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• Back in 2014 G. Iacobucci, R. Cardarelli and M. Nessi proposed a strategy to use SiGe HBTs 

for ultra-fast, low noise signal amplification in particle detectors.

• The goal was to produce a monolithic pixelated silicon detector with 100 ps time resolution.

‣ L. Paolozzi and P. Valerio joined shortly later as chip designers.

Today collaboration of:

Funded by:

Five years of (hard) R&D
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Timing for high-energy physics experiments
Hartmut F-W Sadrozinski et al 2018 Rep. Prog. Phys. 81 026101

Advanced track reconstruction
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Timing for high-energy physics experiments

With timing

Hartmut F-W Sadrozinski et al 2018 Rep. Prog. Phys. 81 026101

Advanced track reconstruction
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Timing for high-energy physics experiments
Hartmut F-W Sadrozinski et al 2018 Rep. Prog. Phys. 81 026101

Pile-up suppression
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Timing for high-energy physics experiments
Hartmut F-W Sadrozinski et al 2018 Rep. Prog. Phys. 81 026101

Pile-up suppression
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Situation today: technologies in HEP experiments

7

Excellent results.

NA62 GigaTracKer:

hybrid pixels 300x300 µm2

no internal gain

130 ps time resolution
G. Aglieri Rinella et al., JINST 14 (2019) P07010  

Low Gain Avalanche Detectors:

hybrid pads 1x1 mm2

internal gain (10-100)

30 ps time resolution
N. Cartiglia et al., NIM A 924 (2019) 350-354  
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Is timing performance of silicon fully exploited ?

How far are we from producing a monolithic 4D sensor with small pixels ?
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Timing with silicon detectors
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Time resolution of silicon pixel detectors

9

What are the main parameters that control the time resolution of 

semiconductor detectors?

1. Geometry & fields

2. Charge collection (or Landau) noise

3. Electronics noise

𝒉+𝒆−

𝐼𝑖𝑛𝑑 𝑉𝑜𝑢𝑡

(Recommended reading W. Riegler and G. Aglieri Rinella, Time resolution of silicon pixel sensors, JINST 12 (2017) P11017)
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1.  Geometry and fields

10

Sensor optimization for time measurement means:

sensor time response independent from the particle trajectory

⟹ “Parallel plate” read out: wide pixel w.r.t. depletion depth 

GND

𝐼𝑖𝑛𝑑 =

𝑖

𝑞𝑖 ҧ𝑣𝑑𝑟𝑖𝑓𝑡,𝑖 ∙ ത𝐸𝑤,𝑖 ≅ 𝑣𝑑𝑟𝑖𝑓𝑡
1

𝐷


𝑖

𝑞𝑖

Scalar, saturated
Scalar, uniform

Induced current for

a parallel plate readout

from Shockley-Ramo’s theorem:

• Uniform Ramo field (signal induction)

• Uniform electric field (charge transport)

• Saturated charge drift velocity
Desired features:
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2.  Charge-collection (or Landau) noise

11

is produced by the non uniformity of 

the charge deposition in the sensor:

When large clusters are absorbed at the electrodes, their contribution is removed from the

induced current. The statistical origin of this variability of Iind makes this effect irreducible in

PN-junction sensors.

+HV

GND

𝒆−

𝒉+

Ionizing particle

𝐼𝑖𝑛𝑑 ≅ 𝑣𝑑𝑟𝑖𝑓𝑡
1

𝐷


𝑖

𝑞𝑖
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2.  Charge-collection (or Landau) noise

12

Charge collection noise represents an intrinsic limit to the time resolution 

for a semiconductor PN-junction detector.

~30 ps reached by present LGAD sensors.
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Gain

Lower contribution from sensors without internal gain

N. Cartiglia et al., NIM A 924 (2019) 350-354  
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3.  Electronics noise

13

Once the geometry has been fixed, the time resolution depends mostly on the 

amplifier performance.

Pulse time

Threshold

Time

Need an ultra-fast, low noise, low power-consumption electronics with fast rise time and 

small capacitance. Our solution:

High 𝑓𝑡, single transistor preamplifier.

𝜎𝑡 =
𝜎𝑉
𝑑𝑉
𝑑𝑡

≅
𝐸𝑁𝐶

𝐼𝑖𝑛𝑑
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Equivalent Noise Charge: device comparison

𝐸𝑁𝐶2 = 𝐴1
𝑎𝑊
𝜏𝑀

𝐶𝑑𝑒𝑡 + 𝐶𝑖𝑛
2 + 𝐴2

𝑙𝑛2

𝜋
𝑐 𝐶𝑑𝑒𝑡 + 𝐶𝑖𝑛

2 + 𝐴3 𝑏1 + 𝑏2 𝜏𝑀

How do MOS-FET and BJT compare in terms of noise?

𝝉𝑴 ~ 𝟏 𝒏𝒔
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Equivalent Noise Charge: device comparison

𝐸𝑁𝐶2 = 𝐴1
𝑎𝑊
𝜏𝑀

𝐶𝑑𝑒𝑡 + 𝐶𝑖𝑛
2 + 𝐴2

𝑙𝑛2

𝜋
𝑐 𝐶𝑑𝑒𝑡 + 𝐶𝑖𝑛

2 + 𝐴3 𝑏1 + 𝑏2 𝜏𝑀

CMOS based 

amplifier
2𝑘𝑇

ℎ

𝑔𝑚
Large ൗ1 𝑓 contribution
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Equivalent Noise Charge: device comparison

𝐸𝑁𝐶series noise ∝ 𝑘1 ⋅
𝐶𝑡𝑜𝑡
2

𝛽
+ 𝑘2 ⋅ 𝑅𝑏𝐶𝑡𝑜𝑡

2

𝐸𝑁𝐶2 = 𝐴1
𝑎𝑊
𝜏𝑀

𝐶𝑑𝑒𝑡 + 𝐶𝑖𝑛
2 + 𝐴2

𝑙𝑛2

𝜋
𝑐 𝐶𝑑𝑒𝑡 + 𝐶𝑖𝑛

2 + 𝐴3 𝑏1 + 𝑏2 𝜏𝑀

BJT based 

amplifier

Goal: maximize the current gain β at high frequencies while keeping a 

low base resistance Rb
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Equivalent Noise Charge

17

For a NPN BJT, the amplifier current gain β can be expressed as:

𝛽 =
𝑖𝐶
𝑖𝐵
=
𝜏𝑝

𝜏𝑡

𝜏p = hole recombination time in Base

𝜏t = electron transit time (Emitter to Collector)

Large β⟹ Minimize the electron transit time

Emitter contactBase contact Collector contact

Base width
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SiGe HBT technology for low-noise, fast amplifiers

18

In SiGe Heterojunction Bipolar Transistors (HBT) the grading of the bandgap in the

Base changes the charge-transport mechanism in the Base from diffusion to drift:

Grading of germanium in the base:
field-assisted charge transport in the Base, 
equivalent to introducing an electric field in the Base 

⟹ short e– transit time in Base ⟹ very high β

⟹ smaller size ⟹ reduction of 𝑅𝑏 and very high 𝑓𝑡

Hundreds of GHz
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Current gain and power consumption: 𝑓𝑡 is the key

19

𝑓𝑡 = 10 𝐺𝐻𝑧 𝑓𝑡 = 50 𝐺𝐻𝑧 𝑓𝑡 = 100 𝐺𝐻𝑧

𝛽𝑚𝑎𝑥 𝑎𝑡 200 𝑀𝐻𝑧 50 250 500

𝛽𝑚𝑎𝑥 𝑎𝑡 1 𝐺𝐻𝑧 10 50 100

𝛽𝑚𝑎𝑥 𝑎𝑡 5 𝐺𝐻𝑧 2 10 20

𝜷

𝒇𝒕 𝒇
𝟏

Working 

point
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Current gain and power consumption: 𝑓𝑡 is the key

20

𝑓𝑡 = 10 𝐺𝐻𝑧 𝑓𝑡 = 50 𝐺𝐻𝑧 𝑓𝑡 = 100 𝐺𝐻𝑧

𝛽𝑚𝑎𝑥 𝑎𝑡 200 𝑀𝐻𝑧 50 250 500

𝛽𝑚𝑎𝑥 𝑎𝑡 1 𝐺𝐻𝑧 10 50 100

𝛽𝑚𝑎𝑥 𝑎𝑡 5 𝐺𝐻𝑧 2 10 20

Trade-off: ENC Power Consumption

𝑓𝑡 > 100 𝐺𝐻𝑧 technologies are necessary for 

a fast amplification of silicon pixel signals.

𝒇𝒕

𝑰𝑪/𝑨 (log scale)

Technology 

nominal value

Actual working 

point

𝜷

𝒇𝒕 𝒇
𝟏

Working 

point
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SiGe BiCMOS applications
Commercial VLSI CMOS foundry processes available

21

source:      https://towerjazz.com/technology/rf-and-hpa/sige-bicmos-platform/

Foundries offering SiGe process: 

• IHP Mikroelektronik (→ Research Inst.) 

• TowerJazz

• Globafoundries

• TSMC 

• STM 

• AMS 

• ...

Applications: 

• Automotive radars (27/77 GHz) 

• Satellite communications 

• LAN RF transceivers (60 GHz) 

• Point-to-point radio (V-band, E-band) 

• Defense 

• Security 

• Instrumentation

A fast growing technology: ft = 700 GHz transistor under development
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Discrete-component SiGe HBT amplifier

22

In 2015:

• Proof-of-concept SiGe amplifier and 
produced it with discrete components

• This amplifier was coupled to a 100µm 
thick n-on-p silicon sensor with readout 
pad of 1mm2 area (~1pF capacitance)

JINST 11 (2016) P03011: https://doi.org/10.1088/1748-0221/11/03/P03011

Time difference detector 1 - 2
100µm thick sensors

1mm2 readout pad

(≈1pF capacitance)

𝜎𝑇 =
(150 ± 1)ps

2
= (106 ± 1)ps

measured with MIPs

Remarkable result for a 

1mm2 silicon pad (1pF capacitance)

without internal gain

Published in JINST 11 (2016) P03011: https://doi.org/10.1088/1748-0221/11/03/P03011

https://doi.org/10.1088/1748-0221/11/03/P03011
https://doi.org/10.1088/1748-0221/11/03/P03011
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The TT-PET project:

a 30 ps+ Time-of-Flight PET scanner with 

monolithic SiGe silicon pixels

(+ GEANT4 simulation shows that 100 ps for MIPs corresponds to ~30 ps in case of the 511 keV photons of a PET)

TT-PET
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Time-Of-Flight PET

Improved background rejection by measurement of difference 
in arrival time of the two photons.

Goal: 

30 ps time resolution for
1 cm spatial measurement

TT-PET

24
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TT-PET

The TT-PET team funded by

Didier Ferrere
• Scanner assembly support

Frank Cadoux
• Mechanics design and assembly, thermal management

Yannick Favre
• Readout system

Stéphane Debieux
• Board design, system-level electronics

Mathieu Benoit
• Sensor and guard ring simulation

Collaboration with:
• Roberto Cardarelli (INFN Roma Tor Vergata)

• Holger Ruecker (IHP Microelectronics)

• Marzio Nessi (CERN & UNIGE)
and their research teams

Giuseppe Iacobucci
• P. I.
• Scanner design

Pierpaolo Valerio
• Electronics design
• Chip design

DPNC Geneva:

Lorenzo Paolozzi
• Sensor design
• Analogue electronics design

Daiki Hayakawa 
• Sensor simulation
• Image reconstruction

Osman Ratib
• Scanner operation

HUG Geneva:

Emanuele Ripiccini
• Scanner simulation
• Image reconstruction

LHEP Bern:

Michele Weber
• Scanner assembly

A. Miucci/D. Forshaw
• Readout system
• Scanner assembly

Yves Bandi
• Readout system

25
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TT-PET: Basic detection unit
TT-PET

500×500 μm2 pixels
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TT-PET: Basic detection unit
TT-PET

7
, 
9
, 
1
1
 m

m

24 mm

500×500 μm2 pixels
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TT-PET: Basic detection unit
TT-PET

7
, 
9
, 
1
1
 m

m

24 mm

500×500 μm2 pixels

* NOTE: 𝟏𝟗𝟐𝟎 chips synchronized at 𝓞(𝟏𝟎) 𝒑𝒔 precision.

A new TDC synchronization technique developed for this 

project patented.

ASIC length 24 𝑚𝑚

ASIC width 7, 9, 11 𝑚𝑚

Pixel Size 500 × 500 𝜇𝑚2

Pixel Capacitance (comprised routing) 750 𝑓𝐹

Preamplifier power consumption 80 𝑚𝑊/𝑐𝑚2

Preamplifier Equivalent Noise Charge 600 𝑒− 𝑅𝑀𝑆

Preamplifier Rise time (10% - 90%) 800 𝑝𝑠

Time resolution for MIPs 100 𝑝𝑠 𝑅𝑀𝑆

TDC time binning* 50 𝑝𝑠

TDC power consumption < 1𝑚𝑊/𝑐ℎ

Patent 
EP18181123
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TT-PET: Scanner Tower

• A tower is a stack of 60 detection units, 

tightly coupled.

• Total tower thickness: 1.5 cm

• Two sensors/layer: 4.8 cm length

• Wedge-shaped: three sensor widths

• Tower assembly will be done with the    

SET Accµra100 DPNC flip-chip machine.

Results of GEANT and FLUKA simulations:    

Tower efficiency for 511 keV photons: 27%

Scanner sensitivity:  4.1%

3 sensor widths: 0.7, 0.9, 1.1 cm

(sizes chosen to fit the three in a reticle)

two sensors/layer

TT-PET

29
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The TT-PET small-animal scanner

“Tower”

Scanner fully engineered

•TT-PET engineering and cooling system preprint: arxiv:1812.00788

TT-PET

30
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The TT-PET small-animal scanner
Excellent performance expected.

MLEM iterative reconstruction of Derenzo phantom:

TT-PET simulation & performance preprint:    https://arxiv.org/abs/1811.12381

High FWHM resolutions in entire Field-Of-View:

x [mm]

2.0 mm

1.2 mm

1.0 mm

0.5 mm

0.7 mm

0.9 mm

Truth Reconstructed

TT-PET

y [mm]

31

https://arxiv.org/abs/1811.12381
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Challenges towards a monolithic ASIC

Time resolution of 30 ps for Eγ = 511 keV: ultra-fast electronics
Achieved in discrete SiGe components, but need to implement it in ASIC. Need to identify technology that 

allows for it.

Power consumption
Proof-of-concept results were obtained with a power consumption of ≈1.4W/cm2. The target for the chip power is 

80mW/cm2

Synchronization of a thousand chips at few ps precision
Given the low power budget, we needed a new concept for the TDC and synchronisation system

Monolithic integration
Requires to define a strategy for the sensor design to have a simple and effective structure, a detailed simulation 

and possibly a collaboration with the foundry

32
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Technology choice

33

Time digitization:

• 4 ps inverter; delay precision ~100 fs

• > 40GHz oscillation frequency achievable with 

purely digital schematics

We were able to design a TDCs

with a time binning down to 4ps and power 

consumption of few tens mW/ch

with simple architecture   

Exploit the properties of state-of-the-art SiGe Bi-CMOS transistors to produce an 

ultra-fast, low-noise, low-power consumption amplifier

Leading-edge technology:  IHP SG13G2
130 nm process featuring SiGe HBT with

• Transistor transition frequency:  𝒇𝒕 = 𝟎. 𝟑 𝑻𝑯𝒛

• DC Current gain: 𝜷 = 𝟗𝟎𝟎
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The prototype chips

34

For generic timing 

sensor R&D

For the 

TT-PET

Project

TT-PET

2016
2017

2019

2018

2019
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Analogue ASIC prototype submission

• Monolithic sensor with two n-on-p pads:

900×900 µm2 and 900×450 µm2, spaced by 100 µm.

• Inside a guard ring.

• SiGe HBT amplifier and MOSFET discriminator with

TOT capability, placed outside the guard ring

TT-PET

35
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Operation of the ASIC

Prototype ASIC under test in the DPNC probe station

• Estimated pixel capacitance:

0.8 pF for the small pixel

1.2 pF for the large pixel

• ENC (CADENCE estimation):
600 e- RMS (small pixel)

750 e- RMS (large pixel)

• +ve bias voltage applied to pixels 

using poly-silicon biasing resistors

• Breakdown voltage: 165 V

• Power consumption ≈ 350 µW/ch

36
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TCAD simulation of the ASIC

Depletion depth ≈ 130 µm.

Due to the absence of thinning and backplane metallisation:

• electric field non-uniform in depth and well below 2-3 V/µm

• the drift velocity of the charge carriers was NOT saturated

⇒ sensor NON optimal for time resolution

• Substrate resistivity of 1 kΩcm.

• 700 µm thick ASIC

• No thinning, NO backplane metallisation

37
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Testbeam results: efficiency

Efficiency = 99.8 %

even in the inter-pixel region

Published in JINST 13 (2018) P04015: https://doi.org/10.1088/1748-0221/13/04/P04015

38

https://doi.org/10.1088/1748-0221/13/04/P04015
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Testbeam results: time resolution

Very nice Gaussian distribution

Time resolution:

(220 ± 1) ps

Published in JINST 13 (2018) P04015: https://doi.org/10.1088/1748-0221/13/04/P04015

39

https://doi.org/10.1088/1748-0221/13/04/P04015
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The TT-PET “demonstrator” chip

40

• SiGe HBT preamplifier

• CMOS-based open-loop tri-stage discriminator (adjustable threshold with 

an 8-bit DAC), that preserves the TOA and the TOT of the pixel

• Discriminator output sent to fast-OR chain

• 50ps binning TDC, R/O logic, serializer

TT-PET

guard ring

front-end

TDC and

logic

Matrix of 3×10 n-on-p pixels, of 470×470 µm2 (Ctot = 750 fF) spaced by 30 µm.
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The frontend

Main specifications of the simulated front-end for CTOT = 500 fF

Power supply 1.8 V

Gain 90 mV/fC

ENC 300 e– RMS

Minimum threshold 0.4 fC

Power consumption 135 µW/ch

Peaking time 1.3 ns

Simulated ToA jitter (for 1 fC signal) 82 ps

41
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The TDC

42



Lorenzo Paolozzi  Heidelberg 2019

Sensor I-V curve

Breakdown at ≈ 200 V

Resistive behaviour produced by non-ideal ground contact through the backplane

Blue:      current flowing through the diode

Orange: current flowing through the guard ring 

43
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TT-PET “demonstrator” chip

The four pixels (in blue) closer to the I/O pads were masked on hardware, due to 

noise induced by the single-ended clock line by the I/O bump-bonding pads 

(inside the red lines), which were not used but still connected.
(These pads will be removed and the clock distributed using differential lines.)

• Front-end ENC = 350 e− RMS (on a capacitance of ≈ 750 fF).  

• Therefore the nominal threshold was set to to 1750 e− (5σ above noise).

• Noise hit rate per chip of 4.3 × 10−3 Hz measured at the nominal threshold.

I/O bump-bonding pads

44
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Testbeam experiment with MIPs

Chip 2 Chip 1
Chip 0

Three chips were installed downstream our beam telescope.

Chips operated at two preamplifier power-consumption working points: 

• 160 μW/channel, compliant with the TT-PET power requirements 

• 375 μW/channel, expected to perform better in terms of gain and noise  
(larger Ic ⟹ larger transistor fT ⟹ better matching of the pixel capacitance)

45
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Full efficiency, even in the inter-pixel region.

Chip 1:   HV = 180 V,   Power = 375 µW/ch,   threshold = 1750 e−

L. Paolozzi et al., 2019 JINST 14 P02009, https://doi.org/10.1088/1748-0221/14/02/P02009

P. Valerio et al., 2019 JINST 14 P07013,   https://doi.org/10.1088/1748-0221/14/07/P07013

Test beam results: efficiency

https://doi.org/10.1088/1748-0221/14/02/P02009
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Test beam results: time resolution

47

Excellent result for a silicon pixel detector without internal gain,
obtained on a large capacitance (750 fF) and power consumption of 150 mW/cm2.

160 [µW/ch] 375 [µW/ch]

Chip 1:   HV = 180 V,   Power = 375 µW/ch,   threshold = 1750 e−

uncertainty is statistical only

375 µW/ch160 µW/ch

L. Paolozzi et al., 2019 JINST 14 P02009, https://doi.org/10.1088/1748-0221/14/02/P02009

P. Valerio et al., 2019 JINST 14 P07013,   https://doi.org/10.1088/1748-0221/14/07/P07013

https://doi.org/10.1088/1748-0221/14/02/P02009
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CAVEAT 1:  Uniformity of response

The map of pixels shows a steady small worsening towards the left. 

Hypothesis: larger impedance of the ground line for the front-end channels far from the 

chip ground connection that is done in the right side of the chip

(“IR drop” of the supply voltage). 

Mitigation measures implemented: improvement of the power-distribution network 

(larger distribution lines & power pads at the corners of the chip)  

Time resolution of chip1 for:   HV = 180 V,   P = 375 µW/ch,  threshold = 1750 e−

48
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CAVEAT 2:   TOT distribution

Mitigation measure: introduction of trigger signals in a differential configuration

This modulation of the TOT distribution degrades the time-walk 

correction, and therefore the time resolution

It was found that the single-ended digital trigger signal affected the 

grounding of the pixel matrix and induced a small residual noise. 

Consequence: the TOT distributions show peaks, with time difference 

between peaks caused by the delay of the fast-OR line. 

49
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Developed in IHP SG13G2 technology (130nm).  

Matrices with hexagons of two sizes:

➡ hexagon side 130µm and 65µm, with 10µm inter-pixel spacing 

➡ CTOT = 220 and 70 fF

Exploits:

➡New dedicated custom components                                                          
developed together with foundry

➡New guard-ring structure 

50

The “hexagonal” prototype sensor

Collaboration of:
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The “hexagonal” prototype sensor

51

-HV

LV/GNDLV/GND -HV
guard rings

SiGe
electronics

Pixels

TCAD
simulation

(HV = 140 V)

Standard substrate resistivity ρ = 50 Ωcm
No backside metallisation ⟹ not fully depleted 
PRO: much easier production, but 

➡ slightly degraded performance because of regions 
where drift velocity is not saturated

Depletion depth is 26µm at HV = 140 V

➡Most probable deposited charge for a MIP ≈ 1600 
electrons

➡CADENCE Spectre simulation for 1600e– (0.25 fC): 
ideally, ToA jitter = 22 ps
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CAVEAT:

52

This behavior does not compromise the chip performance.

Therefore,  we made measurements with a source and at a testbeam

➡Current drift up to ~100nA after 

two days of continuous operation.

➡ reversible.

➡under investigation
maybe this high field

is responsible for it
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109Cd radioactive source calibrations

53

Rate ≈constant for low thresh. values   ⟹ good discrimination of γ peak. 

109Cd photons (~22 keV) energetic enough for measurement of the gain: 
• AQ = 290 mV fC−1 for the small pixel  ⟹ ENC = σV/AQ = 90 electrons

• AQ = 185 mV fC−1 for the large pixel ⟹ ENC = σV/AQ = 160 electrons

JINST 14 (2019) P11008, https://doi.org/10.1088/1748-0221/14/11/P11008

https://doi.org/10.1088/1748-0221/14/11/P11008


Lorenzo Paolozzi  Heidelberg 2019

90Sr source experimental setup

54

No analysis selection applied

)

90 Sr
source

to the events in our monolithic SiGe prototype

custom amplifier board
with 1mm hole

reference LGAD
FBK (B-098L)

50ps resolution

(NIM A 924 (2019) 360-368) monolithic
SiGe

prototype



Lorenzo Paolozzi  Heidelberg 2019

Time-walk correction and TOF

55

Small pixel S0, C = 70 fF

Time resolution of Gaussian part:

682 − 502 ≃ (46 ± 2)ps

Time-walk correction

Time of Flight (time-walk corrected) non-Gaussian tail (≈10%) for TOF ≥ 100ps,

maybe due to e– from the 90Sr source

crossing the 10µm region between two pixels.

Requires to be investigated in a testbeam. 
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Time resolution vs. threshold

56

Gaussian fits

x

x  small pixel, HV = 190 V, PSI testbeam

JINST 14 (2019) P11008, https://doi.org/10.1088/1748-0221/14/11/P11008

50 ps

https://doi.org/10.1088/1748-0221/14/11/P11008
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Time resolution vs. HV

57

Gaussian fits

JINST 14 (2019) P11008, https://doi.org/10.1088/1748-0221/14/11/P11008

50 ps

https://doi.org/10.1088/1748-0221/14/11/P11008


Lorenzo Paolozzi  Heidelberg 2019

Time resolution vs. HV

58

Gaussian fits

180 190 200

50 ps

small pixel S0, Cdet = 70 fF, 260 MeV/c pions

Beam test at PSI



Lorenzo Paolozzi  Heidelberg 2019

Time walk correction

59

V [mV]

[ns]2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

Threshold (25 mV) 

Q1

Q2

Q3

Q4
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Present prototypes New technique

Charge resolution 

(Cadence spectre simulation)

60

Improved time walk correction
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Next steps

61
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CONCLUSIONS

• Timing capability of silicon still to be fully exploited

• SiGe HBT allows for low-noise and fast amplifiers and picosecond readout

• Monolithic ASICs in IHP 130nm SiGe processes without internal gain provided 

‣ full efficiency

‣ excellent time resolution:   220 → 115 → 50 ps RMS

62

→ ???
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Publications and patents

63

Articles:
•Hexagonal small-area pixels JINST 14 (2019) P11008, https://doi.org/10.1088/1748-0221/14/11/P11008

•TT-PET demonstrator chip testbeam: JINST 14 (2019) P02009, https://doi.org/10.1088/1748-0221/14/02/P02009

•TT-PET demonstrator chip design: JINST 14 (2019) P07013, https://doi.org/10.1088/1748-0221/14/07/P07013

•First TT-PET prototype JINST 13 (2017) P02015, https://doi.org/10.1088/1748-0221/13/04/P04015

•Proof-of-concept amplifier JINST 11 (2016) P03011, https://doi.org/10.1088/1748-0221/11/03/P03011

•TT-PET engineering: arxiv:1812.00788

•TT-PET simulation & performance: arxiv:1811.12381

Patents:
•PLL-less TDC & synchronisation System: EU Patent EP18181123.3 
•Picosecond Avalanche Detector (pending): EU Patent Application EP18207008.6

https://doi.org/10.1088/1748-0221/14/11/P11008
https://doi.org/10.1088/1748-0221/14/02/P02009
https://doi.org/10.1088/1748-0221/14/07/P07013
https://doi.org/10.1088/1748-0221/13/04/P04015
https://doi.org/10.1088/1748-0221/11/03/P03011
https://arxiv.org/abs/1812.00788
https://arxiv.org/abs/1811.12381
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Extra Material
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The TT-PET small-animal scanner

65

Thermal studies:

• High density of silicon pixel sensors

• Sensor power budget < 80mW/cm2

• Finite-Element Analysis performed

• Active cooling: ΔT < 1˚C in the sensitive volume

• Cooling block produced and tests made

TT-PET

cooling
blocks
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The TT-PET scanner performance

The high segmentation of the scanner and fast response of the 

silicon pixel detector allow for a very high counting rate.

TT-PET scanner counting rates – GEANT4 simulationTypical performance of a small animal TOF-PET 

(microPET)

TT-PET

Activity [MBq]

R
a
te

 [
M

H
z
]

66
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Performance of our present electronics 

67

Frontend ENC (CADENCE simulation): 

80 e– RMS  for Cin = 50 fF  and  Gain = 30    ⟹ σtime = 4 ps

We are working on new version of FE electronics and on a ps TDC

CADENCE Spectre
simulation

(IHP SG13G2)

Towards 1 ps time resolution: SiGe electronics
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Towards 1 ps time resolution: Landau noise

Landau fluctuations of the 

charge deposition constitute 

an irreducible effect of 

standard PN-junction sensors

68

+HV

GND

𝒆−

𝒉+

Ionizing particle

𝐼𝑖𝑛𝑑 ≅ 𝑣𝑑𝑟𝑖𝑓𝑡
1

𝐷
∑
𝑖
𝑞𝑖

Need for a novel silicon sensor to go beyond this        ⟹
R

e
s
o

lu
ti
o

n
 [
p

s
]

Gain

N. Cartiglia et al., NIM A 924 (2019) 350-354  
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Towards 1 ps time resolution

We designed a new sensor, the

69

PicoAD: Picosecond Avalanche Detector

Patent pending (EP 18207008.6)
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One order of magnitude better than present best results

70
LGAD read out by our SiGe HBT 

ultra-fast low-noise electronics
PicoAD

GEANT4 + TCAD + CADENCE Spectre simulation

The PicoAD time resolution
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Bipolar transistors for fast low-noise amplifiers

71

BJT technology: can provide a fast integrator that minimises series 

noise

⬇︎
to produce fast and low-noise amplifiers

E. Gatti, P. F. Manfredi, Processing the Signals from Solid-
State Detectors in Elementary-Particle Physics, rivista del 
Nuovo Cimento Vol. 9, No. 1 (1986).

It is known since a long time that for BJT technology
the Equivalent Noise Charge (ENC) depends on the

capacitance Ctot and the integration time 𝜏 as follows:

𝐸𝑁𝐶 = 𝑘1 ⋅ 𝜏 + 𝑘2 ⋅
𝐶𝑡𝑜𝑡
2

𝜏
+ 𝑘3𝐶𝑡𝑜𝑡

2

dominating term: 
series noise

1/f (series) noiseparallel
noise
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• These two caveats are fixed in a new chip, that 
we just received back from IHP.

• The chip contains also front-end test structures:

‣ peak-sensing fast ADC

‣ higher gain pre-amp

‣ new differential driver

72
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CERN testbeam experimental setup
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UNIGE telescope

(six FE-I4 planes)

Mechanical support
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Noise rates
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Measured noise rates agree well with CADENCE Spectre simulation

Large pixels (220 fF) Small pixels (70 fF)

σV = 4.0 mVσV = 4.7 mV
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55Fe and 109Cd source calibrations

75
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Time resolution vs. power consumption
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fT depends on the collector current Ic
(that is proportional to the power: P = Ic∙Vcc)

The charge gain can be written as:

𝐴𝑄 =
1

𝐶𝑓 +
𝐶𝑑𝑒𝑡
|𝐴𝑉|

In our case, the capacitance Cf between the Base and the Collector of the HBT is 

much smaller than the detector capacitance:      Cdet/|AV|  ≫ Cf

Therefore, since AV is proportional to fT:

larger power  ⟹ larger fT ⟹ larger AV ⟹ smaller ratio Cdet/|AV|  ⟹ higher AQ

From Chenming Hu: Modern Semiconductor Devices for Integrated Circuits, Pearson Ed.
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CADENCE simulation
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Signal in the hexagonal small pixels:

minimal threshold used (20 mV from baseline)

4.0 5.0 6.0 7.0 8.0 9.0

V [V]

[ns]


