
Introduction to Python

Karolos POTAMIANOS
Deutsches Elektronen-Synchrotron (DESY)
March 11, 2020 April 2, 2020
European School in Instrumentation for Particle and Astroparticle Physics (ESIPAP)
European Scientific Institute, Archamps, France

Some of the material is inspired from the past ESIPAP lectures by
Jérôme Odier, whom I thank for allowing me to re-use.

2

Why Python ?
• Why Python ? Why (yet) another programming language ?

“Python is an easy to learn, powerful programming language. It has
efficient high-level data structures and a simple but effective
approach to object-oriented programming. Python’s elegant syntax
and dynamic typing, together with its interpreted nature, make it an
ideal language for scripting and rapid application development in
many areas on most platforms.”

“The Python interpreter is easily
extended with new functions and
data types implemented in C or C++
(or other languages callable from C).”

Appeared in 1991; 19 years ago
Designed by Guido van Rossum
Stable release 3.7.7 (& 2.7.16)
URL http://www.python.org/
OS cross-platform

Python

3

http://www.python.org/

Why Python ?
• Python is very nice for thigs like
• writing scripts / command line tools (e.g. replacing bash)
• symbolic computation
• data analysis

• Its interpreted nature means that it (the language) is not meant for
high-performance tasks (though it gets better at some of it)
• unless it calls dedicated specialized functions in C/C++

(or other languages)
• luckily this integration is possible and quite easy

• Python is a great tool for scripting and benefits from
a huge ecosystem of libraries and tools

4

SymPy
pyROOT
NumPy
SciPy
Matplotlib
...

The Philosophy of Python – The Zen of Python
1. Beautiful is better than ugly.
2. Explicit is better than implicit.
3. Simple is better than complex.
4. Complex is better than complicated.
5. Flat is better than nested.
6. Sparse is better than dense.
7. Readability counts.
8. Special cases aren't special enough to break the rules.
9. Although practicality beats purity.
And 10 more rules…

https://www.python.org/dev/peps/pep-0020/

5

https://www.python.org/dev/peps/pep-0020/

More about Python
• Python is
• structured (if, for, etc.)
• object-oriented
• module-oriented

• modern (reflexion and garbage collection)
• cross-plaform (portable code)
• interpreted (bytecode virtual machine, like Java)
• not optimized for performance (but can wrap around such code)

6

What is Python ?
• Python is a backend programming language that’s great for beginners.
• Python is approachable. Even if you haven’t taken a CS class, you can still write a useful

tool in Python. It’s high-level, so you don’t have to deal with the lower-level aspects of
programming, such as memory management.

• Python can be used for scripting, web scraping, and creating data sets. It’s popular in the
scientific community for scientific computing; there are libraries that make it easy to
share academic code projects in Python.

• Python is a web programming language, so it interfaces with the internet. It knows how
to receive and send web requests and talk to databases.

• Python is said to be “loosely typed.” This category of programming languages doesn’t
require you to state the type of value a function returns when you define the function or
the type of variable before you create it.

• The Python community is welcoming, well-maintained, and well-documented. That’s
important for a beginner!

7 [Source]

https://www.coursereport.com/blog/what-is-python-programming

Indentation in Python
• One of Van Rossum’s decisions was to make indentation meaningful

• This is unusual in programming languages.
• Despite critics, this feature is part of the reason it is both readable and popular.
• Good code style and readability is enforced by the way you must write Python.

8

void myFunction() {
/* function body */

}

def myFunction():
____# The function body

C++

Python

Why Python is Good for Beginners
• Python syntax is very similar to English, so it’s intuitive, which helps you understand it.

• You don't have to look up what symbols mean when you use Python.

9

import random

def get_random_color():
colors = ['green', 'blue', 'red', 'yello']
random_color = random.choice(colors)
return random_color

Using the interpreter

Who can guess what this function is doing ?

Disadvantages of Python
• Python is slower than other languages.

• Trade off between how high-level and abstract a programming language is and how
efficient it is in terms of speed, memory usage and space usage.

• It is not low-level, and not as fast or efficient as a compiled, lower-level language.
• It’s less common to use Python to build distributed database systems or other

systems where speed is incredibly important.
• There are also some concerns about scalability, although you can make Python scalable

with different implementations of the language, such as PyPy.

• BUT it's probably nothing you should worry about unless you develop applications for
high-performance computing or time-critical applications (e.g. data acquisition)

• REMEMBER that readability counts, and that it most of the time doesn't matter whether
your code takes 1 second rather than 10 ms (assuming it doesn't have to run repeatedly,
e.g. for many events) and human time is more precious than CPU time.

10

Usage of Python

11 Source: Stack Overflow Trends

https://insights.stackoverflow.com/trends%3Ftags=r%252Cpython%252Cjavascript%252Cjava%252Cc%252B%252B%252Cc%2523

The versions of Python
• Perhaps the most confusing par about python is that version 3 is not backward

compatible with version 2
• Python 3 started as a cleanup which ended up changing too many things
• Decision to use Unicode by default was the lead cause (as the rest could have

been done using the deprecation process)
• Nevertheless, there is a high usage of v2 together with a large community (driven

by machine learning) using the new features of v3
• Many packages are maintained for both v2 and v3

• BUT Python 2 is reaching End-Of-Life (EOL) in 2020
• So I’d recommend you focus on Python 3 (but remember v2 will stick around)

• More info (in case you're curious):
• Why Python 3: https://snarky.ca/why-python-3-exists/
• Porting from v2 to v3: https://docs.python.org/3.7/howto/pyporting.html

12

https://snarky.ca/why-python-3-exists/
https://docs.python.org/3.7/howto/pyporting.html

13

Let's get into Python

The Python Console

14

$ python3
Python 3.7.7 (default, Mar 10 2020, 15:43:03)
[Clang 11.0.0 (clang-1100.0.33.17)] on darwin
Type "help", "copyright", "credits" or "license" for more
information.
>>> print("Hello world!")
Hello world!
>>> quit()
$

$ cat !$
cat hello.py
#!/usr/bin/env python3

Going to print out something
print("Hello world!")
$ python3 hello.py
Hello world!
$ chmod +x hello.py && ./hello.py
Hello world!

Using the interpreter

Calling a script

Python Data Structures

15 Image: DataCamp

https://www.datacamp.com/community/tutorials/data-structures-python

(Python) Primitive Data Structures
• Integers: represent numeric data, and more specifically, whole

numbers from negative infinity to infinity, like 4, 5, or -1.
• Float: stands for 'floating point number'. You can use it for rational

numbers, usually ending with a decimal figure, such as 1.11 or 3.14.
• String: collections of alphabets, words or other characters. In Python,

you can create strings by enclosing a sequence of characters within a
pair of single or double quotes. For example: 'cake', "cookie", etc.
• Boolean: built-in data type that can take up the values True or False,

which often makes them interchangeable with the integers 1 and 0.
Booleans are useful in conditional and comparison expressions.

16

Operators
• Like every programming language,

Python has operators to perform
operations on data types

• Like in mathematics, there is a priority
in the order in which the operations
are executed

• How much is 4 * 3 + 1 ? 13 or 16 ?

• Parentheses can be used to explicitly
ensure which order was meant, e.g.,
(4*3) + 1 vs. 4 * (3+1)

• Many bugs due to misremembering
the priority of operators

17

Operations on Primitive Data Structures

18

Floats
x = 4.0
y = 2.0

print(x + y) # Addition
print(x - y) # Subtraction
print(x * y) # Multiplication
print(x / y) # Returns the quotient
print(x % y) # Returns the remainder
print(abs(x)) # Absolute value
print(x ** y) # x to the power y

Operations on Float

In Python, you do not have to explicitly state the type of the variable or your
data. That is because it is a dynamically typed language. Such languages are the
those where the type of data an object can store is mutable.

Operations on Primitive Data Structures

19

>>> # Floats
>>> x = 4.0
>>> y = 2.0
>>>
>>> print(x + y) # Addition
6.0
>>> print(x - y) # Subtraction
2.0
>>> print(x * y) # Multiplication
8.0
>>> print(x / y) # Returns the quotient
2.0
>>> print(x % y) # Returns the remainder
0.0
>>> print(abs(x)) # Absolute value
4.0
>>> print(x ** y) # x to the power y
16.0

Operations on Float

Operations on Primitive Data Structures

20

>>> x = 'Cake'
>>> y = 'Cookie'
>>> x + ' & ' + y
'Cake & Cookie'
>>> x * 2
'CakeCake'
>>> x[2:] # A string is basically an array of characters
'ke'
>>> y[0] + y[1]
'Co'
>>> a = '4' # Character 4, not the digit 4
>>> b = '2' # Character 2, not the digit 2
>>> a + b
'42'

Operations on Strings

Operations on Primitive Data Structures

21

>>> str.capitalize('cookie')
'Cookie'
>>> str1 = "Cake 4 U"
>>> str2 = "404"
>>> len(str1)
8
>>> str1.isdigit()
False
>>> str2.isdigit()
True
>>> str1.replace('4 U', str2)
'Cake 404'
>>> str1 = 'cookie'
>>> str2 = 'cook'
>>> # Position where 'cook' is found in 'cookie'
>>> str1.find(str2)
0

Operations on Strings

Multi-line Definition of Strings

22

>>> s = """
... Hello
... This is on multiple lines"
...
... ""
... """
>>> print(s)

Hello
This is on multiple lines"

""

>>> # This is a comment and is ignored
>>>

Strings

Operations with Primitive Data Structures

23

>>> x = 4
>>> y = 2
>>> x == y
False
>>> x > y
True
>>> x < y
False

Usage of Booleans

(Implicit) Type Conversions

• In some cases (typically with numeric types), implicit conversions are performed (e.g. y is
converted into float when doing the division)

24

>>> x = 4.0 # A float
>>> y = 2 # An integer
>>> z = x/y # Divide `x` by `y`
>>> type(z) # Check the type of `z`
<class 'float'>
>>> x = 1
>>> y = 2
>>> x/y
0.5
>>> type(x), type(y), type(x/y)
(<class 'int'>, <class 'int'>, <class 'float'>)

Implicit Type Conversions

(Explicit) Type Conversions

• In other (most) cases you'll need to perform an explicit type conversion (here say that
we wanted to add the string representation of 2 to a string (concatenation operation)

25

>>> x = 2
>>> y = "The Godfather: Part "
>>> favorite_movie = y + x
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: can only concatenate str (not "int") to str
>>> favorite_movie = y + str(x)
>>> print(favorite_movie)
The Godfather: Part 2

Explicit Type Conversions

(Python) Non-Primitive Data Structures
• Arrays: compact way of collecting basic data types, all the entries in

an array must be of the same data type. They are a more efficient
way of storing a certain kind of list (see below).
• List: used to store collection of heterogeneous items. These are

mutable (you can change their content without changing their
identity). Lists are recognizable by their square brackets [and] that
hold elements, separated by a comma ,. Lists are built into Python: no
need to invoke them separately.

26

Python Arrays and Lists

27

>>> import array as arr
>>> a = arr.array("I",[3,6,9])
>>> type(a)
<class 'array.array'>
>>> x = [] # Empty list
>>> type(x)
<class 'list'>
>>> x1 = [1,2,3]
>>> type(x1)
<class 'list'>
>>> x2 = list([1,'apple',3])
>>> type(x2)
<class 'list'>
>>> print(x2[1])
apple
>>> x2[1] = 'orange'
>>> print(x2)
[1, 'orange', 3]

Arrays & Lists

More on Python Arrays

28

>>> list_num = [1,2,45,6,7,2,90,23,435]
>>> list_char = ['c','o','o','k','i','e']
>>> list_num.append(11) # Add 11 at the end of the list
>>> print(list_num)
[1, 2, 45, 6, 7, 2, 90, 23, 435, 11]
>>> list_num.insert(0, 11)
>>> print(list_num)
[11, 1, 2, 45, 6, 7, 2, 90, 23, 435, 11]
>>> list_char.remove('o')
>>> print(list_char)
['c', 'o', 'k', 'i', 'e']
>>> list_char.pop(-2) # Removes the item at the specified position
'i'
>>> print(list_char)
['c', 'o', 'k', 'e']
>>> list_num.sort() # In-place sorting
>>> print(list_num)
[1, 2, 2, 6, 7, 11, 11, 23, 45, 90, 435]
>>> list.reverse(list_num)
>>> print(list_num)
[435, 90, 45, 23, 11, 11, 7, 6, 2, 2, 1]

Arrays

Python Arrays vs. Lists

29

>>> import array
>>> array_char = array.array("u",["c","a","t","s"])
>>> x = array_char.tostring() # not possible with list
>>> print(array_char)
array('u', 'cats')
>>> x1 = [1,2,3]
>>> x1.tostring()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

AttributeError: 'list' object has no attribute 'tostring'

Arrays vs. Lists

Note on Arrays vs. Lists
• We can apply the tostring() function on the array_char

array object because Python is aware that all the items in an array are
of the same data type and hence the operation behaves the same
way on each element.
• Arrays can be very useful when dealing with a large collection of

homogeneous data types.
• As Python does not have to remember the data type details of each

element individually; for some uses arrays may be faster and uses
less memory when compared to lists.

30

Numpy Arrays

31

>>> import numpy as np
>>> arr_a = np.array([3, 6, 9])
>>> arr_b = arr_a/3 # Performing vectorized (element-wise)
operations
>>> print(arr_b)
[1. 2. 3.]
>>> arr_ones = np.ones(4)
>>> print(arr_ones)
[1. 1. 1. 1.]
>>> multi_arr_ones = np.ones((3,4)) # Creating 2D array with
3 rows and 4 columns
>>> print(multi_arr_ones)
[[1. 1. 1. 1.]
[1. 1. 1. 1.]
[1. 1. 1. 1.]]

Numpy Arrays

Numpy is very often use for machine learning applications (but not only!)

More Non-Primitive Data Structures
• The list data structure can be further categorised into two:

linear and non-linear data structures.
• Stacks and Queues are called linear data structures
• Graphs and Trees are non-linear data structures

• These structures and their concepts can be relatively complex but are
used extensively due to their resemblance to real world models
• In linear data structure, the data items are organised sequentially , or

linearly. The data items are traversed serially one after another. All
the data items in a linear structure can be traversed in a single run.
• In non-linear data structures, the data items are not organized

sequentially. The elements could be connected to more than one
element to reflect a special relationship among these items. All the
items in a non-linear structure may not be traversed in a single run.

32

Stacks and Queues (and deques)
• Stacks: a container of objects that are inserted and removed

according to the Last-In-First-Out (LIFO) concept. (Think of documents
in a processing pile on a desk.)
• Queues: a container of objects that are inserted and removed

according to the First-In-First-Out (FIFO) principle. (Think of a ticket
counter where people are processed according to their arrival time.)
• Deques: a double-ended queue is a container that has the feature of

adding and removing elements from either end. (Think of a history of
commands that have been processed, of which you only want to
remember the N most recent ones).
• These structures are used for performing many operations, from

evaluating expressions to syntax parsing and algorithm scheduling.

33

Stacks in Python (are simply Lists)

34

>>> # Bottom -> 1 -> 2 -> 3 -> 4 -> 5 (Top)
>>> stack = [1,2,3,4,5]
>>> stack.append(6) # Bottom -> 1 -> 2 -> 3 -> 4 -> 5 -> 6
(Top)
>>> print(stack)
[1, 2, 3, 4, 5, 6]
>>> stack.pop() # Bottom -> 1 -> 2 -> 3 -> 4 -> 5 (Top)
6
>>> stack.pop() # Bottom -> 1 -> 2 -> 3 -> 4 (Top)
5
>>> print(stack)
[1, 2, 3, 4]

Stacks

There are also other implementations, but this is a convenient one.

Queues in Python

35

>>> import queue
>>> q = queue.Queue()
>>> q.put(0)
>>> q.put(1)
>>> q.put(2)
>>> print(q.get(), q.get(), q.get())
0 1 2
>>>
>>> s = queue.LifoQueue() # The same class can do stacks
>>> s.put(0)
>>> s.put(1)
>>> s.put(2)
>>> print(s.get(), s.get(), s.get())
2 1 0

Queues

Deques in Python

36

>>> import collections
>>> d = collections.deque(["Mon","Tue","Wed"])
>>> print (d)
deque(['Mon', 'Tue', 'Wed'])
>>> d.append("Thu") # Append to the right
>>> print (d)
deque(['Mon', 'Tue', 'Wed', 'Thu'])
>>> d.appendleft("Sun") # Append to the left
>>> print (d)
deque(['Sun', 'Mon', 'Tue', 'Wed', 'Thu'])
>>> d.pop() # Remove from the right
'Thu'
>>> print (d)
deque(['Sun', 'Mon', 'Tue', 'Wed'])
>>> d.popleft() # Remove from the left
'Sun'
>>> print (d)
deque(['Mon', 'Tue', 'Wed'])
>>> d.reverse() # Reverse the dequeue
>>> print (d)
deque(['Wed', 'Tue', 'Mon'])

Deques

Graphs
• Graphs: networks consisting of nodes, also called vertices which may

or may not be connected to each other. The lines or the path that
connects two nodes is called an edge.
• If the edge has a direction of flow, then it is a directed graph
• If no directions are specified, it is called an undirected graph
• If the edges carry a weight, it is called a weighted graph

37

Trees
• Graphs: used to describe how data is sometimes organized, but unlike

real trees, the root is on the top and the branches, leaves follow,
spreading towards the bottom

38

Tuples
• Tuples: a standard sequence data type. Contrary to lists, tuples are

immutable, which means once defined you cannot delete, add or edit
any values inside it. This is useful in situations where you might to
pass the control to code written by others, but you do not want them
to manipulate data in your collection.

39

>>> x_tuple = 1,2,3,4,5
>>> y_tuple = ('c','a','k','e')
>>> x_tuple[0]
1
>>> y_tuple[3]
'e'
>>> x_tuple[0] = 0 # Cannot change values inside a tuple
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: 'tuple' object does not support item assignment

Tuples

Dictionaries
• Dictionary: a standard structure to represent … a dictionary (e.g. a

telephone book), i.e., in cases you need to perform a lookup. They are
made up of key-value pairs. The key is used to identify the item and
the value holds as the name suggests, the value of the item.

40

>>> x_dict = {'Edward':1, 'Jorge':2, 'Prem':3, 'Joe':4}
>>> del x_dict['Joe']
>>> x_dict
{'Edward': 1, 'Jorge': 2, 'Prem': 3}
>>> x_dict['Edward'] # Prints the value stored with the key
'Edward'.
1
>>> len(x_dict)
3
>>> x_dict.keys()
dict_keys(['Edward', 'Jorge', 'Prem'])
>>> x_dict.values()
dict_values([1, 2, 3])

Dictionaries

Graph Implementation with Dictionary

41

>>> graph = { "a" : ["c", "d"],
... "b" : ["d", "e"],
... "c" : ["a", "e"],
... "d" : ["a", "b"],
... "e" : ["b", "c"]
... }
>>>
>>> def define_edges(graph):
... edges = []
... for vertices in graph:
... for neighbour in graph[vertices]:
... edges.append((vertices, neighbour))
... return edges
...
>>> print(define_edges(graph))
[('a', 'c'), ('a', 'd'), ('b', 'd'), ('b', 'e'), ('c', 'a'), ('c',
'e'), ('d', 'a'), ('d', 'b'), ('e', 'b'), ('e', 'c')]

Graph

Sets
• Set: a collection of distinct (unique) objects. These are useful to

create lists that only hold unique values in the dataset.

42

>>> x_set = set('CAKE&COKE')
>>> y_set = set('COOKIE')
>>> print(x_set)
{'C', 'K', '&', 'A', 'E', 'O'}
>>> print(y_set) # Single unique 'o'
{'C', 'K', 'E', 'O', 'I'}
>>> print(x_set-y_set) # All the elements in x_set but
not in y_set
{'A', '&'}
>>> print(x_set|y_set) # Unique elements in x_set or
y_set or both
{'C', 'K', '&', 'A', 'E', 'O', 'I'}

Sets

Files
No programming language would truly be useful without the capability to store and
retrieve previously stored information. Files are a common place where we hold
data (there are other forms, too).

Here are some common file operations:

• open() to open files in your system
• first argument is the file name, second the mode: r(ead), w(rite), a(ppend)

• read() to read entire files
• readline() to read one line at a time
• write(something) to write a something to a file (returns the number of characters written)

• close() to close the file.

43

None
None is frequently used in Python to represent the absence of a value, for example
when default arguments are not passed to functions (more later).

The operators is and not can be used to check whether an element exists.

44

>>> x = None
>>> x is None
True
>>> x is not None
False
>>> not None
True

Sets

On Whitespaces and Blocks
• Indentation is meaningful in Python: the same number of spaces or

tabs is needed to indent one level in the same file.
• You can use backslashes \ to go to the next line (in case of long lines)
• There are no braces to mark blocks of code
• Indented blocks have a semicolon : to start them
• Blocks must contain at least one instruction ; use pass if you need to

make an empty block

45

>>> print(x)
[1, 2, 3, 4, 5, 6]
>>> def printHello():
... print("Hello")
...
>>> printHello()
Hello

Python Code

Functions
Functions are used to modularise code and re-use the same code pieces by calling
them again. They can have any number of arguments, provided as a comma-
separated tuple.

Functions can also be called with keyword arguments kwarg=value (Google it)46

>>> def sum(a,b):
... return a+b
...
>>> sum(1,2)
3
>>> def sum_with_defaults(a = 1, b = 10):
... return a+b
...
>>> sum_with_defaults()
11
>>> sum_with_defaults(5)
15

Functions

Control Flow Statements: if / elif / else
Conditionally execute statements/blocks. The keyword ‘elif’ is short for ‘else if’, and
is useful to avoid excessive indentation. An if … elif … elif … sequence is a substitute
for the switch or case statements found in other languages.

47

>>> x = 0
>>> if x < 10:
... print("Less than 10")
... elif x > 10 and x < 20:
... print("Between 10 and 20")
... else:
... print("More than 20")
...
Less than 10

if/elif/else

Control Flow Statements: while
While is used for repeated execution as long as an expression is true.

48

>>> x = 0
>>> while x < 2:
... print(x)
... x += 1
...
0
1

while

Control Flow Statements: for
While is used to iterate over the elements of a sequence (such as a
string, tuple or list) or other iterable object

49

>>> for i in [0, 1, 2]:
... print(i)
... i=5
...
0
1
2
>>> # Note that i=5 has no effect

for

Control Flow Statements: break and continue
Break is used to stop the execution of the loop. It breaks out of the innermost
enclosing for or while loop. Continue continues with the next iteration of the loop.

50

>>> for n in range(2,8): # range(2,8) == [2, 3, 4, 5, 6, 7]
... for x in range(2, n):
... if n % x == 0:
... print(n, 'equals', x, '*', n//x)
... break
... else: # else can also be used in this context (note intendation)
... # loop fell through without finding a factor
... print(n, 'is a prime number')
...
2 is a prime number
3 is a prime number
4 equals 2 * 2
5 is a prime number
6 equals 2 * 3
7 is a prime number

break

Control Flow Statements: break and continue
Break is used to stop the execution of the loop. It breaks out of the innermost
enclosing for or while loop. Continue continues with the next iteration of the loop.

51

>>> for num in range(2, 10): # range(2,10) == [2, 3, 4, 5, 6, 7, 8, 9]
... if num % 2 == 0:
... print("Found an even number", num)
... continue
... print("Found a number", num)
Found an even number 2
Found a number 3
Found an even number 4
Found a number 5
Found an even number 6
Found a number 7
Found an even number 8
Found a number 9

continue

Exception handling : try and except
Concept: for code within a try block, when an error occurs, an exception is raised,
and the program execution is suspended.
• If the exception is not caught, the program terminates
• If it is, using except, the program resumes its execution in the exception handler
• Usually one except block per exception type (multiple can occur)

An exception is raised using, e.g., raise ValueError("an exception")

52

>>> while True:
... try:
... x = int(input("Please enter a number: "))
... break
... except ValueError:
... print("Oops! That was no valid number. Try again...")
...

Exceptions

Exception handling : try and except
Some common exceptions are (more at https://docs.python.org/3/library/exceptions.html)

• SyntaxError: syntax error
• ValueError: when an argument that has the right type but an inappropriate value
• OSError: when a system function returns a system-related error
• KeyError: when a mapping (dictionary) key is not found in the set of existing keys

53

>>> class MyException(Exception):
... pass
...
>>> raise MyException("my message") # More on classes later
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

__main__.MyException: my message

User Defined Exceptions

Using Exceptions

54

>>> try:
... if error1: # Some error condition
... raise MyException("A problem occurred.")
... if error2: # Some error condition
... raise ValueError("Wrong value provided.")
... except MyException as e:
... print(e)
... except ValueError as e:
... print(e)
...

Using Exceptions

Helper functions
Python has a lot of functions that can be used to perform lots of tasks. The
"standard library" is quite extensive, and there are also lots of packages.

55

>>> list(range(0,5)) # Note that 4 is excluded from the range
[0, 1, 2, 3, 4]
>>> list(range(0,5,2)) # With a step of 2
[0, 2, 4]
>>> [x for x in range(0,5,2)] # Yes, this is valid in python
[0, 2, 4]

range

56

Let's some of this now

Importing a Module
• A module is a collection of classes, functions, etc...
• Modules can be shared between multiple applications
• Modules are a very important aspect and allow for code re-use

57

>>> import module
>>> import module.submodule
>>> import module as m
>>> from module import submodule

Importing modules

PIP :: Package Installer for Python
• PIP is a package manager which allows you to conveniently install

packages / modules. More info here.

58

$ curl https://bootstrap.pypa.io/get-pip.py -o get-pip.py
$ python3 get-pip.py

Installing pip

$ pip3 install --user numpy
Collecting numpy
Downloading numpy-1.18.2-cp37-cp37m-macosx_10_9_x86_64.whl

(15.1 MB)
|████████████████████████████████| 15.1 MB 126 kB/s

Installing collected packages: numpy
Successfully installed numpy-1.18.2

Using pip

https://pip.pypa.io/en/stable/installing/
https://bootstrap.pypa.io/get-pip.py%2520-o%2520get-pip.py

Creating a Module
• One can create his/her own modules by grouping functions/classes in

one or multiple files in a folder

• A module needs to be in the current directory or accessible via the
PYTHONPATH environment variable
export PYTHONPATH=/path/of/my/module1:/path/of/my/module2

59

$ mkdir MyModule
$ touch MyModule/__init__.py
$ touch MyModule/foo.py
$ touch MyModule/bar.py
Edit the files...
$ python3
>>> import MyModule
>>> import MyModule.foo
>>> import MyModule.bar

Importing modules

60

An exercise

Exercise
Write a command-line tool to append a line of text (read from the
keyboard) to a file. Don't go past the ANSWER section !!

Tips:
• The module sys should be called using import sys and you can

use sys.stdin as a file to read a line from your terminal
• In order to call the script directly, don't forget the shebang
#!/usr/bin/env python3
and to make the file executable (using chmod +x)

61

$./append_to_file.py
Hello
$ cat myFile.txt
Hello

Expected output

Python (Jupyter) Notebooks

• Jupyter Notebook documents are both human-readable documents
containing the analysis description and the results (figures, tables, etc..) as
well as executable documents which can be run to perform data analysis.
See, e.g.: https://jupyter-notebook-beginner-guide.readthedocs.io

• Google Colaboratory (https://colab.research.google.com/)
• Provides convenient access to Python Notebooks, which can be shared

and worked on collaboratively
• There are of course other providers, some even free
• See : https://colab.research.google.com/notebooks/intro.ipynb

62

https://colab.research.google.com/
https://colab.research.google.com/notebooks/intro.ipynb

Google Colaboratory

63

A text area for comments

Notebooks

64

A text area for comments

• A fancier example with
plots embedded in the
notebook

• This is very useful to
resume work and get a
stable environment

• In the back-end, there is
a python kernel that
remembers what you
ran in previous code
blocks in the document

Exercise (if you have no python on your system)
Using some python notebook, e.g. using Google Colaboratory, write a
tool to append a line of text (provided in-code) to a file.
Don't go past the ANSWER section !!

Tips:
• You can use the question mark (!) to escape to the shell and run

(some) system commands, i.e.
!cat myFile.txt
will show you the content of the file called myFile.txt

65

https://colab.research.google.com/

66

Answers
Please try the exercise first…

A possible solution

67

#!/usr/bin/env python3

import sys

f = open("myFile.txt", "w")
data = sys.stdin.readline()
f.write(data)
f.close()

append_to_file.py

A possible solution in Google Colaboratory

68

f = open("myFile.txt", "w")
data = "This is my data"
f.write(data)
f.close()
!cat myFile.txt

In your Notebook

69

Objects in Python

Object Oriented Programming (OOP)
• OOP refers to a type of computer programming in which programmers

define the data type of a data structure and the types of operations
(methods) that can be applied to the data structure
• Classes provide a means of bundling data and functionality together
• Creating a new class creates a new type of object, allowing new instances

of that type to be made
• Each instance can have attributes attached to it for maintaining its state
• Instances can also have methods (defined by its class) to modify its state
• The class inheritance mechanism allows multiple base classes, a derived

class can override any methods of its base class or classes, and a method
can call the method of a base class with the same name.

70

Some definitions
• Class: A user-defined prototype for an object that defines a set of attributes that

characterize any object of the class. The attributes are data members (class
variables and instance variables) and methods, accessed via dot notation.
• Class variable: A variable that is shared by all instances of a class. Class variables

are defined within a class but outside any of the class's methods. Class variables
aren't used as frequently as instance variables are.
• Instance variable: A variable that is defined inside a method and belongs only to

the current instance of a class.
• Method: A special kind of function that is defined in a class definition.
• Instance: An individual object of a certain class. An object obj that belongs to a

class Circle, for example, is an instance of the class Circle.
• Instantiation: The creation of an instance of a class.

71

Class and Instance Variables

72

class Dog:
kind = 'canine' # class variable shared by all instances

def __init__(self, name):
self.name = name # instance variable unique to each instance

>>> d = Dog('Fido')
>>> e = Dog('Buddy')
>>> d.kind # shared by all dogs
'canine'
>>> e.kind # shared by all dogs
'canine'
>>> d.name # unique to d
'Fido'
>>> e.name # unique to e
'Buddy'

Python Classes

Class Inheritance

73

Class Base1(object): # <class 'object'> is the root of all classes
<statement-1>
.
<statement-N>

class DerivedClassName(Base1):
<statement-1>
.
<statement-N>

Class Base2(object):
<statement-1>
.
<statement-N>

class DerivedClassName(Base1, Base2): # Multiple inheritance
<statement-1>
.
<statement-N>

Class Inheritance

Class Inheritance

74

class MyClass1(object):
def __init__(self, foo):

self.foo = foo
def print(self):

print(self.foo)
def hello(self):

print('hello %s' % self.foo)

class MyClass2(MyClass1):
def __init__(self, foo, bar):

super().__init__(foo) # call the parent constructor
self.bar = bar

def print(self): # the method is overridden
super().print() # call the parent method
print(self.bar)

Class Inheritance

Class Inheritance

75

>>> # Previous slide saved as MyModule.py in current folder
>>> import MyModule
>>> x = MyModule.MyClass1("Hello")
>>> y = MyModule.MyClass2("One", "Two")
>>> x.print()
Hello
>>> y.print()
One
Two

Class Inheritance

Class Properties

76

class Celsius:
def __init__(self, temperature = 0):

self.temperature = temperature

def to_fahrenheit(self):
return (self.temperature * 1.8) + 32

def get_temperature(self):
print("Getting value")
return self._temperature

def set_temperature(self, value):
if value < -273:

raise ValueError("Temperature below -273 is not possible")
print("Setting value")
self._temperature = value

temperature = property(get_temperature,set_temperature)

Class Properties

Class Properties

77

>>> from Celsius import Celsius # To avoid typing Celsius.Celsius
>>> x = Celsius()
Setting value
>>> x.set_temperature(10)
Setting value
>>> x.get_temperature()
Getting value
10
>>> x.to_fahrenheit()
Getting value
50.0
>>> x.set_temperature(-500)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/Users/karolos/CERNbox/ESIPAP/Python/Celsius.py", line 14, in

set_temperature
raise ValueError("Temperature below -273 is not possible")

ValueError: Temperature below -273 is not possible

Class Properties

Operator Overloading

78

class complex:
def __init__(self, a, b):

self.a = a
self.b = b

def __add__(self, other):
return self.a + other.a, self.b + other.b

def __str__(self):
return self.a, self.b

complex.py

>>> from complex import complex
>>> Ob1 = complex(1, 2)
>>> Ob2 = complex(2, 3)
>>> Ob3 = Ob1 + Ob2
>>> print(Ob3)
(3, 5)
>>>

Operator Overloading

79

Another exercise

Exercise
Write a vector class (arbitrary dimension)
- Create the module Vector
- Create the class Vector
- Write the constructor [def __init__(self, dim)]
- Overload operators

Use the internet for help, but don't google vector class for an answer

80

81

Useful Python Libraries

import os
Miscellaneous operating system interfaces
• More info: https://docs.python.org/3/library/os.html

Lots of functions of the POSIX standard:
• mkdir, rmdir, remove, chmod, etc.
• environ[], setenv(), getenv()
• system(), popen() … to execute shell commands

• import os.path for path manipulations (exists, is_dir, etc.)
• See https://docs.python.org/3/library/os.path.html

82

https://docs.python.org/3/library/os.html
https://docs.python.org/3/library/os.path.html

Other (System) Libraries
• import glob: file wildcards
• import re: regular expressions
• import math: mathematical functions
• import random: random number generation
• import urllib: fetching resources from the internet
• import time, datetime: time manipulation
• import zlib: compression

83

Libraries Provided by 3rd Parties
• There is a very broad ecosystem of Python libraries provided by third

parties. Here we just name a few.

• SciPy: Python-based ecosystem of open-source software for
mathematics, science, and engineering. See https://www.scipy.org
• NumPy: base for N-dimensional array package
• SciPy: fundamental library for scientific computing
• Matplotlib: for 2D/3D plotting
• IPyton: enhanced interactive console
• Sympy: symbolic mathematics
• Pandas: Data structure and analysis

84

https://www.scipy.org/

Libraries Provided by 3rd Parties (2)
• Of course, there are also the machine learning libraries…

• Tensorflow: TensorFlow is an end-to-end python machine learning library for
performing high-end numerical computations: can handle deep neural networks
for image recognition, handwritten digit classification, recurrent neural networks,
NLP (Natural Languae Processing), word embedding, etc.
• Keras: leading open-source Python library written for constructing neural

networks and machine learning projects.
• Scikit-learn: another prominent open-source Python machine learning library

with a broad range of clustering, regression and classification algorithms.
• PyTorch: deep neural networks and Tensor computation with GPU acceleration

are the two high-end features of the PyTorch
• Theano: aims to boost development time and execution time of ML apps,

particularity in deep learning algorithms. (Syntax is not beginner-friendly.)
85

Conclusion
• Python is an interpreted, high-level, general-purpose programming

language.
• Python's design philosophy emphasizes code readability with its

notable use of significant whitespace.
• Python is meant to be an easily readable language. It is easy to learn.
• Python is slower than other languages but is excellent at interfacing

with them to write nice user code.

• Python's name is derived from the
British comedy group Monty Python,
whom Python creator enjoyed while
developing the language.

Appeared in 1991; 19 years ago
Designed by Guido van Rossum
Stable release 3.7.7 (& 2.7.16)
URL http://www.python.org/
OS cross-platform

Python

86

http://www.python.org/

Next Steps

Like a real-life language, one needs to practice to gain experience with
Python. Luckily there are plenty of resources online to achieve this.

See for example https://www.practicepython.org

The documentation is a great reference: https://docs.python.org/3/

Enjoy programming in Python!

87

https://www.practicepython.org/
https://docs.python.org/3/

88

Thank you

