Accelerating HEP data analyses in massively parallel platforms

Design hints from Hydra

A. Augusto Alves Jr
October 11, 2019

S HYDRA
lm Multithreaded Data
= Analysis Framework

1/24

e CPU, GPU and parallelism.
e Hydra
e Examples and performance

e Summary

1/24

CPUs and GPUs &

Ll
HYDRA

e The CPU (central processing unit) carries out all the arithmetic and computing functions

of a computer. Principal components of a CPU: arithmetic logic unit (ALU),registers and
a control unit.

e The GPU (graphics processing unit) is specialized processor designed to rapidly
manipulate and alter memory to accelerate the creation of images in a frame buffer.
Modern GPUs have a highly parallel structure and are more efficient than general-purpose
CPUs for algorithms where the processing of large blocks of data is done in parallel.

2/24

Preliminars: CPUs and GPUs

ALU | ALU

Control

ALU | ALU

H
HYDRA

3/24

Concurrency &

The ability to execute different parts of a program, an algorithm or a problem in out-of-order or
in partial order, without affecting the final outcome.

e Concurrent routines can be executed in parallel.

e Significant improvement in the overall performance of the execution in multi-processor,
multi-core and multi-thread systems.

e Design of concurrent programs and algorithms requires reliable techniques for coordinating
instruction execution, data exchange, memory allocation and execution scheduling to
minimize response time and maximise throughput.

e Problems: race conditions, deadlocks, resource starvation etc....

4/24

Motivation to deploy massively parallel platforms in HEP

H
HYDRA

A large fraction of the software used in HEP is legacy. It consists of libraries of single
threaded, Fortran and C++03 mono-platform routines.

HEP experiments keep collecting samples with unprecedented large statistics.

Data analyses get more and more complex. Not rarely, a calculation spend days to reach a
result, which very often needs re-tune.

Processors will not increase clock frequency any more. The current road-map to increase
overall performance is to deploy concurrency.

Multi-platform environments became very popular among data-centers, but HEP software
is not completely prepared yet to deploy opportunistic computing strategies.

5/24

Hydra &

Ll
HYDRA

Hydra proposes a computing model to address this situation. The framework provides collection of
parallelized high-level algorithms and optimized containers, through a modern and functional interface,
to enhance HEP software productivity and performance, keeping the portability between GPUs and
multicore CPUs.

Hydra is a header-only, templated C++11 framework designed to perform common tasks found in HEP
data analyses on massively parallel platforms.

e It is implemented on top of the C++11 Standard Library and a variadic version of the Thrust library.

e Hydra is designed to run on Linux systems and to deploy parallelism using
e OpenMP. Directive-based implementation of multithreading.
e TBB (Threading Building Blocks). C++ template library developed by Intel for parallel programming on
multi-core processors.
e CUDA. Parallel computing platform and application programming interface (API) model created by Nvidia for
compatible GPUs.

e It is focused on portability, usability, performance and precision. 6/24

https://github.com/andrewcorrigan/thrust-multi-permutation-iterator/tree/variadic

Design &

e Static polymorphic structure.
Optimized containers to store polymorphic and multidimensional data-sets using SoA layout.
Enforced separation between algorithm and data. Data handled using iterators and all classes

manages resources using RAII.

Enforced type and thread-safeness.
All supported back-ends can run concurrently in the same program using the suitable policies:

® hydra::omp::sys ® hydra::cpp::sys
® hydra::cuda::sys ® hydra::host::sys
® hydra::tbb::sys ® hydra::device::sys

The source files written using Hydra and standard C++ compile for GPU and CPU just
exchanging the extension from .cu to .cpp and one or two compiler flags. There is no need to

re-factory or double-coding.

7/24

Features &

Ll
HYDRA

e Interface to ROOT::Minuit2 minimization package, to perform binned and unbinned
multidimensional fits.

e Parallel calculation of S-Plots.

e Phase-space generator and integrator.

e Multidimensional p.d.f. sampling.

e Parallel function evaluation over multidimensional data-sets.

e Numerical integration: plain and VEGAS Monte Carlo, Gauss-Kronrod and Genz-Malik
quadratures.

e Dense and sparse multidimensional histogramming.

e Support to C++11 lambdas, filters, smart-ranges,... etc.

All the algorithms can be invoked concurrently and asynchronously, mixing different back-ends.

8/24

Functors lf

Ll
HYDRA

e Hydra calls user’'s code using functors.

e The framework adds features and type information to generic functors using the CRTP
idiom.

e All functors derive from hydra: :BaseFunctor<Func,ReturnType,NPars> and needs to
implement the Evaluate(...) method.

A generic functor with N parameters is represented like this:

struct MyFunctor: public hydra::BaseFunctor<MyFunctor,double,N>
{

// constructors and assignment operator omitted

// implement the Evaluate() method for arrays
template<typename T> __hydra_dual__ inline double Evaluate(T* x) { /*...code...*/ }

// implement the Evaluate() method for tuples
template<typename T> __hydra_dual__ inline double Evaluate(T x) { /*...code...*/ }

H O © WO O WN =

=

¥ 9/24

Arithmetic operations and composition with functors &

Ll
HYDRA

If A, B and ¢ are Hydra functors, the code below is completely legal.

//basic arithmetic operations

auto A_plus_ B = A + B;

auto A_minus_B = A - B;

auto A_times_B = A * B;

auto A_per_B = A/B;

//any composition of basic operations

auto any_functor = (A - B)*(A + B)*(A/C);

// C(A,B) is represented by:

auto compose_functor = hydra::compose(C, A, B)

SO VOO U W =

=

These operations are lazy and there is no intrinsic limit on the number of functors participating

on arithmetic or composition mathematical expressions.

10/24

Support for C++11 lambdas &

Ll
HYDRA

Lambda functions are fully supported in Hydra.

e The user can define a C++11 lambda function and convert it into a Hydra functor using

hydra: :wrap_lambda() :

=

H O © WO UsWN -

double two = 2.0;

//define a lambda capturing 'two' and convert it to a Hydra functor

auto my_lamba_wrapped = hydra::wrap_lambda(

[=] __hydra_dual__ (unsigned n, const double* x){
return two*sin(x[0]);

3

11/24

Support for C++11 lambdas &

Ll
HYDRA

WU W N

It is also possible to add named parameters to C++11 lambdas. In Hydra's jargon: “parametric
lambdas”

//named parameter
auto multiplier = hydra::Parameter::Create().Name("multiplier").Value(2.0);

//
auto my_lamba_wrapped = hydra::wrap_lambda(
[1 __hydra_dual__ (unsigned nparams, const hydra::Parameter* param, unsigned n, const doublex x){
return param[0]*sin(x[0]);

}, multiplier);

//set the multiplier to a different value
my_lamba_wrapped.SetParameter ("multiplier", 3.0);

This feature is very usefull for quickly prototyping new functors or to combine the existing ones.

12/24

Parameters representation tf

Ll
HYDRA

e Parameters are represented by the hydra::Parameter class and can hold name, limits and error.

e hydra::Parameter objects are thread safe and automatically tracked and managed by the
hydra: :BaseFunctor<Func,ReturnType,NPars> interface.

e Can be instantiated using the named parameter idiom:

1 auto P1 = hydra::Parameter::Create().Name("P1").Value(5.291) .Error(0.0001).Limits(5.28, 5.3);
2 auto P2 = hydra::Parameter::Create("P3").Value(5.291) .Limits(5.28, 5.3).Error(0.0001);

e Can be instantiated using the parameter list idiom

1 //name, value, error, minimum, maximum
2 hydra::Parameter P3("P3" ,5.291 ,0.0001 , 5.28, 5.3) ;

Not all members in a functor are required to be represented by hydra::Parameter objects.

13/24

PDFs representation &

Ll
HYDRA

e PDFs are represented by the hydra::Pdf<Functor, Integrator> class template and can be

conveniently built using the function hydra::make_pdf (functor, integrator) .
e The PDF evaluation and normalization can executed in different back-ends.

e PDF objects cache the normalization integrals results. The user can monitor the cached values
and corresponding errors.

e It is also possible to represent models composed by the sum of two or more PDFs. Such models
are represented by the class templates

® hydra::PDFSumExtendable<Pdfl, Pdf2,...>
® hydra::PDFSumNonExtendable<Pdf1, Pdf2,...>

and can be built using the function hydra::add_pdfs({yieldl, yield2,...}, pdfl, pdf2,...) ;

14/24

FCNs representation &

Ll
HYDRA

The FCN is defined binding a PDF to the data the PDF is supposed to describe.

e Hydra implements classes and interfaces to allow the definition of FCNs suitable to
perform maximum likelihood fits on unbinned and binned data-sets.
e The different typed of log-likelihood FCNs are covered specializing the class template
hydra: :LogLikelihoodFCN<PDF, Iterator, Extensioms...> .
e Objects representing likelihood-based FCNs are conveniently instantiated using the
function templates:
e hydra::make_likelihood_fcn(data.begin(), data.end() , pdf)
e hydra::make_likelihood_fcn(data.begin(), data.end() , weights.begin(), pdf)
where data.begin() , data.end() and weights.begin() are iterators pointing to the

data-set range, its weights or bin-contents.

15/24

Example 1: Gaussian + Argus

Ll
HYDRA

© 0D WN =

//Analysis range
double min = 5.20, max = 5.30;

//Gaussian: parameters definition

hydra::Parameter mean = hydra::Parameter::Create().Name("Mean").Value(5.28).Error(0.0001).Limits(5.27,5.29);
hydra::Parameter sigma = hydra::Parameter::Create().Name("Sigma").Value(0.0027).Error(0.0001).Limits(0.0025,0.0029) ;
//Gaussian: PDF definition using analytical integration

auto Signal PDF = hydra::make_pdf (hydra::Gaussian<>(mean, sigma),

hydra: :GaussianAnalyticalIntegral (min, max));

//Argus: parameters definition

auto m0 = hydra::Parameter: :Create () .Name ("M0") .Value(5.291) .Error (0.0001) .Limits(5.28, 5.3);
auto slope = hydra::Parameter::Create().Name("Slope").Value(-20.0).Error(0.0001).Limits(-50.0, -1.0);
auto power = hydra::Parameter::Create().Name("Power").Value(0.5).Fixed();

//Argus: PDF definition using analytical integration
auto Background_PDF = hydra::make_pdf (hydra::ArgusShape<>(m0, slope, power),
hydra: :ArgusShapeAnalyticalIntegral (min, max));

//Signal and Background yields
hydra: :Parameter N_Signal("N_Signal" ,500, 100, 100 , nentries) ;
hydra: :Parameter N_Background("N_Background",2000, 100, 100 , nentries) ;

//Make model
auto Model = hydra::add_pdfs({N_Signal, N_Background}, Signal_PDF, Background_PDF);

16/24

Example 1: Gaussian + Argus

© 00D U WN =

//1D device buffer
hydra: :device::vector<double> data(nentries);

//Generate data
auto data_range = Generator.Sample(data.begin(), data.end(), min, max, model.GetFunctor());
// or using range semantics: Generator.Sample(data, min, max, model.GetFunctor());

//Make model and fcn

auto fcn = hydra::make_loglikehood_fcn(model, data_range.begin(), data_range.end());
// or using range semantics: hydra::make_loglikehood_fcn(model, data_range);
//Fitting using ROOT::Minuit2

//minimization strategy

MnStrategy strategy(2);

//create Migrad minimizer
MnMigrad migrad_d(fcn, fcn.GetParameters().GetMnState() , strategy);

//minimization
FunctionMinimum minimum_d = FunctionMinimum(migrad_d(5000, 5));

17/24

Example 1: Gaussian + Argus &

Ll
HYDRA

Gaussian + ARGUS

x
X
<

120

10t

]

Unbinned fit with 2 million events.
e FCN calls: 789
e Intel® Core™ i7-4790 CPU @ 3.60 GHz (1 thread):146,531 s
e Intel@® Core™ i7-4790 CPU @ 3.60 GHz (8 threads):26,875 s
e NVidia TitanZ GPU: 3,75 s

8l

<)

6

3

4

S

2

S

[ENEE TN FRETE ERTNA NN NS R E
9.2 521 522 523 524 525 526 527 528 529 53

18/24

Comments &

Ll
HYDRA

e Same code compiled and executed on hardware with different architecture, providing numerically
identical results and showing consistent scaling over the available resources.

e Observed speed-ups by a factor O(10-1000) depending on the operations.

e It is not really a necessary to be a C++ expert to code your model on Hydra: no previous
experience or specific knowledge on CUDA, OpenMP or TBB is required.

e Code is absolutely portable: you can run it on CERN's Ixplus machines, on your desktop, laptop,
in summary, one can share its code or migrate calculations between different platforms without
major concerns.

Hydra is not a sub-product of one data analysis | performed. Since the beginning, Hydra has
been designed to be a generic and open framework.

19/24

Design hints: interface

T W N

Rely on template parameter deduction and avoid open template instantiation

Use named parameter semantics: auto par = Parameter::Create() .Name("par").Value(0.0) has the

same effect of auto par = Parameter::Create().Value(0.0) .Name("par") .

Implementation of convenience functions for instantiate templates via argument deduction. For example, instead of
doing Class0bj<ParType> obj(par); it can be better to do auto obj = make_obj(par); . Remember

that C4+417 supports template argument deduction from constructors as well.

Behavior of the interface needs to be defined and tested via unit-tests(ex. Catch2).

Deploy range-based semantics. It is useful for nesting algorithms, to express lazy evaluation, to simplify syntax and
to reach higher levels of abstraction. Compare this

ns::sort(input.begin(), input.end());
ns::transform(input.begin(), input.end(), output.begin(), some_functor);
auto result = ns::reduce(output.begin(), output.end());

with this auto result = ns::reduce(ns::sort(input) | some_functor);

20/24

https://github.com/catchorg/Catch2

Design hints: algorithms and data handling &

Ll
HYDRA

e Extensive use of RAIl (resource acquisition is initialization).

e Implementation of policy based design for algorithms and data-storage, for management of
concurrency, resource allocation and release.

e Thrust implements STL-like algorithms abstracting away the parallel back-end. C++417 added
support for parallel algorithms to the standard library. In both cases, the algorithms behavior are
controlled by policies. It is wise to implement as much as possible the computing intensive
routines on top of STL (or Thrust in case of Hydra), decomposing all calculations in terms of
transforms, reductions etc.

e Taking advantage of the processor’s cache prefetching mechanisms (SoA vs AoS).
e Using patterns that favor automatic vectorization or deploy it explicitly (can be tricky!)

e Using static polymorphism when performance has priority over run-time flexibility. Example:
calling user's code using CRTP.

21/24

Integrating Hydra with ROOT's ACLIC and CLING

H
HYDRA

From ROOT 6.13/03 and Hydra 2.1.0 it is possible to use Hydra interactively through
ROOT, in both prompt and batch modes.

Configuration: export ROOT_INCLUDE_PATH=/path-to-hydra/

Example: root -1 -b my_macro_with_hydra.C++

The code will parallelize using TBB instance controlled by ROOT.

Limitations: ROOT can’t deploy GPUs yet.

22/24

https://github.com/root-project/root
https://github.com/MultithreadCorner/Hydra

Step-by-step installation in LXPLUS &

Ll
HYDRA

This will compile for oMp and cpp backends:

1
2
3.
4
5

git clone https://github.com/MultithreadCorner/Hydra.git

cd Hydra

mkdir build then cd build

cmake -DTCLAP_INCLUDE_PATH="/opt/tclap/include BUILD_DOXYGEN_DOCUMENTATION=FALSE ../

make -3j12

e You can install TBB somewhere and export TBB_INSTALL_DIR=<your tbb>

e TCLAP is distributed here: http://tclap.sourceforge.net/

23/24

http://tclap.sourceforge.net/

Summary

H
HYDRA

e The project is hosted on GitHub: https://github.com/MultithreadCorner/Hydra
e The manual is available online: https://hydra-documentation.readthedocs.io

e The package includes a suite of examples covering: ROOT integration, fit, phase-space Monte
Carlo, parallel and polymorphic containers, numerical integration, PDF sampling and random
number generation etc.

e It is being used in some analyses in LHCb, like the Measurement of the Kaon mass.

e Also for simulation of three-dimensional silicon sensor response at TIMESPOT collaboration.

Hydra's development has been supported by the National Science Foundation under the grant
number PHY-1414736.

24/24

https://indico.cern.ch/event/590880/contributions/2485492/
https://www.sciencedirect.com/science/article/pii/S0168900219310381

Backup

Example 2: DY — K nfnt

PHYSICAL REVIEW D 78, 052001 (2008)

Mode Parameter E791 CLEO-c
NR a 1.03 = 0.30 = 0.16 7401206
$() SIEET ~184 %0580
FF (%) 130+ 58+ 4.4 89403+ 14
k*(892)7* a 1 (fixed) 1 (fixed)
$() 0 (fixed) 0 (fixed)
FF (%) 123 10%09 112202220
Ri(1430)7+ a LOL+0.10 = 0.08 300+ 006 = 0.14
B(°) 48710 497%05=29
FE (%) 125+ 14205 104 0.6 =05
m (MeV/c?) 14597+ 12 1463.0 + 0.7 + 2.4
T (MeV/e?) 175+ 12+ 12 1638+ 27+ 3.1
k3043007 a 0.20 = 0.05 = 0.04 0.962 = 0.026 = 0.050
#(°) 487 209%25%28
FF (%) 0.5+0.1+02 0.38+ 002+ 0.03
R(1680) 7! a 0.45 =016 = 002 65=01=15
B(°) V1315 2007 =46
FF (%) 25507503 128 % 0.04 = 0.28
s a 197035+ 0.1 501+ 004+ 027
B 1732818 163.7 £ 0.4 = 5.8
FE (%) 478121253 332504524
m (MeV/c?) 797+ 19+ 43 8091+ 13
T (MeV/c?) 410 +43 + 87 4709+ 15

e Masses and widths from PDG-2017.
e Phases and magnitudes from paper above(see page 12,
e Mimics the corresponding EvtGen's DDalitz model.

table 7).

+

— K 7t7": contributions

Contributions for each K7 channel: N.R., x, K*(892)°, K;(1425), K3 (1430) and
K1(1780). The total number of parameters is 22: complex coefficients, masses and widths.

Resonances are represented by the template class Resonance<Channel, L>, where
Channel =1,2,3 and L is a hydra::Wave object.

Non-resonant contribution represented by class NonResonant .
Hydra provides:

® hydra::BreitWignerLineShape<hydra::Wave L>

® hydra::ZemachFunction<hydra::Wave L>

® hydra::CosTheta

® hydra::complex ... etc.

DY — K ntx": contributions

Defining a contribution:

1 //K*(892)

2 //parameters

3 auto mass = hydra::Parameter::Create().Name("MASS_KST_892").Value(KST_892_MASS)

4 .Error(0.0001) .Limits(KST_892_MASS*0.95, KST_892_MASS*1.05);

5

6 auto width = hydra::Parameter::Create().Name ("WIDTH_KST_892") .Value (KST_892_WIDTH)

7 .Error(0.0001) .Limits (KST_892_WIDTH*0.95, KST_892_WIDTH*1.05);

8

9 auto coef_re = hydra::Parameter::Create().Name("A_RE_KST_892").Value(KST_892_CRe)

10 .Error(0.001) .Limits (KST_892_CRe*0.95,KST_892_CRe*1.05) .Fixed() ;

11

12 auto coef_im = hydra::Parameter::Create().Name("A_IM_KST_892").Value(KST_892_CIm)

13 .Error(0.001) .Limits(KST_892_CIm*0.95,KST_892_CIm*1.05) .Fixed();

14 //contributions per channel

15 Resonance<1, hydra::PWave> KST_892_Resonance_12(coef_re, coef_im, mass, width, D_MASS, K_MASS, PI_MASS, PI_MASS , 5.0);
16

17 Resonance<3, hydra::PWave> KST_892_Resonance_13(coef_re, coef_im, mass, width, D_MASS, K_MASS, PI_MASS, PI_MASS , 5.0);
18

19 //total contribution

20 auto KST_892_Resonance = (KST_892_Resonance_12 - KST_892_Resonance_13);

The other resonances are defined in a similar way.

DY — K 7nt7": model

1 //NR
2 coef_re = hydra::Parameter::Create() .Name("A_RE_NR").Value(NR_CRe).Error(0.001).Limits(NR_CRe*0.95,NR_CRe*1.05) ;
3 coef_im = hydra::Parameter::Create().Name("A_IM_NR").Value(NR_CIm).Error(0.001).Limits(NR_CIm*0.95,NR_CIm*1.05);
4
5 auto NR = NonResonant(coef_re, coef_im);
6
7 //Total model |N.R + \sum{ Resonaces }|~2
8 auto Norm = hydra::wrap_lambda(
9 [1__host__ __device__ (unsigned int n, hydra::complex<double>* x) {
10 hydra: : complex<double> r(0,0);
11 for(unsigned int i=0; i< n;i++) r += x[il;
12 return hydra::norm(r);}
13 s
14
15 //Functor
16 auto Model = hydra::compose(Norm, K800_Resonance, KST_892_Resonance,
17 KST0_1430_Resonance, KST2_1430_Resonance, KST_1680_Resonance, NR);
18
19 //PDF
20 auto Model_PDF = hydra::make_pdf (Model,
21 hydra: :PhaseSpaceIntegrator<3, hydra::device::sys_t>(D_MASS, {K_MASS, PI_MASS, PI_MASS}, 500000));

© 00O U WN -

— K 7"x": data generation, management and fit

Each entry of the dataset contains the four-vectors of the three final states.
Dataset generation is managed by the template class hydra::PhaseSpace<N>

The data is generated sampling the model on the device, in bunches of hundred of
thousands events, which are then stored in a hydra::Decays<N, Backend > container
allocated on the host memory space.

When necessary, the data-set is transferred to the suitable device to perform the fit,

histograming etc.

//get the fcn

auto fcn = hydra::make_loglikehood_fcn(Model _PDF, particles.begin(), particles.end());
//minimization strategy

MnStrategy strategy(2);

//create Migrad minimizer

MnMigrad migrad_d(fcn, fcn.GetParameters().GetMnState() , strategy);

//fit. ..

FunctionMinimum minimum_d = FunctionMinimum(migrad_d(5000, 5));

DY — K nt#x": Dataset

Toy data (5,000,000 events)

Dalitz_Resonances_yz
Entries 5000000
Meanx ~ 0.9842
Meany 1397
StdDevx 0.534
Std Devy 0.6659

Dalitz_Resonances xy |
Entries 5000000
Meanx 1397
Meany 1397
Std Dev x 0.6659
Std Devy 0.6657

s

MK 5) [GeV2ic’]
»n
=
MP(K T8} [GeV?cY]
»n

0.5

25
MK T5) [GeV/c?)

DY — K ntx": Fit result

ME(K T5) [GeV?/cY]
o

MK 1) [GeV?ie’]

0.5

25
MK T5) [GeV?/c?]

Dt — K n"x": Projections

TR

—Fit

Al -9y L —, —,
107 {892), 107 — (k(es2), — (K(eo2)),
- K 1680}, E — (K (1680}, —— (K 1680}, 11680},
g 1425y, 107 —), et 0,), e e,
1430, k- 1430, 1430, 4430, <1430,
R, E R SR
el e Lo v L S A I AT AT AANAN N A UE AN ANRT sl b b b b b b b b
107 10 10
0.5 1 15 2 25 05 1 15 2 25 02 04 06 08 1 12 14 16 18
MK TC) [GeV?/c?) MK TT) [GeV?/cY] MA(TC, T2) [GeV?/c)

Resonances identified by color.
Solid lines for Ky -channel.
Dashed lines for Km,-channel.

Lines are superposed in ;75 -channel.

Dt — K n"x": Projections

3 3
o 18020 70000
160 1601 [
r r 60000
140 1401 [
[r 50000]-
120~ 120~ R
100 100 40000
80| 0] 30000 77T
60 o

20000+ N
40

10000

W
25 02 04 06 08 1 12 14 16 18
MK TT) [GeV?/cY] MA(TC, T2) [GeV?/c)

0.5 1 15 2

Performance: CPU with OpenMP

The table below summarizes the time spent to perform a fit with 2.5 Million events.

Parallel system Threads Time (sec/min) FCN Calls | Time/Call (sec)
1 5060,578 (1.4 hours) 1030 4.01
i7-4790 CPU @ 3.60GHz
8 750.245 (12.50) " 0.73
1 5128.480 (1,42 hours) I 4.98
8 784.252 (13.1) n 0.76
Xeon(R) CPU E5-2680 v3 @ 2.50GHz 12 612.278 (10.2) L 0.59
24 371.838 (6.2) n 0.36
48 247.787 (4.1) n 0.24

Performance: CPU with TBB

The table below summarizes the time spent to perform a fit with 2.5 Million events.

Parallel system Threads | Time (s/min) | FCN Calls | Time/Call (s)
i7-4790 CPU @ 3.60GHz 8 746.684 (12.4) 1030 0.72
Xeon(R) CPU E5-2680 v3 @ 2.50GHz 48 184.779 (3.01) " 0.18

Performance: GPU with CUDA

The table below summarizes the time spent to perform a fit with 2.5 Million events.

Parallel system

Time (s/min)

FCN Calls

Time/Call (s)

GeForce GTX Tesla P100
GeForce GTX Titan Z (GPU 1)
GeForce GTX 1050 Ti

GeForce GTX 970M (video)

221.114 (3.68)
336.672 (5.61)
729.165 (12,15)

744.247 (12,40)

0.21

0.33

0.71

0.72

DY — K ntx":Fit fractions

KST800_12_FF :0.0782446
KST800_13_FF :0.0784398
KST892_12_FF :0.101073
KST892_13_FF :0.100459

KST1425_12_FF :0.17922
KST1425_13_FF :0.178935
KST1430_12_FF :0.00996452
KST1430_13_FF :0.00994939
KST1680_12_FF :0.0732225
KST1680_13_FF :0.0730777

NR_FF :0.44089
Sum :1.32348

Dt — K n"x": data generation

//Mother particle
hydra: :Vector4R D(D_MASS, 0.0, 0.0, 0.0);

// create PhaseSpace object for D-> K pi pi
hydra: :PhaseSpace<3> phsp{K_MASS, PI_MASS, PI_MASS};

//allocate memory to hold the final states particles
hydra: :Decays<3, hydra::device::sys_t > Events(nentries);

© 00O Uk WN

10 //generate the final state particles
11 phsp.Generate(D, Events.begin(), Events.end());

13 //container hold the unweighted dataset on the host
14 hydra::Decays<3, hydra::host::sys_t > toy_data;

16 //unweighted on device
17 auto last = Events.Unweight(Model, 1.0);

19 //allocate memory to hold the unweighted dataset
20 toy_data.resize(last);

22 //copy
23 hydra: :copy (Events.begin(), Events.begin()+last, toy_data.begin());

Previous presentation

The package has been presented in several computing conferences and workshops:

Hydra: Accelerating Data Analysis in Massively Parallel Platforms- University of
Washington, 21-25 August 2017, Seattle

Hydra: A Framework for Data Analysis in Massively Parallel Platforms - NVIDIA's
GPU Technology Conference, May 8-11, 2017 - Silicon Valley, US

Hydra - HSF-HEP analysis ecosystem workshop, 22-24 May 2017 Amsterdam
MCBooster and Hydra: two libraries for high performance computing and data
analysis in massively parallel platforms- Perspectives of GPU computing in Science
September 2016, Rome

Efficient Python routines for analysis on massively multi-threaded
platforms-Python bindings for the Hydra C++ library -Google Summer of Code
project 2017

https://indico.cern.ch/event/567550/contributions/2638690/
https://indico.cern.ch/event/567550/contributions/2638690/
 https://gputechconf2017.smarteventscloud.com/connect/sessionDetail.ww?SESSION_ID=110110
 https://gputechconf2017.smarteventscloud.com/connect/sessionDetail.ww?SESSION_ID=110110
 https://indico.cern.ch/event/613842/
http://www.roma1.infn.it/conference/GPU2016/program.htm
http://www.roma1.infn.it/conference/GPU2016/program.htm
https://summerofcode.withgoogle.com/dashboard/project/6669304945704960/details/
https://summerofcode.withgoogle.com/dashboard/project/6669304945704960/details/

Functor example: Gaussian

1 template<unsigned int ArgIndex=0>

2 class Gaussian: public BaseFunctor<Gaussian<ArgIndex>, double, 2>
3 {1

4 public:

5 //copy constructor and assignment operator omitted

6 Gaussian(Parameter const& mean, Parameter const& sigma):
7 BaseFunctor<Gaussian<ArgIndex>, double, 2>({mean, sigma})
8 L8

9

10 template<typename T>

11 __hydra_host__ __hydra_device__ inline

12 double Evaluate(unsigned int, T*x) const {

13 double m2 = (x[ArgIndex] - _par[0])*(x[ArgIndex] - _par[0]);
14 double s2 = _par[1]x_par[i];

15 return exp(-0.5*m2/s2);

16 }

17

18 template<typename T>

19 __hydra_host__ __hydra_device__ inline
20 double Evaluate(T x) const {
21 double m2 = (get<ArgIndex>(x) - _par[0])*(get<ArgIndex>(x) - _par[0]);
22 double s2 = _par[1]*_par[1];
23 return exp(-0.5%m2/s2);
24 }

NVidia GPUs

GPU Architecture: Kepler

CUDA Cores 5760

Base Clock (MHz) 705
Single-Precision Performance 4.3 - 5.0
TeraFLOPS

Double-Precision Performance 1.4 - 1.7
TeraFLOPS

Memory Interface 12GB GDDR5

GPU Architecture: Pascal

CUDA Cores 3584

Base Clock (GHz) 1.126

Double-Precision Performance 4.7 TeraFLOPS
Single-Precision Performance 9.3 TeraFLOPS
Memory Interface 16GB CoWoS HBM?2 at 732
GB/s

Vegas-like multidimensional numerical integration

Integrating a normalized Gaussian distribution in 10 dimensions.

= O[T T T
s
2 I 1 -
2 r 1 7 £
= bbbt £ L
s I o o £
g [] 30000~
L L] K C
£ L i g C
0.91-] 25000
C] £
L 20000 =
oo] £
Eol] E
r B 15000 —
07l F
:ﬂg‘r] 10000~
o GPU | E
C —e— lteration result | .
N] 5000—
r —— Cumulative result b r
0. F
L] 0
I I N N WS R WU S S |
o 1 2 3 5 6 7 8 9
Iteration

System configuration:

e GPU model: Tesla K40c
e CPU: Intel® Xeon(R) CPU E5-2680 v3 @ 2.50GHz (one thread)

—-e- GPU
—-e- CPU
— speed-up

500 1000 1500 2000 2500 3000 3500 4000 4500

Number of samples

=) w = =

~
z

0

Speed-up GPU vs CPU

Phase-Space Monte Carlo

dalitz. o
gF 2 e e 10007 g [300
S22~ eanx 2312 = L a
s T weany 165 2 L]
[swoevx 1105 [g 1
2011 sudevy 0w 4 10° —250
[|| 30¢ E :
i r —|e00
sl -,'. 250 F B
] 100]
16 F 20 B —150
r 150 b 3
r 1100
14~ 10f]
r 10C E --GPU 9
o [- CPU —s0
12 ilx 50 I —speed-up| -
| - 6

b=l I A N I NI S R e e s)
1 2 3 4 5 6 7 8 9 10

o
&l

Number of events

System configuration:

e GPU model: Tesla K40c
e CPU: Intel® Xeon(R) CPU E5-2680 v3 @ 2.50GHz (one thread)

peed-up GPU vs CPU

Phase-Space Monte Carlo

350

Duration [ms]

300
System configuration: 250

e CPU: Intel(® Xeon(R) CPU E5-2680 v3 @ 200
2.50GHz x 48

150
100

50

0 L1l ‘ L1l ‘ L1l ‘ L1l ‘ L1l ‘ L1l ‘ L1l ‘ L1l ‘ L1l ‘ L1l
5 10 15 20 25 30 35 40
Number of OpenMP threads

Phase-Space Monte Carl0

Duration [ms]

GPU vs OpenMP

---GPU
-»-CPU
—speed-up| 7

(SN RN N BN RN TR ST ST N
]

8 9 1
Number of events

System configuration:

o GPU model: Tesla K40c

e CPU: Intel® Xeon(R) CPU E5-2680 v3 @ 2.50GHz x 48

Speed-up GPU vs CPU

Duration [ms]

GPU vs TBB

10

- GPU b
- CPU
— speed-up

2

10
Number of events

(x10°

Speed-up GPU vs CPU

Vegas-like multidimensional numerical integration

System configuration:

e CPU: Intel(® Xeon(R) CPU E5-2680 v3 @
2.50GHz x 48

5000 T T T T R T L L o T T

Duration [ms]
N
a
o
o
[TT®

4000

L e

‘.(.“

3500

3000
2500
2000 *;'\
1500 L
f“' o “..ue
1000 3

0 5 10 15 20 25 30 35 40
Number of OpenMP threads

	Appendix

