$H ightarrow J\psi\gamma$ Analysis Update and EB Request

<u>Will Heidorn²</u> Konstantinos Nikolopoulos¹ Rhys Owen¹ Soeren Prell² University of Birmingham¹, Iowa State University² 14th October 2019

This project has received funding from the European Reasearch Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No. 714893)

- 2 Technical Overview
- 3 Control Plots
- Optimization Studies
- 5 Current Status
- 6 Backup Material

Meson Gamma Introduction

Fully reconstructed decay from the photon and meson decay products

- This signature produces a resonant bump in the three-body mass
- Distinct topology allows for triggering

Direct Access to the Higgs Yukawa Couplings

Currently direct evidence only exists for the 3rd generation Yukawa couplings

$\psi(\textit{nS})\gamma$ ATLAS Results Phys. Lett. B 786 (2018) 134

Prievious results based on 36.1 fb^{-1}

Branching fraction limit (95% CL)	Expected	Observed
$\mathcal{B}\left(H \to J/\psi \gamma\right) \left[\ 10^{-4} \ \right]$	$3.0^{+1.4}_{-0.8}$	3.5
$\mathcal{B}\left(H \to \psi\left(2S\right) \gamma\right) \left[\ 10^{-4} \ \right]$	$15.6_{-4.4}^{+7.7}$	19.8
$\mathcal{B}\left(Z \to J/\psi\gamma\right)\left[\ 10^{-6}\ \right]$	$1.1_{-0.3}^{+0.5}$	2.3
$\mathcal{B}\left(Z \to \psi\left(2S\right) \gamma\right) \left[\ 10^{-6} \ \right]$	$6.0^{+2.7}_{-1.7}$	4.5

Equivalent CMS result $7.6(5.2^{+2.5}_{-1.6}) \times 10^{-4}$ (Eur. Phys. J. C 79 (2019)94)

- **2** Technical Overview
 - 3 Control Plots
 - Optimization Studies
 - 5 Current Status
 - Backup Material

Triggers for $\psi(nS)\gamma$ and $\Upsilon(nS)\gamma$

Baseline from previous analysis, checks of the optimisation are ongoing

- Photon + Muon triggers developed specifically for this topology
 - HLT_g35_loose_L1EM22VHI_mu18noL1
 - HLT_g35_tight_icalotight_L1EM24VHI_mu18noL1
 - HLT_g25_medium_mu24
- Require both a photon and single muon at HLT
- But no L1Muon seed to increase acceptance
- Single muon chains also being investigated as support chains
- Collected $139 \, \text{fb}^{-1}$ of the $\sqrt{s} = 13 \, \text{TeV}$ dataset.

Derivation

Analysis uses a derivation shared with other Meson Gamma searches

- Recently renamed HDBS2 from HIGG2D5
- Slimmed based on the low rate exclusive triggers
- Derivation Selection
 - J/ψ (Υ) mass Window
 - ▶ $\gamma_{PT} > 27 \text{ GeV}$
 - Leading $\mu_{PT} > 17 \text{ GeV}$
 - $\mu\mu_{PT} > 27 \text{ GeV}$
- Events selected in the derivation are also decorated with refitted vertices for all muon pairs compatible with a meson decays (providing L_{xy} for the event selection)

Baseline $\psi(nS)\gamma$ and $\Upsilon(nS)\gamma$ Selection

Baseline from previous analysis, checks of the optimisation are ongoing

- Photon $p_T > 35 \text{ GeV}$
 - Isolated in tracker and calorimeter
 - High purity photon identification
 - $\Delta \phi(\mathcal{M}, \gamma) > \pi/2$
- Muon Selection
 - Oppositely charged pair of muons
 - $p_T^{\mu \text{ leading}} > 18 \text{ GeV},$ $p_T^{\mu \text{ subleading}} > 3 \text{ GeV}$
 - ▶ $p_T^{\mu\mu}$ varies linearly with $m_{\mu\mu\gamma}$ from 34 → 54.4 GeV
 - Isolated in the tracker
 - Loose m_{µµ} requirement around the meson mass.

•
$$L_{xy}/\sigma_{L_{xy}} < 3$$

Signal Modeling

Several Higgs boson production modes considered with dedicated samples

- Gluon fusion
- Vector Boson Fusion
- WH,ZH,ttH associated production

Higgs boson decay simulation

- Modeled in Pythia
- Meson helicity not simulated but accounted for by re-weighting sample
- Resolution extracted by a fit to a double Gaussian with common mean

Background Modelling

Background dominated by multijet and γ -jet events

- Background shows a kinematic peak at $\approx 100 {\rm GeV}.$
- Also resonant contribution from $Z \rightarrow \mu \mu + FSR$
- Difficult to generate a reliable Monte Carlo sample with a large acceptance to the signal region
- Instead a nonparametric data driven method is used to model this shape
- An alternative would be to use a polynomial fit as used by CMS

Background Checks

- Three validation regions are defined in order to test the background model.
- Each of these independently re-applies a selection loosened for the generation region.
 - VR1:GR with sliding di-muon pt requirement
 - VR2:GR with FixedCutTightTrackOnly di-muon isolation working point
 - VR3:GR with FixedCutTight photon isolation working point

Blinded validation regions show good prediction for the efficiency of each selection and the effect on the background shape

Background Correlations

We also use a Machine Learning based approach to test our model.

- A further diagnostic for the background model is to compare the correlations between the real data events and the generated pseudo candidates.
- More detailed studies are on going to see if it is possible to train a ML categorisation to tell data background from manufactured background events and use this classification to show where the generation is failing.
- Currently the track isolation variables are listed by TMVA as being the most discriminant so these are the top priority for optimisation.

Physics Overview

2 Technical Overview

3 Control Plots

4 Optimization Studies

5 Current Status

6 Backup Material

Control Plots $\psi(nS)$ GR

Control Plots $\psi(nS)$ SR

No significant discrepancies, however some issues still persist here

Control Plots $\Upsilon(nS)$ GR

Control Plots $\Upsilon(nS)$ SR

Physics Overview

- 2 Technical Overview
- 3 Control Plots
- Optimization Studies
 - 5 Current Status
 - 6 Backup Material

Optimisation Studies

- Check to see if current SR cuts are optimal
- Plot s/sqrtb as a function of photon and di-muon pt cuts
- Trying to find a way to minimize ZFSR in the background

Optimisation Studies $\psi(nS)$

Optimisation Studies $\Upsilon(nS)$

Physics Overview

- 2 Technical Overview
- 3 Control Plots
- Optimization Studies
- 5 Current Status

6 Backup Material

Expected Limits

The limits are currently being worked on. Background only fitting is working, however signal + background limit setting is not. Hopefully we will have something by tomorrow more than this...

Current Workflow

- All xAODs have been produced
- All DxAODs except 1 have been produced with HDBS2 (a small sample of ttH was missed in production)
- BhamAnalysis Framework uses AnalysisBase 21.2.87
- MiniTreeMaker allows for "quick" plotting and analysis of results

Timeline / Outlook

- We have now processed the full Run-2 dataset and most of the MC into our analysis NTuples
- The background estimate is progressing well
- Studies ongoing should provide some improvements over the existing 2015+2016 result
- We are targeting the result for the Moriond timescale
- Finishing RnD this month!
 - Finalize limit setting
 - Finalize incorporation of all MC signal and bkgd
 - Finish optimization

Physics Overview

- 2 Technical Overview
- 3 Control Plots
- Optimization Studies
- 5 Current Status

6 Backup Material

Analysis Team

- Will Heidorn analysis framework, analysis development, trigger performance
- Konstantinos Nikolopoulos supervision, trigger development
- Rhys Owen analysis framework, analysis development, background modeling, trigger development
- Soeren Prell supervision

CutFlow $J\psi$

		Data					
	ggF	VBF	WH	ZH	ttH	Z	H + Z
Starting events	364.53	31.01	11.43	7.20	4.29	469.90	1.62×10^{7}
Preselection	151.72	13.71	4.45	2.85	2.20	144.63	1.62×10^{7}
Passed Trigger	143.15	12.84	4.19	2.69	2.07	122.78	3.11×10^{6}
$p_T^{\mu} > 3 \text{ GeV},$	143.15	12.84	4.19	2.69	2.07	122.78	153 201
Leading $p_T^{\mu} > 18$ GeV,	140.77	12.53	4.07	2.62	1.98	117.34	148 200
Photon: - tight, $p_T^{\gamma} > 35$ GeV,	134.45	11.70	3.81	2.45	1.84	105.42	116 460
$p_T^{\mu\mu}$ >30 GeV,	131.73	11.37	3.71	2.38	1.78	101.60	101 770
$m_{\mu\mu}$ requirement,	131.72	11.36	3.70	2.38	1.77	101.31	74 712
$\Delta \phi(Q \gamma) > \pi/2$	121.02	7.98	2.68	1.70	0.94	97.90	63 403
$ L_{xy}/\sigma(L_{xy}) < 3.0$	119.60	7.88	2.64	1.68	0.92	96.95	31 780
Pass GR	118.08	7.76	2.55	1.63	0.82	95.72	17 687
Pass SR	72.14	4.60	1.47	0.94	0.42	51.88	3441

Cut Flow in signal MC. $\mathcal{B}(H \to J/\psi\gamma) = 1 \times 10^{-3}$, $\mathcal{B}(Z \to J/\psi\gamma) = 1 \times 10^{-6}$ is assumed and an integrated luminosity of 139.0fb⁻¹. Preselection includes the following selection requirements: Photons:-medium, $p_T^{\gamma} > 27$ GeV, η req.; Muons:-segment tagged or combined,

$$p_T^{\mu} > 3 \text{ GeV}, |\eta^{\mu}| < 2.5; \text{ and } 2.2 \text{ GeV} < m_{\mu\mu} < 4.3 \text{ GeV}.$$

CutFlow $\psi(2S)$

	Signal						Data
	ggF	VBF	WH	ZH	ttH	Z	H + Z
Starting events	48.82	4.16	1.53	0.97	0.33	63.17	1.62×10^{7}
Preselection	20.17	1.79	0.59	0.38	0.16	18.84	1.62×10^{7}
Passed Trigger	19.07	1.67	0.56	0.36	0.16	15.93	3.11×10^{6}
p_T^{μ} > 3 GeV,	19.07	1.67	0.56	0.36	0.16	15.93	153 201
Leading $p_T^{\mu} > 18$ GeV,	18.77	1.63	0.54	0.35	0.15	15.17	148 200
Photon: - tight, p_T^{γ} > 35 GeV,	17.94	1.53	0.51	0.33	0.14	13.59	116 460
$p_T^{\mu\mu}$ >30 GeV,	17.58	1.48	0.49	0.32	0.13	13.13	101 770
$m_{\mu\mu}$ requirement,	17.58	1.48	0.49	0.32	0.13	13.11	74 712
$\Delta \phi(Q \gamma) > \pi/2$	16.11	1.03	0.35	0.23	0.07	12.66	63 403
$ L_{xy}/\sigma(L_{xy}) < 3.0$	15.93	1.02	0.35	0.23	0.07	12.53	31 780
Pass GR	15.75	1.00	0.34	0.22	0.06	12.40	17 687
Pass SR	9.62	0.58	0.19	0.12	0.03	6.77	3441

Cut Flow in signal MC. $\mathcal{B}(H \to \psi(25)\gamma) = 1 \times 10^{-3}$, $\mathcal{B}(Z \to \psi(25)\gamma) = 1 \times 10^{-6}$ is assumed and an integrated luminosity of 139.0fb⁻¹. Preselection includes the following selection requirements: Photons: -medium, $\rho_T^{\gamma} > 27$ GeV, η req.; Muons:-segment tagged or combined,

 $p_T^{\ \mu}$ > 3 GeV, $|\eta^{\mu}|$ < 2.5; and 2.2 GeV < $m_{\mu\mu}$ < 4.3 GeV.

CutFlow $\Upsilon(1S)$

	Signal						Data
	ggF	VBF	WH	ZH	ttH	Z	H + Z
Starting events	151.18	12.92	4.75	3.00	1.79	196.42	1.62×10^{7}
Preselection	64.61	5.63	1.85	1.18	0.90	59.86	1.62×10^{7}
Passed Trigger	61.79	5.36	1.77	1.13	0.85	51.55	3.11×10^{6}
p_T^{μ} > 3 GeV,	61.79	5.36	1.77	1.13	0.85	51.55	153 201
Leading $p_T^{\mu} > 18$ GeV,	60.81	5.22	1.71	1.10	0.80	49.41	148 200
Photon: - tight, p_T^{γ} > 35 GeV,	57.79	4.85	1.60	1.02	0.74	43.97	116 460
$p_T^{\mu\mu}$ >30 GeV,	56.75	4.67	1.55	0.99	0.71	42.08	101 770
$m_{\mu\mu}$ requirement,	56.72	4.67	1.54	0.99	0.70	41.42	23 623
$\Delta \phi(Q \gamma) > \pi/2$	52.02	3.26	1.10	0.70	0.38	40.23	19489
$ L_{xy}/\sigma(L_{xy}) < 3.0$	51.55	3.23	1.09	0.69	0.37	39.86	13 443
Pass GR	50.92	3.17	1.06	0.67	0.33	39.38	9005
Pass SR	33.47	2.03	0.66	0.42	0.18	29.12	3647

 $\Upsilon(15)\gamma \text{ Cut Flow in signal MC. B} (H \to \Upsilon(15)\gamma) = 1 \times 10^{-3}, B (Z \to \Upsilon(15)\gamma) = 1 \times 10^{-6} \text{ is assumed and an integrated luminosity of } 139.0 \text{fb}^{-1}. Preselection includes the following selection requirements: Photons:-medium, <math>p_{T}^{\gamma} > 15 \text{ GeV}, \eta \text{ req.; Muons:-segment tagged or combined, } p_{T}^{\mu} > 3 \text{ GeV}, |\eta^{\mu}| < 2.5; \text{ and } 2 \text{ GeV} < m_{\mu\mu} < 14 \text{ GeV}.$

CutFlow $\Upsilon(2S)$

	Signal						Data
	ggF	VBF	WH	ZH	ttH	Z	H + Z
Starting events	117.68	10.06	3.71	2.34	1.40	152.07	1.62×10^{7}
Preselection	49.28	4.48	1.43	0.92	0.73	46.13	1.62×10^{7}
Passed Trigger	47.15	4.26	1.37	0.88	0.70	39.67	3.11×10^{6}
p_T^{μ} > 3 GeV,	47.15	4.26	1.37	0.88	0.70	39.67	153 201
Leading $p_T^{\mu} > 18$ GeV,	46.33	4.14	1.33	0.86	0.67	37.87	148 200
Photon: - tight, p_T^{γ} > 35 GeV,	43.91	3.86	1.23	0.80	0.62	33.11	116 460
$p_T^{\mu\mu}$ >30 GeV,	42.94	3.72	1.19	0.77	0.60	31.54	101 770
$m_{\mu\mu}$ requirement,	42.93	3.72	1.19	0.77	0.59	31.28	23 623
$\Delta \phi(Q \gamma) > \pi/2$	39.44	2.60	0.85	0.55	0.31	30.25	19489
$ L_{xy}/\sigma(L_{xy}) < 3.0$	39.02	2.58	0.85	0.54	0.31	30.00	13 443
Pass GR	38.54	2.54	0.82	0.52	0.28	29.73	9005
Pass SR	25.57	1.62	0.51	0.33	0.15	21.73	3647

$$\begin{split} &\Upsilon(25)\gamma \text{ Cut Flow in signal MC. B} (H \to \Upsilon(25)\gamma) = 1 \times 10^{-3}, \mathcal{B} (Z \to \Upsilon(25)\gamma) = 1 \times 10^{-6} \text{ is assumed and an integrated luminosity of } \\ &139.0 \text{fb}^{-1}. \text{ Preselection includes the following selection requirements: Photons:-medium, } p_{T}^{\gamma} > 15 \text{ GeV}, \eta \text{ req.; Muons:-segment tagged or combined, } \\ &p_{T}^{\mu} > 3 \text{ GeV}, |\eta^{\mu}| < 2.5; \text{ and } 2 \text{ GeV} < m_{\mu\mu} < 14 \text{ GeV}. \end{split}$$

CutFlow $\Upsilon(3S)$

	Signal						Data
	ggF	VBF	WH	ZH	ttH	Z	H + Z
Starting events	133.40	11.33	4.19	2.63	1.57	173.55	1.62×10^{7}
Preselection	56.07	5.00	1.64	1.03	0.80	52.67	1.62×10^{7}
Passed Trigger	53.83	4.74	1.57	0.99	0.77	45.81	3.11×10^{6}
p_T^{μ} > 3 GeV,	53.83	4.74	1.57	0.99	0.77	45.81	153 201
Leading $p_T^{\mu} > 18$ GeV,	52.87	4.60	1.52	0.96	0.73	43.72	148 200
Photon: - tight, p_T^{γ} > 35 GeV,	50.39	4.28	1.41	0.89	0.67	38.61	116 460
$p_T^{\mu\mu}$ >30 GeV,	49.28	4.14	1.37	0.86	0.65	36.97	101 770
$m_{\mu\mu}$ requirement,	49.28	4.13	1.36	0.85	0.64	36.68	23 623
$\Delta \phi(Q \gamma) > \pi/2$	45.18	2.83	0.97	0.61	0.34	35.44	19489
$ L_{xy}/\sigma(L_{xy}) < 3.0$	44.71	2.80	0.96	0.60	0.33	35.00	13 443
Pass GR	44.15	2.75	0.93	0.58	0.30	34.55	9005
Pass SR	28.67	1.73	0.58	0.36	0.16	25.03	3647

 $T(35)γ \text{ Cut Flow in signal MC. B} (H → T(35)γ) = 1 × 10^{-3}, B (Z → T(35)γ) = 1 × 10^{-6} \text{ is assumed and an integrated luminosity of } 139.0 \text{fb}^{-1}. Preselection includes the following selection requirements: Photons:-medium, <math>p_{T}^{\gamma} > 15 \text{ GeV}, \eta \text{ req.; Muons:-segment tagged or combined, } p_{T}^{\mu} > 3 \text{ GeV}, |η^{\mu}| < 2.5; \text{ and } 2 \text{ GeV} < m_{\mu\mu} < 14 \text{ GeV}.$