
Overview of hls4ml project

Javier Duarte, Sergo Jindariani, Ben Kreis, Ryan Rivera, Nhan Tran (Fermilab)
Jennifer Ngadiuba, Maurizio Pierini, Sioni Summers, Vladimir Loncar (CERN)

Edward Kreinar (Hawkeye 360)
Phil Harris, Song Han, Dylan Rankin (MIT)

Zhenbin Wu (University of Illinois at Chicago)
Giuseppe di Guglielmo (Columbia University)

Challenges in LHC
At the LHC proton beams collide at a frequency of 40 MHz

Extreme data rates of O(100 TB/s)

“Triggering” - Filter events to reduce data rates to manageable levels

The LHC big data problem

DATA FLOW

O(108) sensors

Producing 100s TB/s of data

The LHC big data problem

DATA FLOW

40 MHz in / 100 KHz out ⇒ absorbs 100s TB/s

Trigger decision to be made in ~ 10 μs

FPGAs / Hardware implemented

The LHC big data problem

100 KHz in / 1 KHz out ⇒ ~ 500 KB/event

Processing time ~ 300 ms

Software implemented on CPUs

DATA FLOW

The LHC big data problem

Output: max. 1 MB/event

Processing time ~ 20 s

Software implemented on CPUs

DATA FLOW

The LHC big data problem

Deploy ML algorithms very early
Challenge: strict latency constraints!

1 ns 1 µs 100 ms 1 s

Field-Programmable Gate Array
Reprogrammable integrated circuits

Configurable logic blocks and embedded components

- Flip-Flops (registers)
- LUTs (logic)
- DSPs (arithmetic)
- Block RAMs (memory)

Massively parallel

Low power

Traditionally programmed with VHDL and Verilog

High-Level Synthesis tools

- Use C,C++, System C

high level synthesis for machine learning
User-friendly tool to automatically build and optimize DL models for FPGAs:

- Reads as input models trained with standard DL libraries
- Uses Xilinx HLS software
- Comes with implementation of common ingredients (layers, activation functions, binary NN …)

model compressed
model

HLS
conversion

HLS
project

Co-processing kernel

Custom firmware
design

tune
configuration

: features
On-chip weights

- Much faster access times
- For longer latency applications, weights storage in on-chip block memory is possible
- No loading weights from external source (e.g. DDR, PCIe)
- Not reconfigurable without reprogramming device

User controllable trade-off between resource usage and latency/throughput

- Tuned via “reuse factor”

Fully extensible through API

- Custom layers, custom HLS code, user-defined model transformations...

: exploiting FPGA hardware
Compression: Drop unnecessary weights (zero or close to zero) to reduce the number of DSPs used

Parallelization (reuse): Control the inference latency versus utilization of FPGA resources

Quantization: Reduce precision of the calculations

compressed
model

HLS
conversion

HLS
project

Co-processing kernel

model
Custom firmware

design

tune
configuration

: compression
Iterative parameter pruning and retraining with L1 regularization

- Train the model with L1 regularization
- Remove the weights falling below a certain percentile
- Retrain the model again with L1 regularization, constraining the previously pruned

weights to remain zero

iterate

: compression
Big reduction in DSP usage with pruned model

Approximately the same latency (~75ns)

compression
Number of DSPs
available

70% compression ~ 70% fewer DSPs

: reuse factor
A handle to control resource usage and latency

- Can be specified per-layer

Reuse = 1: Fully unroll everything

- Fastest, most resource intensive

Reuse > 1: reuse one DSP for several operations

- Increases latency, but uses less resources
Fully parallel
Each mult. used 1x

Each mult. used 2x

Each mult. used 3x

...

: reuse factor
Reusing the multipliers introduces additional latency

Initiation interval scales with the reuse factor

~ 175 ns

~ 75 ns

: quantization
Use lower-precision data types for calculations

- Avoid integer overflows, scan fractional bits until reaching optimal
performance

- Quantify the performance of the classifier with AUC and compare with
AUC achieved by 32-bit floating point data type

Full performance at
8 fractional bits

Scan fractional bits
fixed to 6 integer bits

Full performance at
6 fractional bits

Scan integer bits
fixed to 8 fractional bits

width

integer fractional

110.1001110010
ap_fixed<width, integer>

: mini tutorial
Install:

pip install hls4ml

Translate to HLS:
hls4ml convert -c my_model.yml

Run synthesys etc.:
hls4ml build -p my_project_dir -a

Get help:
hls4ml <command> -h

...or visit: https://fastmachinelearning.org/hls4ml/

...or contact us at hls4ml.help@gmail.com

SOON

OnnxModel: models/my_model.onnx
InputData: data/my_input_features.dat
OutputPredictions : data/my_predictions.dat
OutputDir: my_project_dir
ProjectName: myproject
XilinxPart: xcku115-flvb2104-2-i
ClockPeriod: 5

IOType: io_parallel
HLSConfig:
 Model:
 Precision: ap_fixed<16,6>
 ReuseFactor: 2
 Strategy: Resource

Support for large models
Default precision

(weights, biases...)
Degree of
parallelism

https://fastmachinelearning.org/hls4ml/
mailto:hls4ml.help@gmail.com

: current status
Supported architectures:

- MLP
- Numerous activation functions
- Support for very large layers

- Binary and Ternary MLP
- 1- or 2-bit precision with limited loss of performance
- Computation without using DSPs, only LUTs

- Convolutional NNs
- 1D and 2D with pooling
- Currently limited to very small layers

- Other:
- Batch normalization
- Merge layers (concatenation, addition, subtraction etc)

NEW

WIP

: ongoing work (1)
Convolutional layers

Support for “large” convolutional layers

- Express convolution as matrix multiplication
- im2col algorithm
- Reuse “large” matrix multiplication algorithm from MLP
- Quantized (binary and ternary) weights

Depthwise separable convolution

- First step: depthwise convolution
- Second step: pointwise convolution
- For 3x3 kernels this can yield 8-9 times less multiplications

Credit: Jennifer Ngadiuba, Sioni Paris Summers

SOON

Images source: https://towardsdatascience.com/a-basic-introduction-to-separable-convolutions-b99ec3102728

https://towardsdatascience.com/a-basic-introduction-to-separable-convolutions-b99ec3102728

: ongoing work (2)
Boosted decision trees

- BDTs have been popular for a long time in HEP reconstruction and analysis
- Suitable for highly parallel implementation in FPGAs
- Implementation in hls4ml optimised for low latency
- No ‘if/else’ statement in FPGAs → evaluate all options and select the right outcome

- Compare all features against thresholds, chain together outcomes to make the ‘tree’

Test for model with 16 inputs, 5 classes, 100 trees, depth 3 on VU9P FPGA:

- 4% LUTs, 1% FFs (0 DSPs, 0 BRAMs)
- 25 ns latency with II=1

Credit: Sioni Paris Summers

Q4 2019

: ongoing work (3)
Recurrent neural networks

- Simple RNN, LSTM, GRU

Two implementations:

- Fully unrolled:
- Latency optimized with II=1
- Large resource usage

- Static: same resources used for weights and multiplications
- N (N=latency of layer) copies can go through at the same time
- Latency is larger and II limited to clock time for each layer

Supports small networks → scale it up using “large” matrix multiplication algorithm

Credit: Phil Harris, Nhan Tran, Richa Rao

Fully unrolled

Static

Q4 2019

: ongoing work (4)
Graph networks (HEP.TrkX GNN)

- Natural solution for reconstructing the trajectories of charged particles

computes weights for every edge
of the graph using the features of

the start and end nodes

aggregates forward and backward
node features with the edge

weights and updates node features

With each iteration, the model propagates
information through the graph,

strengthens important connections, and
weakens useless ones.

Preliminary implementation:
- Implemented as an HLS project, not supported in conversion tools
- Successfully tested a small example with 4 tracks, 4 layers
- Major effort required to scale up to larger graphs

Credit: Javier Duarte and Kazi Asif Ahmed Fuad

H1 2020

https://arxiv.org/pdf/1810.06111.pdf

https://arxiv.org/pdf/1810.06111.pdf

: ongoing work (5)
Graph networks (GarNet)

- Distance-weighted GNN capable of learning irregular patterns of sparse data
- Suitable for irregular particle-detector geometries
- Early stage of HLS implementation

Credit: Abhijay Gupta, Yutaro Iiyama, Jan Kieseler and Maurizio Pierini

H1 2020

https://arxiv.org/abs/1902.07987

https://arxiv.org/abs/1902.07987

: future directions (1)
Multi-FPGA inference

- Main idea: place layers onto multiple FPGAs and pipeline the execution

Leverage Galapagos framework (https://github.com/tarafdar/galapagos)

- “...a framework for creating network FPGA clusters in a heterogeneous cloud data center.”
- Given a description of how a group of FPGA kernels are to be connected, creates a ready-to-use

network device
- Possible to use MPI programming model

Credit: Naif Tarafdar, Phil Harris

H1 2020

https://github.com/tarafdar/galapagos

: future directions (2)
Training on FPGAs

- Build on top of multi-FPGA idea

Use synthetic gradients (SG) to remove the update lock

- Individual layers to learn in isolation

Train SGs by another NN

- Each SG generator is only trained using the SGs
generated from the next layer

- Only the last layer trains on the data

Images source: https://deepmind.com/blog/article/decoupled-neural-networks-using-synthetic-gradients

H2 2020

https://deepmind.com/blog/article/decoupled-neural-networks-using-synthetic-gradients

: other future developments
Autoencoders

Alternate HLS implementations

- Intel HLS
- Mentor Catapult HLS

Inference engine for CPUs based on hls4ml

- Targeting integration into CMSSW

Probably more...

Conclusions
hls4ml - software package for translation of trained neural networks into synthesizable
FPGA firmware

- Tunable resource usage latency/throughput
- Fast inference times, O(1µs) latency

More information:

- Website: https://hls-fpga-machine-learning.github.io/hls4ml/
- Paper: https://arxiv.org/abs/1804.06913
- Code: https://github.com/hls-fpga-machine-learning/hls4ml

https://hls-fpga-machine-learning.github.io/hls4ml/
https://arxiv.org/abs/1804.06913
https://github.com/hls-fpga-machine-learning/hls4ml

