

"Intro" to Particle Physics

Richard Jacobsson, CERN

Language of science

Universe at 0 K – 10¹⁵K in one formula?

```
-\frac{1}{2}\partial_{\nu}g^{a}_{\mu}\partial_{\nu}g^{a}_{\mu} - g_{s}f^{abc}\partial_{\mu}g^{a}_{\nu}g^{b}_{\mu}g^{c}_{\nu} - \frac{1}{4}g^{2}_{s}f^{abc}f^{ade}g^{b}_{\mu}g^{c}_{\nu}g^{d}_{\mu}g^{e}_{\nu} +
                          \frac{1}{2}ig_s^2(\bar{q}_i^\sigma\gamma^\mu q_i^\sigma)g_u^a + \bar{G}^a\partial^2 G^a + g_sf^{abc}\partial_\mu\bar{G}^aG^bg_\mu^c - \partial_\nu W_\mu^+\partial_\nu W_\mu^- -
M^2W_{\mu}^+W_{\mu}^- - \frac{1}{2}\partial_{\nu}Z_{\mu}^0\partial_{\nu}Z_{\mu}^0 - \frac{1}{2c^2}M^2Z_{\mu}^0Z_{\mu}^0 - \frac{1}{2}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu} - \frac{1}{2}\partial_{\mu}H\partial_{\mu}H - \frac{1}{2}\partial_{\mu}H\partial_{\mu}H
\frac{1}{2}m_h^2H^2 - \partial_\mu\phi^+\partial_\mu\phi^- - M^2\phi^+\phi^- - \frac{1}{2}\partial_\mu\phi^0\partial_\mu\phi^0 - \frac{1}{2c^2}M\phi^0\phi^0 - \beta_h[\frac{2M^2}{c^2} +
             \frac{2M}{g}H + \frac{1}{2}(H^2 + \phi^0\phi^0 + 2\phi^+\phi^-)] + \frac{2M^4}{g^2}\alpha_h - igc_w[\partial_\nu Z^0_\mu(W^+_\mu W^-_\nu - \psi^0)]
                                          W_{\nu}^{+}W_{\mu}^{-}) - Z_{\nu}^{0}(W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\mu}^{-}\partial_{\nu}W_{\mu}^{+}) + Z_{\mu}^{0}(W_{\nu}^{+}\partial_{\nu}W_{\mu}^{-} -
                W_{\nu}^{-}\partial_{\nu}W_{\mu}^{+})] - igs_{w}[\bar{\partial_{\nu}}A_{\mu}(\bar{W}_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{+}\bar{W}_{u}^{-}) - A_{\nu}(\bar{W}_{u}^{+}\partial_{\nu}^{\mu}W_{u}^{-} - W_{\nu}^{-}\bar{W}_{u}^{-})]
        W_{\mu}^{-}\partial_{\nu}W_{\mu}^{+}) + A_{\mu}(W_{\nu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\nu}^{-}\partial_{\nu}W_{\mu}^{+})] - \frac{1}{2}g^{2}W_{\mu}^{+}W_{\mu}^{-}W_{\nu}^{+}W_{\nu}^{-} +
                                  \frac{1}{2}g^2W_u^+W_\nu^-W_u^+W_\nu^- + g^2c_w^2(Z_u^0W_u^+Z_\nu^0W_\nu^- - Z_u^0Z_u^0W_\nu^+W_\nu^-) +
                  g^2 s_w^2 (A_\mu W_\mu^+ A_\nu W_\nu^- - A_\mu A_\mu W_\nu^+ W_\nu^-) + g^2 s_w c_w [A_\mu Z_\nu^0 (W_\mu^+ W_\nu^- - W_\mu^- W_\mu^-)] + g^2 s_w c_w [A_\mu Z_\nu^0 (W_\mu^+ W_\nu^- - W_\mu^-)] + g^2 s_w c_w [A_\mu Z_\nu^0 (W_\mu^+ W_\nu^-)] + g^2 s_w c_w [A_\mu Z_\nu^0 (W_\mu^+ W_\mu^-)] + g^2 s_w c_w [A_\mu Z_\nu^0 (W_\mu^+ W_\mu^-)] + g^2 s_w c_w [A_\mu Z_\nu^0 (W_\mu^+ W_\mu^-)] + g^2 s_w [A_\mu Z_\mu^0 (W_\mu^- W_\mu^- W_\mu^- W_\mu^-)] + g^2 s_w [A_\mu Z_\mu^0 (W_\mu^- W_\mu^- W_
                                W_{\nu}^{+}W_{\mu}^{-}) - 2A_{\mu}Z_{\mu}^{0}W_{\nu}^{+}W_{\nu}^{-}] - g\alpha[H^{3} + H\phi^{0}\phi^{0} + 2H\phi^{+}\phi^{-}] -
 \frac{1}{8}g^2\alpha_h[H^4+(\phi^0)^4+4(\phi^+\phi^-)^2+4(\phi^0)^2\phi^+\phi^-+4H^2\phi^+\phi^-+2(\phi^0)^2H^2]-
                          gMW_{\mu}^{+}W_{\mu}^{-}H - \frac{1}{2}g\frac{M}{c^{2}}Z_{\mu}^{0}Z_{\mu}^{0}H - \frac{1}{2}ig[W_{\mu}^{+}(\phi^{0}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0}) -
W_{\mu}^{-}(\phi^{0}\partial_{\mu}\phi^{+} - \phi^{+}\partial_{\mu}\phi^{0})] + \frac{1}{2}g[W_{\mu}^{+}(H\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}H) - W_{\mu}^{-}(H\partial_{\mu}\phi^{+} - \phi^{-}\partial_{\mu}H)]
[\phi^{+}\partial_{\mu}H)] + \frac{1}{2}g\frac{1}{c_{\mu\nu}}(Z_{\mu}^{0}(H\partial_{\mu}\phi^{0} - \phi^{0}\partial_{\mu}H) - ig\frac{s_{\mu\nu}^{2}}{c_{\mu\nu}}MZ_{\mu}^{0}(W_{\mu}^{+}\phi^{-} - W_{\mu}^{-}\phi^{+}) +
                igs_w MA_\mu(W_\mu^+\phi^- - W_\mu^-\phi^+) - ig\frac{1-2c_w^2}{2c_w}Z_\mu^0(\phi^+\partial_\mu\phi^- - \phi^-\partial_\mu\phi^+) +
        igs_w A_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) - \frac{1}{4} g^2 W_\mu^+ W_\mu^- [H^2 + (\phi^0)^2 + 2\phi^+ \phi^-] - \frac{1}{4} g^2 W_\mu^+ W_\mu^- [H^2 + (\phi^0)^2 + 2\phi^+ \phi^-] - \frac{1}{4} g^2 W_\mu^+ W_\mu^- [H^2 + (\phi^0)^2 + 2\phi^+ \phi^-] - \frac{1}{4} g^2 W_\mu^+ W_\mu^- [H^2 + (\phi^0)^2 + 2\phi^+ \phi^-] - \frac{1}{4} g^2 W_\mu^+ W_\mu^- [H^2 + (\phi^0)^2 + 2\phi^+ \phi^-] - \frac{1}{4} g^2 W_\mu^+ W_\mu^- [H^2 + (\phi^0)^2 + 2\phi^+ \phi^-] - \frac{1}{4} g^2 W_\mu^+ W_\mu^- [H^2 + (\phi^0)^2 + 2\phi^+ \phi^-] - \frac{1}{4} g^2 W_\mu^+ W_\mu^- [H^2 + (\phi^0)^2 + 2\phi^+ \phi^-] - \frac{1}{4} g^2 W_\mu^+ W_\mu^- [H^2 + (\phi^0)^2 + 2\phi^+ \phi^-] - \frac{1}{4} g^2 W_\mu^+ W_\mu^- [H^2 + (\phi^0)^2 + 2\phi^+ \phi^-] - \frac{1}{4} g^2 W_\mu^+ W_\mu^- [H^2 + (\phi^0)^2 + 2\phi^+ \phi^-] - \frac{1}{4} g^2 W_\mu^+ W_\mu^- [H^2 + (\phi^0)^2 + 2\phi^+ \phi^-] - \frac{1}{4} g^2 W_\mu^+ W_\mu^- [H^2 + (\phi^0)^2 + 2\phi^+ \phi^-] - \frac{1}{4} g^2 W_\mu^+ W_\mu^- [H^2 + (\phi^0)^2 + 2\phi^+ \phi^-] - \frac{1}{4} g^2 W_\mu^+ W_\mu^- [H^2 + (\phi^0)^2 + 2\phi^+ \phi^-] - \frac{1}{4} g^2 W_\mu^- [H^2 + (\phi^0)^2 + 2\phi^+ \phi^-] - \frac{1}{4} g^2 W_\mu^- [H^2 + (\phi^0)^2 + 2\phi^+ \phi^-] - \frac{1}{4} g^2 W_\mu^- [H^2 + (\phi^0)^2 + 2\phi^+ \phi^-] - \frac{1}{4} g^2 W_\mu^- [H^2 + (\phi^0)^2 + 2\phi^+ \phi^-] - \frac{1}{4} g^2 W_\mu^- [H^2 + (\phi^0)^2 + 2\phi^+ \phi^-] - \frac{1}{4} g^2 W_\mu^- [H^2 + (\phi^0)^2 + 2\phi^+ \phi^-] - \frac{1}{4} g^2 W_\mu^- [H^2 + (\phi^0)^2 + 2\phi^+ \phi^-] - \frac{1}{4} g^2 W_\mu^- [H^2 + (\phi^0)^2 + 2\phi^+ \phi^-] - \frac{1}{4} g^2 W_\mu^- [H^2 + (\phi^0)^2 + 2\phi^+ \phi^-] - \frac{1}{4} g^2 W_\mu^- [H^2 + (\phi^0)^2 + 2\phi^+ \phi^-] - \frac{1}{4} g^2 W_\mu^- [H^2 + (\phi^0)^2 + 2\phi^+ \phi^-] - \frac{1}{4} g^2 W_\mu^- [H^2 + (\phi^0)^2 + 2\phi^+ \phi^-] - \frac{1}{4} g^2 W_\mu^- [H^2 + (\phi^0)^2 + 2\phi^+ \phi^-] - \frac{1}{4} g^2 W_\mu^- [H^2 + (\phi^0)^2 + 2\phi^+ \phi^-] - \frac{1}{4} g^2 W_\mu^- [H^2 + (\phi^0)^2 + 2\phi^+ \phi^-] - \frac{1}{4} g^2 W_\mu^- [H^2 + (\phi^0)^2 + 2\phi^+ \phi^-] - \frac{1}{4} g^2 W_\mu^- [H^2 + (\phi^0)^2 + 2\phi^-] - \frac{1}{4} g^2 W_\mu^- [H^2 + (\phi^0)^2 + 2\phi^-] - \frac{1}{4} g^2 W_\mu^- [H^2 + (\phi^0)^2 + 2\phi^-] - \frac{1}{4} g^2 W_\mu^- [H^2 + (\phi^0)^2 + 2\phi^-] - \frac{1}{4} g^2 W_\mu^- [H^2 + (\phi^0)^2 + 2\phi^-] - \frac{1}{4} g^2 W_\mu^- [H^2 + (\phi^0)^2 + 2\phi^-] - \frac{1}{4} g^2 W_\mu^- [H^2 + (\phi^0)^2 + 2\phi^-] - \frac{1}{4} g^2 W_\mu^- [H^2 + (\phi^0)^2 + 2\phi^-] - \frac{1}{4} g^2 W_\mu^- [H^2 + (\phi^0)^2 + 2\phi^-] - \frac{1}{4} g^2 W_\mu^- [H^2 + (\phi^0)^2 + (\phi^0)^2 + (\phi^0)^2 + (\phi^0)^2 + (\phi^0)
    \frac{1}{4}g^2\frac{1}{c^2}Z_{\mu}^0Z_{\mu}^0[H^2+(\phi^0)^2+2(2s_w^2-1)^2\phi^+\phi^-] - \frac{1}{2}g^2\frac{s_w^2}{c_w}Z_{\mu}^0\phi^0(W_{\mu}^+\phi^-+2s_w^2) + \frac{1}{2}g^2\frac{s_w^2}{c_w}Z_{\mu}^0\phi^0(W_{\mu}^+\phi^-+2s_w^2) + \frac{1}{2}g^2\frac{s_w^2}{c_w}Z_{\mu}^0\phi^0(W_{\mu}^+\phi^-+2s_w^2)
                W_{\mu}^{-}\phi^{+}) - \frac{1}{2}ig^{2}\frac{s_{w}^{2}}{c_{w}}Z_{\mu}^{0}H(W_{\mu}^{+}\phi^{-} - W_{\mu}^{-}\phi^{+}) + \frac{1}{2}g^{2}s_{w}A_{\mu}\phi^{0}(W_{\mu}^{+}\phi^{-} +
W_{\mu}^{-}\phi^{+}) + \frac{1}{2}ig^{2}s_{w}A_{\mu}H(W_{\mu}^{+}\phi^{-} - W_{\mu}^{-}\phi^{+}) - g^{2}\frac{s_{w}}{c}(2c_{w}^{2} - 1)Z_{\mu}^{0}A_{\mu}\phi^{+}\phi^{-} - \frac{1}{2}ig^{2}s_{w}A_{\mu}H(W_{\mu}^{+}\phi^{-} - W_{\mu}^{-}\phi^{+}) - \frac{1}{2}ig^{2}s_{w}A_{\mu}H(W_{\mu}^{+}\phi^{-} - W_{\mu}^{-}\phi^{-}) - \frac{1}{2}ig^{2}s_{w}A_{\mu}H(W_{\mu}^{+}\phi^{-} - W_{\mu}^{-
             g^1 s_w^2 A_\mu A_\mu \phi^+ \phi^- - \bar{e}^\lambda (\gamma \partial + m_e^\lambda) e^\lambda - \bar{\nu}^\lambda \gamma \partial \nu^\lambda - \bar{u}_z^\lambda (\gamma \partial + m_u^\lambda) u_z^\lambda -
         \bar{d}_i^{\lambda}(\gamma \partial + m_d^{\lambda})d_i^{\lambda} + igs_w A_u [-(\bar{e}^{\lambda}\gamma^{\mu}e^{\lambda}) + \frac{2}{3}(\bar{u}_i^{\lambda}\gamma^{\mu}u_i^{\lambda}) - \frac{1}{3}(\bar{d}_i^{\lambda}\gamma^{\mu}d_i^{\lambda})] +
             \frac{ig}{4c_w}Z_{\mu}^0[(\bar{\nu}^{\lambda}\gamma^{\mu}(1+\gamma^5)\nu^{\lambda})+(\bar{e}^{\lambda}\gamma^{\mu}(4s_w^2-1-\gamma^5)e^{\lambda})+(\bar{u}_i^{\lambda}\gamma^{\mu}(\frac{4}{2}s_w^2-1-\gamma^5)e^{\lambda})]
 (1-\gamma^5)u_j^{\lambda}) + (\bar{d}_j^{\lambda}\gamma^{\mu}(1-\frac{8}{3}s_w^2-\gamma^5)d_j^{\lambda})] + \frac{ig}{2\sqrt{2}}W_{\mu}^+[(\bar{\nu}^{\lambda}\gamma^{\mu}(1+\gamma^5)e^{\lambda}) +
        (\bar{u}_{j}^{\lambda}\gamma^{\mu}(1+\gamma^{5})C_{\lambda\kappa}d_{j}^{\kappa})] + \frac{ig}{2\sqrt{2}}W_{\mu}^{-}[(\bar{e}^{\lambda}\gamma^{\mu}(1+\gamma^{5})\nu^{\lambda}) + (\bar{d}_{j}^{\kappa}C_{\lambda\kappa}^{\dagger}\gamma^{\mu}(1+\gamma^{5})\nu^{\lambda})]
                                  [\gamma^{5}]u_{j}^{\lambda}] + \frac{ig}{2\sqrt{2}} \frac{m_{e}^{\lambda}}{M} [-\phi^{+}(\bar{\nu}^{\lambda}(1-\gamma^{5})e^{\lambda}) + \phi^{-}(\bar{e}^{\lambda}(1+\gamma^{5})\nu^{\lambda})] -
         \frac{g}{2}\frac{m_e^{\lambda}}{M}[H(\bar{e}^{\lambda}e^{\lambda}) + i\phi^0(\bar{e}^{\lambda}\gamma^5e^{\lambda})] + \frac{ig}{2M\sqrt{2}}\phi^+[-m_d^{\kappa}(\bar{u}_i^{\lambda}C_{\lambda\kappa}(1-\gamma^5)d_i^{\kappa}) +
m_u^{\lambda}(\bar{u}_i^{\lambda}C_{\lambda\kappa}(1+\gamma^5)d_i^{\kappa}] + \frac{ig}{2M\sqrt{2}}\phi^{-}[m_d^{\lambda}(\bar{d}_i^{\lambda}C_{\lambda\kappa}^{\dagger}(1+\gamma^5)u_i^{\kappa}) - m_u^{\kappa}(\bar{d}_i^{\lambda}C_{\lambda\kappa}^{\dagger}(1-\gamma^5)u_i^{\kappa})]
                                       \gamma^5 u_i^{\kappa} = \frac{g}{2} \frac{m_u^{\lambda}}{M} H(\bar{u}_i^{\lambda} u_i^{\lambda}) - \frac{g}{2} \frac{m_d^{\lambda}}{M} H(\bar{d}_i^{\lambda} d_i^{\lambda}) + \frac{ig}{2} \frac{m_u^{\lambda}}{M} \phi^0(\bar{u}_i^{\lambda} \gamma^5 u_i^{\lambda}) - \frac{g}{2} \frac{m_u
   \frac{ig}{2} \frac{m_{\dot{\alpha}}^{\lambda}}{M} \phi^{0} (\bar{d}_{i}^{\lambda} \gamma^{5} d_{i}^{\lambda}) + \bar{X}^{+} (\partial^{2} - M^{2}) X^{+} + \bar{X}^{-} (\partial^{2} - M^{2}) X^{-} + \bar{X}^{0} (\partial^{2} - M^{2}) X^{-}
   \frac{\bar{M}^2}{c^2})X^0 + \bar{Y}\partial^2 Y + igc_w W_u^+ (\partial_\mu \bar{X}^0 X^- - \partial_\mu \bar{X}^+ X^0) + igs_w W_u^+ (\partial_\mu \bar{Y} X^- - \partial_\mu \bar{X}^+ X^0)
             \partial_{\mu}\bar{X}^{+}Y) + igc_{w}W_{\mu}^{-}(\partial_{\mu}\bar{X}^{-}X^{0} - \partial_{\mu}\bar{X}^{0}X^{+}) + igs_{w}W_{\mu}^{-}(\partial_{\mu}\bar{X}^{-}Y - \partial_{\mu}\bar{X}^{0}X^{+}))
             \partial_{\mu}\bar{Y}X^{+}) + igc_{w}Z_{\mu}^{0}(\partial_{\mu}\bar{X}^{+}X^{+} - \partial_{\mu}\bar{X}^{-}X^{-}) + igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+} - \partial_{\mu}\bar{X}^{-}X^{-})
                                                 \partial_{\mu}\bar{X}^{-}X^{-}) - \frac{1}{2}gM[\bar{X}^{+}X^{+}H + \bar{X}^{-}X^{-}H + \frac{1}{c^{2}}\bar{X}^{0}X^{0}H] +
   \frac{1-2c_w^2}{2c_w}igM[\bar{X}^+X^0\phi^+ - \bar{X}^-X^0\phi^-] + \frac{1}{2c_w}igM[\bar{X}^0X^-\phi^+ - \bar{X}^0X^+\phi^-] +
                             igMs_{w}[\bar{X}^{0}X^{-}\phi^{+} - \bar{X}^{0}X^{+}\phi^{-}] + \frac{1}{2}igM[\bar{X}^{+}X^{+}\phi^{0} - \bar{X}^{-}X^{-}\phi^{0}]
```

And a few more pages...

Language of science

 $-\frac{1}{2}\partial_{\nu}g^{a}_{\mu}\partial_{\nu}g^{a}_{\mu} - g_{s}f^{abc}\partial_{\mu}g^{a}_{\nu}g^{b}_{\mu}g^{c}_{\nu} - \frac{1}{4}g^{2}_{s}f^{abc}f^{ade}g^{b}_{\mu}g^{c}_{\nu}g^{d}_{\mu}g^{e}_{\nu} +$ $\frac{1}{2}ig_s^2(\bar{q}_i^\sigma\gamma^\mu q_i^\sigma)g_u^a + \bar{G}^a\partial^2G^a + g_sf^{abc}\partial_\mu\bar{G}^aG^bg_\mu^c - \partial_\nu W_\mu^+\partial_\nu W_\mu^- M^{2}W_{\mu}^{+}W_{\mu}^{-} - \frac{1}{2}\partial_{\nu}Z_{\mu}^{0}\partial_{\nu}Z_{\mu}^{0} - \frac{1}{2c^{2}}M^{2}Z_{\mu}^{0}Z_{\mu}^{0} - \frac{1}{2}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu} - \frac{1}{2}\partial_{\mu}H\partial_{\mu}H - \frac{1}{2}\partial_{\mu}H\partial_{\mu}H$ $\tfrac{1}{2} m_h^2 H^2 - \partial_\mu \phi^+ \partial_\mu \phi^- - M^2 \phi^+ \bar{\phi}^- - \tfrac{1}{2} \partial_\mu \phi^0 \partial_\mu \phi^0 - \tfrac{1}{2c_-^2} M \phi^0 \phi^0 - \beta_h [\tfrac{2M^2}{a^2} +$ $\frac{2M}{g}H + \frac{1}{2}(H^2 + \phi^0\phi^0 + 2\phi^+\phi^-)] + \frac{2M^4}{g^2}\alpha_h - igc_w[\partial_\nu Z^0_\mu(W^+_\mu W^-_\nu - \psi^0)]$ $W_{\nu}^{+}W_{\mu}^{-}) - Z_{\nu}^{0}(W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\mu}^{-}\partial_{\nu}W_{\mu}^{+}) + Z_{\mu}^{0}(W_{\nu}^{+}\partial_{\nu}W_{\mu}^{-} W_{\nu}^{-} \partial_{\nu} W_{\mu}^{+})] - igs_{w} [\partial_{\nu} A_{\mu} (\tilde{W}_{\mu}^{+} W_{\nu}^{-} - W_{\nu}^{+} \tilde{W}_{\mu}^{-}) - A_{\nu} (W_{\mu}^{+} \partial_{\nu}^{\mu} W_{\mu}^{-} - W_{\nu}^{-} W_{\mu}^{-})] + igs_{w} [\partial_{\nu} A_{\mu} (\tilde{W}_{\mu}^{+} W_{\nu}^{-} - W_{\nu}^{+} \tilde{W}_{\mu}^{-}) - A_{\nu} (W_{\mu}^{+} \partial_{\nu}^{\mu} W_{\mu}^{-} - W_{\nu}^{-} W_{\mu}^{-})] + igs_{w} [\partial_{\nu} A_{\mu} (\tilde{W}_{\mu}^{+} W_{\nu}^{-} - W_{\nu}^{+} \tilde{W}_{\mu}^{-}) - A_{\nu} (W_{\mu}^{+} \partial_{\nu}^{\mu} W_{\mu}^{-} - W_{\nu}^{-} W_{\mu}^{-})] + igs_{w} [\partial_{\nu} A_{\mu} (\tilde{W}_{\mu}^{+} W_{\nu}^{-} - W_{\nu}^{+} \tilde{W}_{\mu}^{-}) - A_{\nu} (W_{\mu}^{+} \partial_{\nu}^{\mu} W_{\mu}^{-} - W_{\nu}^{-} W_{\mu}^{-})]$ $W_{\mu}^{-}\partial_{\nu}W_{\mu}^{+}) + A_{\mu}(W_{\nu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\nu}^{-}\partial_{\nu}W_{\mu}^{+})] - \frac{1}{2}g^{2}W_{\mu}^{+}W_{\mu}^{-}W_{\nu}^{+}W_{\nu}^{-} +$ $\frac{1}{2}g^2W_u^+W_\nu^-W_u^+W_\nu^- + g^2c_w^2(Z_u^0W_u^+Z_\nu^0W_\nu^- - Z_u^0Z_u^0W_\nu^+W_\nu^-) +$ $g^2 s_w^2 (A_\mu W_\mu^+ A_\nu W_\nu^- - A_\mu A_\mu W_\nu^+ W_\nu^-) + g^2 s_w c_w [A_\mu Z_\nu^0 (W_\mu^+ W_\nu^- - W_\mu^- W_\nu^-)] + g^2 s_w c_w [A_\mu Z_\nu^0 (W_\mu^+ W_\nu^- - W_\mu^- W_\nu^-)] + g^2 s_w c_w [A_\mu Z_\nu^0 (W_\mu^+ W_\mu^-)] + g^2 s_w c_w [A_\mu Z_\mu^0 (W_\mu^+ W_\mu^-)] + g^2 s_w (W_\mu^+ W_\mu^-)] + g^2 s_w (A_\mu Z_\mu^0 (W_\mu^+ W_\mu^-)) + g^2 s_w (A_\mu Z_\mu^0 (W_\mu^-)) + g^2 s_w ($ $W_{\nu}^{+}W_{\mu}^{-}) - 2A_{\mu}Z_{\mu}^{0}W_{\nu}^{+}W_{\nu}^{-}] - g\alpha[H^{3} + H\phi^{0}\phi^{0} + 2H\phi^{+}\phi^{-}] \frac{1}{8}g^2\alpha_h[H^4+(\phi^0)^4+4(\phi^+\phi^-)^2+4(\phi^0)^2\phi^+\phi^-+4H^2\phi^+\phi^-+2(\phi^0)^2H^2]$ $gMW_{\mu}^{+}W_{\mu}^{-}H - \frac{1}{2}g\frac{M}{c^{2}}Z_{\mu}^{0}Z_{\mu}^{0}H - \frac{1}{2}ig[W_{\mu}^{+}(\phi^{0}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0}) W_{\mu}^{-}(\phi^{0}\partial_{\mu}\phi^{+} - \phi^{+}\partial_{\mu}\phi^{0})] + \frac{1}{2}g[W_{\mu}^{+}(H\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}H) - W_{\mu}^{-}(H\partial_{\mu}\phi^{+} - \phi^{-}\partial_{\mu}H)]$ $[\phi^{+}\partial_{\mu}H)] + \frac{1}{2}g\frac{1}{c_{m}}(Z_{\mu}^{0}(H\partial_{\mu}\phi^{0} - \phi^{0}\partial_{\mu}H) - ig\frac{s_{\mu}^{2}}{c_{m}}MZ_{\mu}^{0}(W_{\mu}^{+}\phi^{-} - W_{\mu}^{-}\phi^{+}) +$ $igs_w MA_\mu(W_\mu^+\phi^- - W_\mu^-\phi^+) - ig\frac{1-2c_w^2}{2c_w}Z_\mu^0(\phi^+\partial_\mu\phi^- - \phi^-\partial_\mu\phi^+) +$ $igs_w A_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) - \frac{1}{4} g^2 W_\mu^+ W_\mu^- [H^2 + (\phi^0)^2 + 2\phi^+ \phi^-] - \frac{1}{4} g^2 W_\mu^+ W_\mu^- [H^2 + (\phi^0)^2 + 2\phi^+ \phi^-] - \frac{1}{4} g^2 W_\mu^+ W_\mu^- [H^2 + (\phi^0)^2 + 2\phi^+ \phi^-] - \frac{1}{4} g^2 W_\mu^+ W_\mu^- [H^2 + (\phi^0)^2 + 2\phi^+ \phi^-] - \frac{1}{4} g^2 W_\mu^+ W_\mu^- [H^2 + (\phi^0)^2 + 2\phi^+ \phi^-] - \frac{1}{4} g^2 W_\mu^+ W_\mu^- [H^2 + (\phi^0)^2 + 2\phi^+ \phi^-] - \frac{1}{4} g^2 W_\mu^+ W_\mu^- [H^2 + (\phi^0)^2 + 2\phi^+ \phi^-] - \frac{1}{4} g^2 W_\mu^+ W_\mu^- [H^2 + (\phi^0)^2 + 2\phi^+ \phi^-] - \frac{1}{4} g^2 W_\mu^+ W_\mu^- [H^2 + (\phi^0)^2 + 2\phi^+ \phi^-] - \frac{1}{4} g^2 W_\mu^+ W_\mu^- [H^2 + (\phi^0)^2 + 2\phi^+ \phi^-] - \frac{1}{4} g^2 W_\mu^+ W_\mu^- [H^2 + (\phi^0)^2 + 2\phi^+ \phi^-] - \frac{1}{4} g^2 W_\mu^+ W_\mu^- [H^2 + (\phi^0)^2 + 2\phi^+ \phi^-] - \frac{1}{4} g^2 W_\mu^+ W_\mu^- [H^2 + (\phi^0)^2 + 2\phi^+ \phi^-] - \frac{1}{4} g^2 W_\mu^+ W_\mu^- [H^2 + (\phi^0)^2 + 2\phi^+ \phi^-] - \frac{1}{4} g^2 W_\mu^+ W_\mu^- [H^2 + (\phi^0)^2 + 2\phi^+ \phi^-] - \frac{1}{4} g^2 W_\mu^- [H^2 + (\phi^0)^2 + 2\phi^+ \phi^-] - \frac{1}{4} g^2 W_\mu^- [H^2 + (\phi^0)^2 + 2\phi^+ \phi^-] - \frac{1}{4} g^2 W_\mu^- [H^2 + (\phi^0)^2 + 2\phi^+ \phi^-] - \frac{1}{4} g^2 W_\mu^- [H^2 + (\phi^0)^2 + 2\phi^+ \phi^-] - \frac{1}{4} g^2 W_\mu^- [H^2 + (\phi^0)^2 + 2\phi^+ \phi^-] - \frac{1}{4} g^2 W_\mu^- [H^2 + (\phi^0)^2 + 2\phi^+ \phi^-] - \frac{1}{4} g^2 W_\mu^- [H^2 + (\phi^0)^2 + 2\phi^+ \phi^-] - \frac{1}{4} g^2 W_\mu^- [H^2 + (\phi^0)^2 + 2\phi^+ \phi^-] - \frac{1}{4} g^2 W_\mu^- [H^2 + (\phi^0)^2 + 2\phi^+ \phi^-] - \frac{1}{4} g^2 W_\mu^- [H^2 + (\phi^0)^2 + 2\phi^+ \phi^-] - \frac{1}{4} g^2 W_\mu^- [H^2 + (\phi^0)^2 + 2\phi^+ \phi^-] - \frac{1}{4} g^2 W_\mu^- [H^2 + (\phi^0)^2 + 2\phi^+ \phi^-] - \frac{1}{4} g^2 W_\mu^- [H^2 + (\phi^0)^2 + 2\phi^+ \phi^-] - \frac{1}{4} g^2 W_\mu^- [H^2 + (\phi^0)^2 + 2\phi^+ \phi^-] - \frac{1}{4} g^2 W_\mu^- [H^2 + (\phi^0)^2 + 2\phi^+ \phi^-] - \frac{1}{4} g^2 W_\mu^- [H^2 + (\phi^0)^2 + 2\phi^+ \phi^-] - \frac{1}{4} g^2 W_\mu^- [H^2 + (\phi^0)^2 + 2\phi^-] - \frac{1}{4} g^2 W_\mu^- [H^2 + (\phi^0)^2 + 2\phi^-] - \frac{1}{4} g^2 W_\mu^- [H^2 + (\phi^0)^2 + 2\phi^-] - \frac{1}{4} g^2 W_\mu^- [H^2 + (\phi^0)^2 + 2\phi^-] - \frac{1}{4} g^2 W_\mu^- [H^2 + (\phi^0)^2 + 2\phi^-] - \frac{1}{4} g^2 W_\mu^- [H^2 + (\phi^0)^2 + 2\phi^-] - \frac{1}{4} g^2 W_\mu^- [H^2 + (\phi^0)^2 + 2\phi^-] - \frac{1}{4} g^2 W_\mu^- [H^2 + (\phi^0)^2 + 2\phi^-] - \frac{1}{4} g^2 W_\mu^- [H^2 + (\phi^0)^2 + 2\phi^-] - \frac{1}{4} g^2 W_\mu^- [H^2 + (\phi^0)^2 + (\phi^0)^2 + (\phi^0)^2 + (\phi^0)^2 + (\phi^0)$ $\frac{1}{4}g^2\frac{1}{c^2}Z_{\mu}^0Z_{\mu}^0[H^2+(\phi^0)^2+2(2s_w^2-1)^2\phi^+\phi^-] - \frac{1}{2}g^2\frac{s_w^2}{c_w}Z_{\mu}^0\phi^0(W_{\mu}^+\phi^-+2s_w^2) + \frac{1}{2}g^2\frac{s_w^2}{c_w}Z_{\mu}^0\phi^0(W_{\mu}^+\phi^-+2s_w^2) + \frac{1}{2}g^2\frac{s_w^2}{c_w}Z_{\mu}^0\phi^0(W_{\mu}^+\phi^-+2s_w^2)$ $W_{\mu}^{-}\phi^{+}) - \frac{1}{2}ig^{2}\frac{s_{w}^{2}}{c_{w}}Z_{\mu}^{0}H(W_{\mu}^{+}\phi^{-} - W_{\mu}^{-}\phi^{+}) + \frac{1}{2}g^{2}s_{w}A_{\mu}\phi^{0}(W_{\mu}^{+}\phi^{-} +$ $W_{\mu}^{-}\phi^{+}) + \frac{1}{2}ig^{2}s_{w}A_{\mu}H(W_{\mu}^{+}\phi^{-} - W_{\mu}^{-}\phi^{+}) - g^{2}\frac{s_{w}}{c}(2c_{w}^{2} - 1)Z_{\mu}^{0}A_{\mu}\phi^{+}\phi^{-}$ $g^1 s_w^2 A_u A_u \phi^+ \phi^- - \bar{e}^{\lambda} (\gamma \partial + m_e^{\lambda}) e^{\lambda} - \bar{\nu}^{\lambda} \gamma \partial \bar{\nu}^{\lambda} - \bar{u}_i^{\lambda} (\gamma \partial + m_u^{\lambda}) u_i^{\lambda} \bar{d}_{i}^{\lambda}(\gamma\partial + m_{d}^{\lambda})d_{i}^{\lambda} + igs_{w}A_{\mu}[-(\bar{e}^{\lambda}\gamma^{\mu}e^{\lambda}) + \frac{2}{3}(\bar{u}_{i}^{\lambda}\gamma^{\mu}u_{i}^{\lambda}) - \frac{1}{3}(\bar{d}_{i}^{\lambda}\gamma^{\mu}d_{i}^{\lambda})] +$ $\frac{ig}{4c_w}Z_{\mu}^0[(\bar{\nu}^{\lambda}\gamma^{\mu}(1+\gamma^5)\nu^{\lambda})+(\bar{e}^{\lambda}\gamma^{\mu}(4s_w^2-1-\gamma^5)e^{\lambda})+(\bar{u}_i^{\lambda}\gamma^{\mu}(\frac{4}{3}s_w^2-1-\gamma^5)e^{\lambda})]$ $(1-\gamma^5)u_j^{\lambda}) + (\bar{d}_j^{\lambda}\gamma^{\mu}(1-\frac{8}{3}s_w^2-\gamma^5)d_j^{\lambda})] + \frac{iq}{2\sqrt{2}}W_{\mu}^+[(\bar{\nu}^{\lambda}\gamma^{\mu}(1+\gamma^5)e^{\lambda}) + (\bar{d}_j^{\lambda}\gamma^{\mu}(1+\gamma^5)e^{\lambda})]$ $(\bar{u}_j^{\lambda}\gamma^{\mu}(1+\gamma^5)C_{\lambda\kappa}d_j^{\kappa})] + \frac{ig}{2\sqrt{2}}W_{\mu}^{-}[(\bar{e}^{\lambda}\gamma^{\mu}(1+\gamma^5)\nu^{\lambda}) + (\bar{d}_j^{\kappa}C_{\lambda\kappa}^{\dagger}\gamma^{\mu}(1+\gamma^5)\nu^{\lambda})]$ $[\gamma^{5}]u_{i}^{\lambda}] + \frac{ig}{2\sqrt{2}} \frac{m_{e}^{\lambda}}{M} [-\phi^{+}(\bar{\nu}^{\lambda}(1-\gamma^{5})e^{\lambda}) + \phi^{-}(\bar{e}^{\lambda}(1+\gamma^{5})\nu^{\lambda})] \frac{g}{2}\frac{m_e^{\lambda}}{M}[H(\bar{e}^{\lambda}e^{\lambda}) + i\phi^0(\bar{e}^{\lambda}\gamma^5e^{\lambda})] + \frac{ig}{2M\sqrt{2}}\phi^+[-m_d^{\kappa}(\bar{u}_i^{\lambda}C_{\lambda\kappa}(1-\gamma^5)d_i^{\kappa}) +$ $m_u^{\lambda}(\bar{u}_j^{\lambda}C_{\lambda\kappa}(1+\gamma^5)d_j^{\kappa}] + \frac{iq}{2M\sqrt{2}}\phi^-[m_d^{\lambda}(\bar{d}_j^{\lambda}C_{\lambda\kappa}^{\dagger}(1+\gamma^5)u_j^{\kappa}) - m_u^{\kappa}(\bar{d}_j^{\lambda}C_{\lambda\kappa}^{\dagger}(1-\gamma^5)u_j^{\kappa})]$ $[\gamma^5]u_i^{\kappa}] - \frac{g}{2} \frac{m_u^{\lambda}}{M} H(\bar{u}_i^{\lambda} u_i^{\lambda}) - \frac{g}{2} \frac{m_d^{\lambda}}{M} H(\bar{d}_i^{\lambda} d_i^{\lambda}) + \frac{ig}{2} \frac{m_u^{\lambda}}{M} \phi^0(\bar{u}_i^{\lambda} \gamma^5 u_i^{\lambda}) - \frac{g}{2} \frac{m_d^{\lambda}}{M} H(\bar{d}_i^{\lambda} d_i^{\lambda}) + \frac{ig}{2} \frac{m_u^{\lambda}}{M} \phi^0(\bar{u}_i^{\lambda} \gamma^5 u_i^{\lambda}) - \frac{g}{2} \frac{m_d^{\lambda}}{M} H(\bar{d}_i^{\lambda} d_i^{\lambda}) + \frac{ig}{2} \frac{m_u^{\lambda}}{M} \phi^0(\bar{u}_i^{\lambda} \gamma^5 u_i^{\lambda}) - \frac{g}{2} \frac{m_d^{\lambda}}{M} H(\bar{d}_i^{\lambda} d_i^{\lambda}) + \frac{ig}{2} \frac{m_u^{\lambda}}{M} \phi^0(\bar{u}_i^{\lambda} \gamma^5 u_i^{\lambda}) - \frac{g}{2} \frac{m_d^{\lambda}}{M} H(\bar{d}_i^{\lambda} d_i^{\lambda}) + \frac{ig}{2} \frac{m_u^{\lambda}}{M} \phi^0(\bar{u}_i^{\lambda} \gamma^5 u_i^{\lambda}) - \frac{g}{2} \frac{m_d^{\lambda}}{M} H(\bar{d}_i^{\lambda} d_i^{\lambda}) + \frac{ig}{2} \frac{m_u^{\lambda}}{M} \phi^0(\bar{u}_i^{\lambda} \gamma^5 u_i^{\lambda}) - \frac{g}{2} \frac{m_d^{\lambda}}{M} H(\bar{d}_i^{\lambda} d_i^{\lambda}) + \frac{ig}{2} \frac{m_u^{\lambda}}{M} \phi^0(\bar{u}_i^{\lambda} \gamma^5 u_i^{\lambda}) - \frac{g}{2} \frac{m_d^{\lambda}}{M} H(\bar{d}_i^{\lambda} d_i^{\lambda}) + \frac{ig}{2} \frac{m_u^{\lambda}}{M} \phi^0(\bar{u}_i^{\lambda} \gamma^5 u_i^{\lambda}) - \frac{g}{2} \frac{m_u^{\lambda}}{M} H(\bar{d}_i^{\lambda} d_i^{\lambda}) + \frac{ig}{2} \frac{m_u^{\lambda}}{M} \phi^0(\bar{u}_i^{\lambda} \gamma^5 u_i^{\lambda}) - \frac{g}{2} \frac{m_u^{\lambda}}{M} H(\bar{d}_i^{\lambda} d_i^{\lambda}) + \frac{ig}{2} \frac{m_u^{\lambda}}{M} \phi^0(\bar{u}_i^{\lambda} \gamma^5 u_i^{\lambda}) - \frac{g}{2} \frac{m_u^{\lambda}}{M} H(\bar{d}_i^{\lambda} q_i^{\lambda}) + \frac{ig}{2} \frac{m_u^{\lambda}}{M} \phi^0(\bar{u}_i^{\lambda} \gamma^5 u_i^{\lambda}) + \frac{ig}{2} \frac{m_u^{\lambda}}{M} \phi^0(\bar{u}_i^{\lambda} \gamma^5 u_i$ $\frac{ig}{2} \frac{m_{\dot{\alpha}}^{\lambda}}{M} \phi^{0} (\bar{d}_{i}^{\lambda} \gamma^{5} d_{i}^{\lambda}) + \bar{X}^{+} (\partial^{2} - M^{2}) X^{+} + \bar{X}^{-} (\partial^{2} - M^{2}) X^{-} + \bar{X}^{0} (\partial^{2} - M^{2}) X^{-}$ $\frac{\bar{M}^2}{c^2}$) $X^0 + \bar{Y}\partial^2 Y + igc_w W_u^+ (\partial_\mu \bar{X}^0 X^- - \partial_\mu \bar{X}^+ X^0) + igs_w W_u^+ (\partial_\mu \bar{Y} X^- - \partial_\mu \bar{X}^+ X^0)$ $\partial_{\mu}\bar{X}^{+}Y) + igc_{w}W_{\mu}^{-}(\partial_{\mu}\bar{X}^{-}X^{0} - \partial_{\mu}\bar{X}^{0}X^{+}) + igs_{w}W_{\mu}^{-}(\partial_{\mu}\bar{X}^{-}Y - \partial_{\mu}\bar{X}^{0}X^{+}))$ $\partial_{\mu}\bar{Y}X^{+})+igc_{w}Z_{\mu}^{0}(\partial_{\mu}\bar{X}^{+}X^{+}-\partial_{\mu}\bar{X}^{-}X^{-})+igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+}-\partial_{\mu}\bar{X}^{-}X^{-})+igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+}-\partial_{\mu}\bar{X}^{-}X^{-})+igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+}-\partial_{\mu}\bar{X}^{-}X^{-})+igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+}-\partial_{\mu}\bar{X}^{-}X^{-})+igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+}-\partial_{\mu}\bar{X}^{-}X^{-})+igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+}-\partial_{\mu}\bar{X}^{-}X^{-})+igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+}-\partial_{\mu}\bar{X}^{-}X^{-})+igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+}-\partial_{\mu}\bar{X}^{-}X^{-})+igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+}-\partial_{\mu}\bar{X}^{-}X^{-})+igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+}-\partial_{\mu}\bar{X}^{-}X^{-})+igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+}-\partial_{\mu}\bar{X}^{-}X^{-})+igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+}-\partial_{\mu}\bar{X}^{-}X^{-})+igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+}-\partial_{\mu}\bar{X}^{-}X^{-})+igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+}-\partial_{\mu}\bar{X}^{-}X^{-})+igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+}-\partial_{\mu}\bar{X}^{-}X^{-})+igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+}-\partial_{\mu}\bar{X}^{-}X^{-})+igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+}-\partial_{\mu}\bar{X}^{-}X^{-})+igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+}-\partial_{\mu}\bar{X}^{-}X^{-})+igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{-})+igs_{w}A_{\mu}($ $\partial_{\mu}\bar{X}^{-}X^{-}) - \frac{1}{2}gM[\bar{X}^{+}X^{+}H + \bar{X}^{-}X^{-}H + \frac{1}{c^{2}}\bar{X}^{0}X^{0}H] +$ $\frac{1-2c_w^2}{2c_w}igM[\bar{X}^+X^0\phi^+ - \bar{X}^-X^0\phi^-] + \frac{1}{2c_w}igM[\bar{X}^0X^-\phi^+ - \bar{X}^0X^+\phi^-] +$ $igMs_w[\bar{X}^0X^-\phi^+ - \bar{X}^0X^+\phi^-] + \frac{1}{2}igM[\bar{X}^+X^+\phi^0 - \bar{X}^-X^-\phi^0]$

Expansion and the distorsion of the past

- Even though Universe is expanding, locally objects can move closer due to gravity
- Expansion rate depends on radiation, matter, curvature, cosmological constant

13 800 000 000 (billion) years

Age of the Universe = 3 x Age of Earth!

Time ~zero

13 800 000 000 (billion) years

Age of the Universe = 3 x Age of Earth!

Time ~zero

The Big Bang Afterglow

- Universe gets transparent at an age of 380 000 years!
- The Cosmic Microwave Background (CMB) is the first child picture of the Universe

• What is behind the veil?

Particle Physics and Cosmology

- Quest to understand:
 - Fundamental constituents of matter Matter particles
 - Interactions with which particles act on each other <u>Interactions</u>
 - Particles propagating the interactions Messenger particles

• Strong link between the infinitely small (particle physics) and infinitely large (cosmology)

What is a "fundamental particle"?

A "particle" is a propagation of a quantity of information (properties) perceived through the different interactions (~forces)!

- → That is, particles are perceived differently depending on their properties
- → Technically, in quantum field theory, a matter particle is represented by an excitation of a matter field, and interaction particles by excitation of a interaction field, very similar to the waves on a surface of water

What is the size of a particle?

- → Analogy: "What is the size of piece of cotton?" ©
- → Depends on how much energy you apply to interact with it!

Heisenberg Uncertainty Principle

A tiny little complication though.... with astronomic consequences:

→ Nature has built in an unavoidable intrinsic randomness:

$$\Delta p \Delta x \le \frac{h}{2\pi}$$

$$\Delta E \Delta t \leq \frac{h}{2\pi}$$

→

$$\Delta E \leq \frac{h}{2\pi\Delta t}$$

• Vacuum fluctuation = vacuum polarization = virtual particle creation (many names..)

Fundamental constituents of matter (?)

Today's periodic system of the fundamental building blocks

And as many types of anti-particles!

- Note the mass of the fundamental particles
 - > 80 kg of human body / $m_{p/n}$ (~1.6x10⁻²⁷kg) * $\Sigma m_{uud/udd}$ (~2*10⁻²⁹kg) = ~1 kg....?
 - ... Rest is kinetic energy and interaction (binding) energy

Interactions (~"forces") and "Unification"

Interactions (~"forces") and "Unification"

Interactions (~"forces") and "Unification" CÉRN **Terrestrial Planetary Electricity** Magnetism Light Gravity Gravity Newton's Electromagnetism Gravitation Energy = Temperature Maxwell's Radioactivity Electromagnetism Atomic nuclei General Relativity Quantum Weak nuclear Electrodynamics force Electroweak Strong force force "Standard Model" **Grand Unified** Theory **Super Unified** Rulers of the early universe Theory

Interactions mediators between particles

<u>Hadrons</u>

But hey, something weird is going on! Example, particle – antiparticles at rest:

Interaction mediator

Interactions between particles

Gravitation

Graviton?

<u>Hadrons</u>

But hey, something weird is going on! Example, particle – antiparticles at rest:

Interaction mediator (e.g. photon)

Massless force carrier

$$\Delta E \Delta t \sim E_{int} \frac{r}{c} \leq \frac{h}{2\pi}$$

Interactions between particles

Gravitation

Graviton?

Hadrons

But hey, something weird is going on! Example, particle – antiparticles at rest

Interaction mediator (e.g. Z⁰)

Massive force carrier

$$\Delta E \Delta t \sim (E_{int} + \langle E_{mass} \rangle) \frac{r}{c} \leq \frac{h}{2\pi}$$

What's so difficult about gravity?

It's very weak (why so weak!?) and affects the space itself in which it acts...

...that is:

1. Gravity couples to energy and mass and curves space

- 2. Vaccum fluctuations produces virtual mass and virtual energy
- 3. Gravity will curve space further
- 4. The smaller the distances (time-scales),
 the more virtual energy is available,
 the more gravity couples,
 the more the space is curved....
 Leads to infinities...
- → No way to make a self-consistent quantum gravity theory up to no

Back to Earth again!

Experimenting with the Big Bang

Large Hadron Collider

Large Hadron Collider

Large Hadron Collider (LHC) is a 27 km long particle collider

- → Recreate conditions at "small scale":
 - Temperature 10¹⁶ K that is 1 000 000 000 x
 - 0.00000000001 second after Big Bang (10⁻¹¹s)

→ Giant microscope with resolution of a 1/10000 of a proton (10⁻¹⁹m)

VOLUME 13, NUMBER 16

PHYSICAL REVI

BROKEN SYMMETRIES AND THE MA

Tait Institute of Mathematical Physics, University of

(Received 31 August 1964

$$\theta^{\mu} \{ \theta_{\mu} (\Delta \varphi_1) - e \varphi_0 A_{\mu} \} = 0,$$
 (2a)

$$^{2}-4\varphi_{0}^{2}V^{\prime\prime}(\varphi_{0}^{2})(\Delta\varphi_{0})=0,$$
 (2b)

19 October 196

$$=e\varphi_0\{\theta^{\mu}(\Delta\varphi_1)-e\varphi_0A_{\mu}\},$$
 (2c)

escribes waves whose quanta have ${}_{0}\{V^{*}'(\varphi_{0}^{2})\}^{1/2}$; Eqs. (2a) and (2c) rmed, by the introduction of new

$$A_{\mu}^{-(e\varphi_{0})^{-1}\partial_{\mu}(\Delta\varphi_{1})}$$

$$= \partial_{\mu}B_{\nu} - \partial_{\nu}B_{\mu} = F_{\mu\nu}, \qquad (3)$$

$$_{\mu}^{\mu} = 0$$
, $\partial_{\mu} G^{\mu\nu} + \varepsilon^2 \varphi_0^2 B^{\mu} = 0$. (4)

uation (4) describes vector waves whose quanta have (bare) mass $e\varphi_0$. In the absence of the gauge field coupling (e = 0) the situation is quite different: Equations (2a) and (2c) describe zero-mass scalar and vector bosons, respectively. In passing, we note that the right-hand side of (2c) is just the linear approximation to the conserved current: It is linear in the vector potential, gauge invariance being maintained by the presence of the gradient term.

When one considers theoretical models in which spontaneous breakdown of symmetry under a semisimple group occurs, one encounters a variety of possible situations corresponding to

to which the scala field always belon tion.6 The model est is that in which octet under SU(3): ity of two nonvani. ues, which may b $I_a = 0$ members of massive scalar bo numbers; the rem scalar octet comb components of the

a currents associated w group are coupled to gauge fields. In arpose of the present note is to report that, as a consequence of this coupling, the spin-one quanta of some of the gauge fields acquire mass; the longitudinal degrees of freedom of these paricles (which would be absent if their mass were go over into the Goldstone bosons when tends to zero. This phenomenor

$$L = -\frac{1}{2} (\nabla \varphi_1)^2 - \frac{1}{2} (\nabla \varphi_2)^2$$

$$-V(\varphi_1^2 + \varphi_2^2) - \frac{1}{2} F_{\mu\nu} F^{\mu\nu}, \quad (1)$$

$$\nabla_{\mu} \varphi_1 = \partial_{\mu} \varphi_1 - eA_{\mu} \varphi_2$$

$$\nabla_{\mu}\varphi_2 = \partial_{\mu}\varphi_2 + eA_{\mu}\varphi$$

$$F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$$

e is a dimensionless coupling constant, and the metric is taken as -+++. L is invariant under simultaneous gauge transformations of the first kind on $\varphi_1 \pm i\varphi_2$ and of the second kind on A_{ij} . Let us suppose that $V'(\varphi_0^2) = 0$, $V''(\varphi_0^2) > 0$; then spontaneous breakdown of U(1) symmetry occurs. Consider the equations [derived from (1) by treating $\Delta \phi_1$, $\Delta \phi_2$, and A_{II} as small quantities] governing the propagation of small oscillations

Higgs appears in 2011 - 2012

• Most fundamental role of Higgs is to stop matter particles from being obliged to move at speed of light on early Universe!

- - ATLAS+CMS: 1400 Higgs events after selection cuts
- Mass of the Higgs is equivalent to the total mass of 130 protons!

The Big Questions

Observations in Cosmology

- Event horizon problem
- Flatness
- Density variation which lead to star and galaxy formation
- Natural constants
- The missing antimatter
- The missing matter Dark Matter
- Universe expansion rate is accelerating today Dark Energy

Observations in particle physics

Tiny neutrino mass and oscillations

Hints from particle physics theory

- Stability of Higgs mass
- Structure of matter and interactions
- Unification of interactions
- Why no CP violation in strong interaction
- Gravity
- → Which extension to the Standard Model??

Prejudice...: "Universe is fine-tuned by chance or driven by obligation?"

The Big Questions

Observations in Cosmology

- Event horizon problem
- **Flatness**
- Density variation which lead to star and galaxy formation
- Natural constants
- The missing antimatter
- The missing matter Dark Matter
- Universe expansion rate is acceler

Observations in particle plant

Tiny neutring

icles and interactions,

-ractions

P violation in strong interaction

Gravity

→ Which extension to the Standard Model??

Prejudice...: "Universe is fine-tuned by chance or *driven* by obligation?"

Energy – intensity frontier

• What are the alternatives? "New particles" can hide in two ways:

Very massive OR very weakly coupled

Precision measurements

Recipe:

- Choose processes which are rare and calculable to high precision in SM
 - Indirectly find evidence for New Physics as discrepancy from SM prediction!
 - Virtual effects allow probing energies much higher than the E_{cms} of the LHC

Example B meson decays to lepton pairs:

$$R_K = \frac{BR(B^+ \to K^+ e^+ e^-)}{BR(B^+ \to K^+ \mu^+ \mu^-)}$$

Precision measurements

Recipe:

- Choose processes which are rare and calculable to high precision in SM
 - Indirectly find evidence for New Physics as discrepancy from SM prediction!
 - Virtual effects allow probing energies much higher than the E_{cms} of the LHC

B meson decays to lepton pairs:

$$R_K = \frac{BR(B^+ \to K^+ e^+ e^-)}{BR(B^+ \to K^+ \mu^+ \mu^-)}$$

Lepton Universality (LU)
Expected to be ~unity in SM

Precision measurements

Recipe:

- Choose processes which are rare and calculable to high precision in SM
 - Indirectly find evidence for New Physics as discrepancy from SM prediction!
 - Virtual effects allow probing energies much higher than the E_{cms} of the LHC

B meson decays to lepton pairs:

$$R_K = \frac{BR(B^+ \to K^+ e^+ e^-)}{BR(B^+ \to K^+ \mu^+ \mu^-)}$$

Lepton Universality Violation?

"
$$R_K^{exp} = R_K^{SM} + R_K^{NewPhysics}$$
"
 R_K^{NP} contribution from New Physics

Analysis based on 1000 0000 0000 0000 measured b-decays!

Example: missing anti-matter

"Baryon asymmetry" of the Universe

- Big Bang Nucleosynthesis and Cosmic Microwave Background $\eta = \left\langle \frac{n_B}{n_\gamma} \right\rangle_{T=3K} \sim 6 \times 10^{-10}$
- → How did this happen?!

"Manifestations" of CP violation: Matter-antimatter differs

- Production rate
- Decay rate
- Mass
- Lifetime
- → Current CP violation in quark sector $\rightarrow \eta \sim 10^{-20} \text{ !!}$

Establishing Dark Matter - direct observation

Tracing DM: Gravitational lensing confirms previous observations (2003)

Bullet galaxy clusters (2003)

Galaxy cluster CI 0024+17 (ZwCl 0024+1652)

Collision between two galaxy clusters

- In red, X-ray emitting plasma = dominant baryonic mass (5-15%)
- In blue, reconstruction of total mass distribution from lensing

Dark Matter remains around galaxy clusters (1-2% of mass) undisturbed

- → Almost collisionless
- → Very different density profile and dynamics from ordinary matter! Why does it form a halo?
- → Independent limits on Dark Matter self-interaction, and interaction with ordinary matter
- → Explore with accelerators!!

More questions?

Buon apetit!

"I can't tell you what's in the dark matter sandwich. No one knows what's in the dark matter sandwich."