

esi European Scientific Institute

DETECTOR TECHNOLOGIES

Lecture 3 : Radiation Detectors

- Scintillation
- Čerenkov
- TRD

in Particle & Astroparticle Physics

DETECTOR TECHNOLOGIES

Lecture 3 : Radiation Detectors

- Scintillation and Detection
- Čerenkov
- TRD

Scintillator : a material which emits light (photons), when stimulated

For a scintillator, what is important?

- Scintillation efficiency : energy needed for 1 γ emission
- Light spectrum : in order to adapt the read out system to the proper wavelength
- Light decay time
- γ absorption
- **Transparency** : the emitted γ should not be re-absorbed.

2 types of scintillators :

Organics (liquids, plastics) Advantage : Fast Disadvantages : rather innefficients non-linear (need quenching) not good for γ 's

Used mainly for trigger purpose

Inorganics (crystals,liquids) Advantages : good efficiency good linearity radiation tolerance Disadvantages : relatively slow expensive (if crystals) Used mainly for measurements

Organic Scintillators :

Figure 28.1: Cartoon of scintillation "ladder" depicting the operating mechanism of organic scintillator. Approximate fluor concentrations and energy transfer distances for the separate sub-processes are shown.

Luminescence (Birk's law) per lenght

$$\frac{dL}{dx} = \frac{S \frac{dE}{dx}}{1 + KB \frac{dE}{dx}}$$

S = emission efficiency
KB = Birk's constant (exp.)

Low Z (organic = Hydrogen + Carbon) low efficiency for HE γ (only Compton effect) but good efficiency for neutrons

1. Excitation of organic molecules

γ

Yield $\approx 1 \gamma$ per loss of 100 eV λ ≈100 nm (UV)

Wavelenght shift

scintillator	density (g/cm ³)	index of refraction	wavelength of maximum emission (nm)	decay time constant (ns)	scintillation pulse height ¹⁾	H/C ratio ²⁾
Monocrystals						
naphthalene	1.15	1.58	348	11	11	0.800
anthracene	1.25	1.59	448	30-32	100	0.714
trans-stilbene	1.16	1.58	384	3-8	46	0.857
p-terphenyl	1.23		391	6-12	30	0.778
Plastics 3)						
NE 102 A	1.032	1.58	425	2.5	65	1.105
NE 104	1.032	1.58	405	1.8	68	1.100
NE 110	1.032	1.58	437	3.3	60	1.105
NE 111	1.032	1.58	370	1.7	55	1.096
Plastics ⁴⁾						
BC-400	1.032	1.581	423	2.4	65	1.103
BC-404	1.032	1.58	408	1.8	68	1.107
BC-408	1.032	1.58	425	2.1	64	1.104
BC-412	1.032	1.58	434	3.3	60	1.104
BC-414	1.032	1.58	392	1.8	68	1.110
BC-416	1.032	1.58	434	4.0	50	1.110
BC-418	1.032	1.58	391	1.4	67	1.100
BC-420	1.032	1.58	391	1.5	64	1.100
BC-422	1.032	1.58	370	1.6	55	1.102
BC-422Q	1.032	1.58	370	0.7	11	1.102
BC-428	1.032	1.58	480	12.5	50	1.103
BC-430	1.032	1.58	580	16.8	45	1.108
BC-434	1.049	1.58	425	2.2	60	0.995

Table A6.3 Properties of some organic scintillators

Crystals (Nal, Csl, BGO, PbWO4...)

Energy loss will induce electron-hole pairs creation migration to activation centers (fast) - excitation – transition - γ emission trapping (slow)

Activator is choosen for visible emission 2 or more wavelenghts (addition of activator)

Liquid noble gases (Lar, Lxe, LKr)

Still 2 time constants Same wavelengths (pure gases)

Precision measurements

14	ole A0.2	rroperu	es of some n	lorganic sei	numators		
scintillator composition	density (g/cm ³)	index of refraction	wavelength of maximum emission (nm)	decay time constant	scintillation pulse height ¹⁾	notes	Photons MeV
Nal	3.67	1.78	303	0.06	190	2)	
NaI(TI)	3.67	1.85	410	0.25	100	3)	4 × 104
CsI	4.51	1.80	310	0.01	6	3)	
CsI(Tl)	4.51	1.80	565	1.0	45	3)	1.1 × 104
CaI(Na)	4.51	1.84	420	0.63	85	3)	-
KI(TI)	3.13	1.71	410	0.24/2.5	24	3)	1
⁶ LiI(Eu)	4.06	1.96	470-485	1.4	35	3)	1.4×104
CaF ₂ (Eu)	3.19	1.44	435	0.9	50		
BaF ₂	4.88	1.49	190/220 310	0.0006 0.63	5 15		6.5 × 10 ³ 2 × 10 ³
Bi ₄ Ge ₃ O ₁₂	7.13	2.15	480	0.30	10		2.8 × 10 ³
CaWO ₄	6.12	1.92	430	0.5/20	50]
ZnWO ₄	7.87	2.2	480	5.0	26]
CdWO ₄	7.90	2.3	540	5.0	40		
CsF	4.65	1.48	390	0.005	5	3)]
CeF3	6.16	1.68	300 340	0.005 0.020	5		
ZnS(Ag)	4.09	2.35	450	0.2	150	4)	1
GSO	6.71	1.9	440	0.060	20]
ZnO(Ga)	5.61	2.02	385	0.0004	40	4)	
YSO	4.45	1.8	420	0.035	50]
ҮАР	5.50	1.9	370	0.030	40		
1) relative to Na	I(TI) ²⁾ at 80	K ³⁾ hygroso	copic 4)polycrystalli	ne			
PbWO,	8.28	1.82	440, 530	0.01			100

Table A62 Dependence of some incorporate saturallatory

Inorganic crystals are temperature-sensitive (calorimeters have to be cooled)

⁵⁾ at 170 nm

Scintillation : Inorganic scintillators

The readout has to be adapted to geometry and emission spectrum of the scintillator.

Optical fiber

Scintillating fiber : optical fiber filled with scintillator (plastic or liquid)

Fiber	Emission Color	Emission Peak, nm	Decay Time, ns	1/e Length m*	# of Photons per MeV**	Characteristics/ Applications
BCF-10	blue	432	2.7	2.2	~8000	General purpose; optimized for diameters >250μm
BCF-12	blue	435	3.2	2.7	~8000	Improved transmission for use in long lengths
BCF-20	green	492	2.7	>3.5	~8000	Fast green scintillator
BCF-60	green	530	7	3.5	~7100	3HF formulation for radiation hardness
BCF-91A	green	494	12	>3.5	n/a	Shifts blue to green
BCF-92	green	492	2.7	>3.5	n/a	Fast blue to green shifter
BCF-98	n/a	n/a	n/a	n/a	n/a	Clear waveguide

Stack of Sci Fibers (UA2)

Photodetector : Convert the scintillating ligth into usable electronic signal (HE Physics : usually visible and UV spectrum)

= Convert UV and visible photons in electrons

Requirement : High conversion efficiency $QE = N_{photo-electrons} / N_{photons}$

Scintillation : Photomultiplier

Principle:

Electron emission from photo cathode Secondary emission from dynodes; dynode gain: 3-50 [f(E)]

Typical PMT Gain: $> 10^{6}$ [PMT can see single photons ...]

Scintillation : Photomultiplier

Requirement : High conversion efficiency

 $QE = N_{photo-electrons} / N_{photons}$

Total gain :

Typical:
$$\delta = 2 - 10$$

 $n = 8 - 15$ $\rightarrow G = \delta^n = 10^6 - 10^8$

 $\delta = N_{electrons produced} / N_{electrons incoming}$ n = number of dynodes Resolution : linearity statistics

And ... Sensitivity to magnetic field

Туре	Head-on type	
Tube Size	Dia.13 mm 🗧	
Photocathode Area Shape 🛛 🖄	Round	
Photocathode Area Size	Dia.10 mm	
Wavelength (Short)	185 nm	
Wavelength (Long)	650 nm 🔶	
Wavelength (Peak)	420 nm 🔶	
Spectral Response Curve Code 🛛 📈	400U	
Photocathode Material	Bialkali	
Window Material	UV glass	
Dynode Structure	Linear-focused	1
Dynode Stages	10	
[Max. Rating] Anode to Cathode Voltage	1250 V	
[Max. Rating] Average Anode Current	0.1 mA	
Anode to Cathode Supply Voltage	1000 V 🔶	
[Cathode] Luminous Sensitivity Min.	40 μA/Im	
[Cathode] Luminous Sensitivity Typ.	110 μA/lm	
[Cathode] Blue Sensitivity Index (CS 5-58) Typ.	10	
[Cathode] Radiant Sensitivity Typ.	80 mA/W	1
[Anode] Luminous Sensitivity Min.	30 A/Im	7
[Anode] Luminous Sensitivity Typ.	110 A/Im	7
[Anode] Radiant Sensitivity Typ.	8.0 x 10 ⁴ A/W	7
[Anode] Gain Typ.	1.0 x 10 ⁶	
[Anode] Dark Current (after 30min.) Typ.	1 nA]
[Anode] Dark Current (after 30min.) Max.	15 nA	7
[Time Response] Rise Time Typ.	2.1 ns 🔶	┨─────
[Time Response] Transit Time Typ.	22 ns	7

Scintillation : Photomultipliers evolutions

Multi anode PMT

Resistant to magnetic field

Scintillation : HPD

Scintillation : HPD

LHCb : Cerenkovs read-out with HPDS

- 484 HPDs (Hybrid Photon Detector):
 196 for RICH1 and 288 for RICH2
- ~3.3 m² total surface
- Granularity: 2.5 x 2.5 mm² (almost 0.5 million pixels)
- Active area coverage >65 %
- Single-photon sensitivity between 200-600 nm
- Magnetic fringe field <25 G
- Read-out:
 - Compatible with LHC 40MHz bunch
 crossing frequency
 - 10% occupancy (worst case)

Cms /HCAL read-out with HPDs

- Proximity focused optics.
- · 27 mm active diameter
- S20 photocathode
- 19 or 73 hex pixels,
 - 5.4 or 2.68 mm flat-to-flat
- Very small acceleration gap (3.3 mm)
- Gain = 2500 (12 kV)
- External electronics

Scintillation : APD

Avalanche Photo Diode (APD) : an all-silicon device.

Good tolerance with mag. Field good (?) tolerance to radiation

Avalanche photodiodes have internal gain which improves the signal to noise ratio but still some 20 photons are needed for a detectable signal. The excess noise, the fluctuations of the avalanche multiplication limits the useful range of gain. CMS is the first big experiment that uses APD's.

Scintillation : APD

CMS APDs : \approx 141 500 Pieces for the ECAL (scintillator : PWBO₄)

Active size : 5 x 5 mm²

Scintillation : SiPM

PPD : Pixelized Photon Detector = SiPM : Silicon Photomultplicator

= APDs in parallel with resistors

- high photo conversion

$$Q_{eff} \approx 0.7$$

- Very high Gain (10⁵)
- Geiger mode
- Pixellized
- Not a proportional counter
- Very good position counter
- Adapted to fibers (small surface)

SiPM's can detect single photons. They have been developed and described since the beginning of this millennium (patent of Z. Sadygov 1996).

Scintillation : SiPM

Scintillation : SiPM

Advantages

is high gain (10⁵-10⁶) with low voltage (<80V)
low power consumption (<75μW/mm²)
fast (timing resolution ~ 50 ps RMS for single photons)
insensitive to magnetic field (tested up to 7 T)
high photon detection efficiency (30-40% blue-green)
mechanically robust and compact

Possible drawbacks

- ⊖ high dark count rate (DCR)
 - early productions: ~100kHz 1MHz/mm² at T~25°C; th=0.5pe
 - today productions: ~20kHz at T~25°C; th=0.5pe
 - thermal carriers, cross-talk, after-pulses
- ⊗ temperature dependence
 - V_{BD} , signal shape, R_q , DCR , PDE

Each channel: 1x1 mm² 625 cells, 40x40 μm²/cell

Scintillation : Devices

Photon Image: sensitivity		PMT	APD	HPD	SiPM
detection initial initial initial initial efficiency: 20% 50% 20% 12% blue 20% 60-70% a few % 15% green - yel- a few % 60-70% a few % 15% low - - - - red <1%	Photon				
efficiency: 20% 50% 20% 12% blue 20% $60-70\%$ $a few \%$ 15% green - yel- $a few \%$ $60-70\%$ $a few \%$ 15% low -1% $a few \%$ 10^{5} 15% low -1% 80% $<1\%$ 15% red $<1\%$ 80% $<1\%$ 15% Gain 10^6-10^7 $100-200$ 10^3 10^6 Gain 10^6-10^7 $100-200$ $20 \ kV$ $25 \ V$ Operation in problematic OK OK OK Operation in problematic OK OK OK Threshold 1 ph.e. $A 10 \ ph.e.$ $A 10 \ ph.e.$ $A 10 \ ph.e.$ S/N $\gg 1$ $-100 \ ps$ $a few \ ns$ $\sim100 \ ps$ $30 \ ps$ ph.e. $P 10^6$ large $a 10^3/mm^2$ range -10^6 large $a 10^3/mm^2$ range	detection				
blue 20% 50% 20% 12% green - yel- a few % 60-70% a few % 15% low - - - - red <1%	efficiency:				
green - yel- a few % 60-70% a few % 15% low - - - - red <1%	blue	20%	50%	20%	12%
low $<1\%$ 80% $<1\%$ 15% red $<1\%$ 80% $<1\%$ 15% Gain 10^6-10^7 $100-200$ 10^3 10^6 High voltage $1-2 kV$ $100-500 V$ $20 kV$ $25 V$ Operation in problematic OK OK OK the magnetic problematic OK OK OK field $-100 ps$ A_{EO} A_{EO} Threshold 1 ph.e. $-10 ph.e.$ $1 ph.e.$ $1 ph.e.$ $S/N \gg 1$ $-100 ps$ $a few ns$ $-100 ps$ $30 ps$ ph.e. -10^6 large $-10^3/mm^2$ range -10^6 large $-10^3/mm^2$ Complexity high (vac medium very high relatively	green - yel-	a few %	60-70%	a few %	15%
red <1% 80% <1% 15% Gain 10^6 - 10^7 100 - 200 10^3 10^6 High voltage $1-2$ kV 100 - 500 V 20 kV 25 V Operation in problematic OK OK OK the magnetic -100 ph.e. -100 ph.e. -100 ph.e. field 1 ph.e. -100 ph.e. 1 ph.e. -100 ps S/N \gg 1 -100 ps a few ns -100 ps 30 ps ph.e. -10^6 large $-10^3/mm^2$ range -10^6 large $-10^3/mm^2$ Complexity high (vac- medium very high relatively	low				
Gain 10^{6} - 10^{7} 100 - 200 10^{3} 10^{6} High voltage $1-2$ kV 100 - 500 V 20 kV 25 V Operation in problematic OK OK OK the magnetic problematic OK OK OK field - - - - field - - 1 ph.e. 1 ph.e. Sensitivity - - 1 ph.e. 1 ph.e. S/N \gg 1 - - - - - Timing /10 ~100 ps a few ns ~100 ps 30 ps ph.e. - - - - - Dynamic ~10^{6} large large $-10^{3}/$ mm ² range - - - - - Complexity high (vac- medium very high relatively	red	<1%	80%	<1%	15%
$\begin{array}{ccccccc} \mbox{High voltage} & 1-2 \ {\rm kV} & 100-500 \ {\rm V} & 20 \ {\rm kV} & 25 \ {\rm V} \\ \mbox{Operation in} & {\rm problematic} & {\rm OK} & {\rm OK} & {\rm OK} \\ \mbox{the magnetic} & {\rm problematic} & {\rm OK} & {\rm OK} & {\rm OK} \\ \mbox{the magnetic} & {\rm range} & {\rm rang$	Gain	$10^{6} - 10^{7}$	100-200	10^{3}	10^{6}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	High voltage	1-2 kV	100-500 V	20 kV	25 V
$\begin{array}{ccccccc} {\rm the \ magnetic} & {\rm large} & {\rm large$	Operation in	problematic	OK	OK	OK
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	the magnetic				
$\begin{array}{cccc} {\rm Threshold} & 1 {\rm ph.e.} & \sim 10 {\rm ph.e.} & 1 {\rm ph.e.} & 1 {\rm ph.e.} \\ {\rm sensitivity} & & & & & & \\ {\rm S/N \gg 1} & & & & & & \\ {\rm Timing} \ /10 & \sim 100 {\rm ps} & {\rm a few \ ns} & \sim 100 {\rm ps} & 30 {\rm ps} \\ {\rm ph.e.} & & & & & \\ {\rm Dynamic} & \sim 10^6 & {\rm large} & {\rm large} & -10^3/{\rm mm^2} \\ {\rm range} & & & & \\ {\rm Complexity} & {\rm high} \ ({\rm vac} & {\rm medium} & {\rm very} \ {\rm high} & {\rm relatively} \\ {\rm uum}, {\rm HV} & ({\rm low} \ {\rm noise} & ({\rm hybrid} & {\rm low} \end{array}$	field				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Threshold	1 ph.e.	${\sim}10$ ph.e.	1 ph.e.	1 ph.e.
$\begin{array}{c cccc} S/N \gg 1 & & & & & & & & \\ Timing \ /10 & \sim 100 \ ps & a \ few \ ns & \sim 100 \ ps & 30 \ ps \\ ph.e. & & & & \\ Dynamic & \sim 10^6 & large & large & \sim 10^3/mm^2 \\ range & & & & \\ Complexity & high \ (vac- \ medium & very \ high & relatively \\ uum, \ HV) & (low \ noise & (hybrid & low \end{array}$	sensitivity				
$\begin{array}{ccccccc} {\rm Timing} \ /10 & \sim 100 \ {\rm ps} & {\rm a \ few \ ns} & \sim 100 \ {\rm ps} & 30 \ {\rm ps} \\ {\rm ph.e.} & & & & & \\ {\rm Dynamic} & \sim 10^6 & {\rm large} & {\rm large} & {\rm a \ range} \\ {\rm range} & & & & \\ {\rm Complexity} & {\rm high} \ ({\rm vac} & {\rm medium} & {\rm very} \ {\rm high} & {\rm relatively} \\ {\rm uum, \ HV} & ({\rm low} \ {\rm noise} & ({\rm hybrid} & {\rm low} \end{array}$	$S/N \gg 1$				
$ \begin{array}{cccc} {\rm ph.e.} & & & \\ {\rm Dynamic} & \sim 10^6 & & {\rm large} & & {\rm large} & & \sim 10^3/{\rm mm^2} \\ {\rm range} & & & \\ {\rm Complexity} & {\rm high} \ ({\rm vac} & {\rm medium} & {\rm very} \ {\rm high} & {\rm relatively} \\ {\rm uum}, {\rm HV} & ({\rm low} \ {\rm noise} & ({\rm hybrid} & {\rm low} \\ \end{array} $	Timing /10	${\sim}100~{\rm ps}$	a few ns	${\sim}100~{\rm ps}$	30 ps
$\begin{array}{cccc} \mathbf{D} \mathrm{ynamic} & \sim 10^6 & \mathrm{large} & \mathrm{large} & \sim 10^3/\mathrm{mm}^2 \\ \mathrm{range} & & & & \\ \mathrm{Complexity} & \mathrm{high} \ (\mathrm{vac} & \mathrm{medium} & \mathrm{very} & \mathrm{high} & \mathrm{relatively} \\ & & \mathrm{uum}, \mathrm{HV} & (\mathrm{low} & \mathrm{noise} & (\mathrm{hybrid} & \mathrm{low} \end{array}$	ph.e.				
rangeidentifiedmediumvery highrelativelyComplexityhigh (vac-mediumvery highrelativelyuum, HV)(low noise(hybrid)low	Dynamic	$\sim 10^6$	large	large	${\sim}10^3/\mathrm{mm}^2$
Complexity high (vac- uum, HV) medium (low noise very (hybrid) relatively low	range				
uum, HV) (low noise (hybrid low	Complexity	high (vac-	medium	very high	relatively
		uum, HV)	(low noise	(hybrid	low
electronics) technology,			electronics)	technology,	
very HV)				very HV)	

	ATLAS	CMS
Magnetic field	2 T solenoid + toroid: 0.5 T (barrel), 1 T (endcap)	4 T solenoid + return yoke
Tracker	Silicon pixels and strips + transition radiation tracker $\sigma/p_T \approx 5 \cdot 10^{-4} p_T + 0.01$	Silicon pixels and strips (full silicon tracker) σ/p _T ≈ 1.5 · 10 ⁻⁴ p _T + 0.005
EM calorimeter	Liquid argon + Pb absorbers σ/E ≈ 10%/√E + 0.007	PbWO ₄ crystals σ/E ≈ 3%/√E + 0.003
Hadronic calorimeter	Fe + scintillator / Cu+LAr (10 λ) $\sigma/E \approx 50\%/\sqrt{E} + 0.03 \text{ GeV}$	Brass + scintillator (7 λ + catcher) $\sigma/E \approx 100\%/\sqrt{E} + 0.05 \text{ GeV}$
Muon	$\sigma/p_T \approx 2\%$ @ 50GeV to 10% @ 1TeV (Inner Tracker + muon system)	$\sigma/p_T \approx 1\% @ 50 GeV to 10\% @ 1 TeV$ (Inner Tracker + muon system)
Trigger	L1 + HLT (L2+EF)	L1 + HLT (L2 + L3)

Scintillation : HPD vs SiPM

Figure 4. The signal from ⁶⁰Co wire-source inserted into tubes embedded in HE megatiles is used to compare the relative response of channels at the same eta and depth. After the channels readout based on HPDs (black) was replaced with SiPMs (red), a much improved uniformity of the raw response is achieved.

esi European Scientific Institute

European School of Instrumentation in Particle & Astroparticle Physics

DETECTOR TECHNOLOGIES

Lecture 3 : Radiation Detectors

- Scintillation and Detection
- Čerenkov
- TRD

Čerenkov

??

The emission of Čerenkov light depens directly from the speed of the particle depens indirectly from the mass of the particle (p = m)The maximum angle depens only from the medium.

Typical : 0.35 μm < $\lambda_{cerenkov}$ < 0.55 μm (usual medium : 1 < n < 2)

Čerenkov

Radiation intensity (Franck-Tamm formula) :

$$\frac{d^2 N_{phot}}{dL d\lambda} = \frac{2\pi\alpha \sin^2\theta}{\lambda^2}$$

$$\alpha = 1 / 137$$

 $\lambda = Cerenkov light$
 $\theta = Cerenkov angle$

in a wavelength interval 350–500 nm (photomultiplier tube), $\frac{dN}{dx} = 390 \sin^2 \theta photons/cm$

Medium	n	Θ _{max}	N photons
Не	1.000035	0.48	0.39
Air	1.000283	1.36	3.12
Freon (gas)	1.00072	2.17	7.95
Isobutane	1.00127	2.89	14.91
Freon (liquid)	1.233	35.8	1899
Water	1.33	41.2	2407
Plexigas	1.5	48.2	3084

For a charged (1) particle, $\beta = 1$

Threshold Crenekov detectors make a simple decision on wether the particle is above or below the Cerenkov threshold velocity.

Used for differentiating heavy particles (π , K, p)

Changing the the gas pressure Changes the refractive index

Threshold Čerenkov

Threshold Čerenkov

Fig. 47. Pulse-height spectra for 3.5 GeV/c pions (above threshold) and protons (below threshold) obtained by a single module of ACC in (a) non-magnetic field and (b) a magnetic field of 1.5 T. Silica aerogels with n = 1.015 were stacked to form the module.

RICH Čerenkov

Ring Imaging Cherenkov (Ypsilantis and Seguinot -1977)

> Measures both the Cherenkov angle and the number of photoelectrons detected.

- > Can be used over particle identification over large surfaces.
- > Requires photodetectors with single photon identification capability.

RICH Čerenkov

The LHCb RICH

C₄ F₁₀ in RICH 1 (n = 1.0014) CF₄ in RICH 2 (n = 1.005) Read-out : HPDs

Figure 1: Side view of the LHCb spectrometer, with the two RICH detectors indicated

RICH Čerenkov

Figure 6: LEFT: View from above of the arrangement of apparatus for the beam tests at Frascati and CERN. Electrons or charged pions enter the radiator, and produce Cherenkov photons in the Cherenkov radiator medium, which are reflected by the mirror and can then be detected by the HPDs. CENTRE: Display of Cherenkov ring in N₂ radiator, integrated over a run of \sim 38,500 events; RIGHT: Cherenkov ring in C₄F₁₀ split across three HPDs (\sim 35,000 events).

Figure 14: Reconstructed Cherenkov angle as a function of track momentum in the $\mathrm{C}_4\mathrm{F}_{10}$ radiator

Figure 2: Invariant mass distribution for $B \rightarrow h^+h^-$ decays [3] in the LHCb data before the use of the RICH information (left), and after applying RICH particle identification (right). The signal under study is the decay $B^0 \rightarrow \pi^+\pi^-$, represented by the turquoise dotted line. The contributions from different b-hadron decay modes ($B^0 \rightarrow K\pi$ red dashed-dotted line, $B^0 \rightarrow 3$ body orange dashed-dashed line, $B_s \rightarrow KK$ yellow line, $B_s \rightarrow K\pi$ brown line, $\Lambda_b \rightarrow pK$ purple line, $\Lambda_b \rightarrow p\pi$ green line), are eliminated by positive identification of pions, kaons and protons and only the signal and two background contributions remain visible in the plot on the right. The grey solid line is the combinatorial background

esi European Scientific Institute

European School of Instrumentation in Particle & Astroparticle Physics

DETECTOR TECHNOLOGIES

Lecture 3 : Radiation Detectors

- Scintillation and Detection
- Čerenkov

- TRD

Transition radiation is a photon emission (X) occuring when a charged particle passes through inhomogeneous media, such as a boundary between two different media with different dielectric properties

Emission at an angle $\cos \theta = \frac{1}{\chi}$

3

Very low rate ~ $1/2 \alpha$ (fine structure constant)

Transition Radiation Detector

ALICE TRD

ALICE TRD

Figure 9: Measured electron identification performance.

ATLAS TRT : Combination Tracker / TRD

About 300 000 Straw tubes : position measurement by dE/dX radiation occurs on the wall of the tube

 Energy deposited in TRT, average event: Sum of ionization losses of charged particles: ~2.5 keV Deposition due to transition radiation photon absorption: >5 keV

Fig. 5. Arrangement of straws in the module of the TRT

	z _{min} , mm	z _{max} , mm	R _{min} , mm	R _{max} , mm	Modules	Layers	Straws in a module
Barrel (both sides)	0	780	554	1082	96	73	52 544
Module of type 1 (inner)	400	712.1	563	624	32	9	329
Module of type 1 (outer)	7.5	712.1	625	694		10	
Module of type 2	7.5	712.1	697	860	32	24	520
Module of type 3	7.5	712.1	863	1066	32	30	793
End-cap modules (one side)	827	2744	615	1106	20	160	122880
Module of type A	848	1705	644	1004	12	8	6144
Module of type B	1740	2710	644	1004	8	8	6144

ATLAS TRT : Combination Tracker / TRD

About 300 000 Straw tubes : position measurement by dE/dX radiation occurs on the wall of the tube

Fig. 14. Probability that a transition radiation photon will be produced in the ATLAS TRT vs. the Lorentz factor of the cosmic muon: the experimental data are shown with dots, and the fit is presented with a solid line.

Differential energy spectra from data and simulation for a single straw with radiator

