles:

$$\mathsf{MSE}^* = \sum_{j=1}^{N_{\mathsf{quant}}} \left(p_j - \frac{1}{N_{\mathsf{quant}}} \right)^2$$

$\mathsf{Sparser} \ \mathsf{data} \to \mathsf{bigger} \ \mathsf{amplification}$

Training on weighted events M. Backes, AB, T. Plehn, R.Winterhalder [2012.07873]

Low unweighting efficiencies \rightarrow bottleneck before training

 \rightarrow Train on weighted events

 $ightarrow L_D = \left\langle -w \log D(x)
ight
angle_{x \sim P_{Truth}} + \left\langle -\log(1 - D(x))
ight
angle_{x \sim P_{Gen}}$

Populates high energy tails

Large amplification wrt. unweighted data!

Machine Learning for LHC Theory

Better control with invertible networks

+ Tractable Jacobian

- + Enable correction for perfect precision
 - + Fast evaluation in both directions

$$\begin{pmatrix} \mathsf{v}_1\\ \mathsf{v}_2 \end{pmatrix} = \begin{pmatrix} u_1 \cdot \mathsf{s}_2(u_2) + t_2(u_2)\\ u_2 \end{pmatrix}$$

Training on density Sherpa [2001.05478, 2001.10028]

•
$$z \sim \mathcal{N} \rightarrow \text{ NN } \rightarrow x \sim p_x$$

- $p_x(x) = p_z(z) \cdot J_{NN}$
- Given target density t(x)
- \rightarrow Train NN to minimize log($p_z(z) \cdot J_{\text{NN}}/t(x)$)
 - Problem: Calculate f(x) each time

Training on samples

A.B., T. Heimel, S. Hummerich, T. Krebs, T. Plehn, A. Rousselot, S. Vent [arXiv:2110.13632]

•
$$x \sim p_{\text{samples}} \rightarrow \text{NN} \rightarrow z$$

- ightarrow Train NN to ensure $z\sim\mathcal{N}$
 - Loss: Maximize posterior over network weights:

$$egin{aligned} -\log(p(heta|x)) &= -\log(p(x| heta)) - \log(p(heta)) + ext{const.} \ &= -\log(p(z| heta)) - \log(J) - \log(p(heta)) + ext{const.} \end{aligned}$$

Naive INN results

Inclusive Z+jets production

- INN easy to train
- Powerful baseline

Naive INN results

Inclusive Z+jets production

- INN easy to train
- Powerful baseline
- Challenges:
 - Topological holes
 - Sharp phase space features

How to deal with deviations?

I. Corrections through reweighting

Discriminator

$$\begin{split} \mathcal{L} &= -\sum_{x \sim p_{data}} \log(D(x)) - \sum_{x \sim p_{INN}} \log(1 - D(x)) \\ &= -\int \mathrm{d}x \; p_{data}(x) \log(D(x)) + p_{inn}(x) \log(1 - D(x)) \end{split}$$

From variation we obtain

$$0 = \frac{p_{data}(x)}{D(x)} - \frac{p_{inn}(x)}{1 - D(x)}$$
$$\Rightarrow \frac{p_{data}(x)}{p_{inn}(x)} = \frac{D(x)}{1 - D(x)}$$

Reweighting the generated distributions

+ Close to perfect distribution after reweighting - Yields weighted events

II. Discriminator improved training

 Include discriminator information to improve training

Discflow

$$\begin{split} \mathcal{L}_{\mathsf{DiscFlow}} &= \sum_{i=1}^{B} w_{D}(x_{i})^{\alpha} \left(\frac{\psi(x_{i}; c_{i})^{2}}{2} - \log J(x_{i}) \right) \\ &\approx \int dx \, \underbrace{w_{D}(x)^{\alpha} P(x)}_{\mathsf{reweighted truth}} \, \left(\frac{\psi(x; c)^{2}}{2} - \log J(x) \right) \end{split}$$

II. Discriminator improved training

II. Discriminator improved training

Weight distribution after DiscFlow+Reweighting

III. Addressing uncertainties

 $\mathcal{L} = \mathcal{L}_{\textit{INN}} + \textit{KL}_{\textit{prior}}$

BINN results

 \Rightarrow BINN uncertainty captures convergence of the network \checkmark \Rightarrow BINN uncertainty does NOT capture where network fails

IV. Including external uncertainties through conditioning

 \rightarrow Include prior over α in BINN sampling

Overview on uncertainties

Can we invert the simulation chain?

Inverting detector effects

multi-dimensional \checkmark bin independent \checkmark statistically well defined ?

Machine Learning for LHC Theory

Asking the right question

Given an event x_d , what is the probability distribution at parton level? \rightarrow event generation conditioned on x_d

$$X_p \xleftarrow{g(x_p, f(x_d))}{\longleftarrow} K_p \xleftarrow{g(r, f(x_d))}{} I$$

Minimizing the posterior

$$L = \left\langle 0.5 || \bar{g}(x_{p}, f(x_{d})) ||_{2}^{2} - \log |J| \right\rangle_{x_{p} \sim P_{p}, x_{d} \sim P_{d}} - \log p(\theta)$$

Condition INN on detector data [2006.06685]

Inverting the full event

multi-dimensional $\checkmark~$ bin independent $\checkmark~$ statistically well defined $\checkmark~$

Machine Learning for LHC Theory

Application to MEM

current work in progress with T. Martini, T. Heimel, S. Peitzsch, T. Plehn

- Single top production in association with Higgs
- Measure CP-phase in the top Yukawa coupling

We can use ML ...

... to improve precision simulations in forward direction
 ... to amplify underlying statistics
 ... to achieve precision with discriminators
 ... to estimate the corresponding uncertainties

... to **invert** the simulation chain statistically