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DEVELOPMENT OF LGADS AND AC-LGAD AT BNL AND NEUTRON DETECTION

INTRODUCTION

OUTLINE

Time resolution - LGAD
I. Introduction to LGADs
II. LGAD response to °Sr 5~
III. LGAD interaction with fast neutrons

IV. Comparison with Geant4 simulation

Space & time - AC-LGAD
V. The AC-LGAD concept & fabrication
VI. Tests with IR, red laser and %°Sr

Conclusions and Future activities

AC-LGAD matrix (BNL)
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INTRODUCTION

Low GAIN AVALANCHE DIODE

INTRODUCTION

Low Gain Avalanche Diode (LGAD): highly
doped layer of p-implant (Gain layer) near p-n
junction creates a high electric field that
accelerates electrons enough to start
multiplication.

>
>

Electric Field: ~300 kV/cm in Gain Layer

Silicon-based technology with low,
adjustable gain (2 - 100)

Breakdown Voltage o Gain parameters
(dose, energy)

High Signal/Noise ratio

Ability to achieve fast-timing O(20-30) ps
in high radiation environments

Epitaxial layer — p-

\\

= substrate — p

aluminum
JTEn |

Efield

Questions to be answered:

» MIPs detection capabilities already proven,
fast neutron response to be characterized

» How fast is the response to fast neutrons?

» What are out limits of detectable neutron
energy?
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LGAD STRUCTURE

Wafer structure ( W1837,W1840)

> 1x1 mm? sensor size > 500 pm substrate
Aluminum thin layer
Silicon Oxide SiO2

n++ layer, 2P doped

> 50 wm 28Si p epitaxial layer, 1°B and !B doped
(7x10%3em™3)

» Different doping concentrations (3, 3.25 and 2.7

x10"em ™) and gain layer thickness Gain p+ layer, "B doped

aluminum
JTEn

Epitaxial layer — p-

t substrate — p** j:
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INTRODUCTION

9SSR INTERACTIONS

SIGNAL WAVEFORMS

w1836_Sr90 w1837_5r90 w1840_Sr90
5 o 5 o s o
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Waveforms from 8~ °°Sr signals
> W1836, W1837, W1840 show narrow Sensor Gain (X-Ray):
peaks with widths O(1 ns) W1836: ~ 15
> Sensors Gain for = compatible to that of W1837: ~ 20
X-rays ‘W1840: ~ 25
> Ojitter ~ 20ps
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DEUTERIUM-TRITIUM NEUTRON GENERATOR

BNL Thermo-Fisher MP 320 Neutron Generator (prototype)
ST +2 D =" He+n(14.1 MeV) (1)

Neutron energy spectrum very narrow oz = (1072 MeV) and isotropic, with estimated neutron
production of 6x107 neutrons/sec, with a flux of 7x10* neutrons/(cm? sec) at sensor position
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FAST NEUTRON INTERACTIONS
SIGNAL WAVEFORMS

w1836_50um w1837_50um w1840_50um

o12f
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Ampitue [V

o1 [

GDE;

E i
006— [
004 [

002

O et [ e e S ey ety
B R Lo [ERERE FERRE IR ol x10*
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Waveforms from neutron signals
> Trigger = 10 mV Sensor Gain (X-Ray):
> W1836, W1837, W1840 show narrow W1836: ~ 15
peaks with widths O(1 ns) W1837: ~ 20
> Sensor Gain for neutrons compatible to the W1840: ~ 25

one measured with X-rays
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FAST NEUTRON INTERACTIONS

DEPOSITED ENERGY DISTRIBUTIONS

Energy deposited by the neutron interaction
computed as integral of each signal:

3.6 [eV] 2 Legevrv‘?ms 50um
Edep [€V] = W Adt —w1837:50:m
n 1lfb Qe wf 0.08 ] — w1840_50um

Good agreement with gain measure with X-ray
in the "sensitive" range in deposited energy
(x (Gr)), limited by trigger voltage and
maximum signal amplitude in oscilloscope
window.

e x10°

For a 10 mV trigger level and G,, = 15, o s < S
sensitivity to neutron signals with deposited
energy as low as ~ 30 keV.

250 300
Deposited energy [eV]
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FAST NEUTRON INTERACTIONS

JITTER MEASUREMENT

Slew rate (normalized)

Legend
w1836_Trigger: 10mV
—}— w1837_Trigger:1omV

—— w1840 _Trigger:10mV/

Jitter is an important component of the time 00
resolution of the sensor; computed as ratio
between the noise (~0.5 mV for all the sensors)
and slew rate (dV/dt):

av\ "
05 = (Onoise <E> ) ~ 20 ps

AR RR RN RR RN RN RN RN R

Lol Lo Jx108

80 920 100
Slew rate [V/s]
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SEANT4 SIMULATION

GENERATED ENERGY SPECTRUM

:é 0'22i Legend
<< =
025 —1— Geant4 14MeV 50
o1s Distribution of energy deposited by neutron
= e soum interaction as simulated by GEANT4 shows good
TE agreement with experimental data from W1836
0.14 . s
E in the sensor sensitive range Fqep = [30, 450] keV
0.125
01—
0.08/— . . C . .
= Superimposing g, distributions generated by
TE neutrons with different energies can give us an
0.04— . .. e
= estimate of minimum neutron energy sensitivity
0.02—
o I IR s i o il x10°
50 100 150 200 250 300 350 400 450

Deposited energy [eV]
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SEANT4 SIMULATION

NEUTRON ENERGY SENSITIVITY

Extrapolation of sensitivity to various neutron energies based on 14.1 MeV data

5

A - Logons .
3 045: T = e
0.4/ + F
= 0.12
035 £l o
03b 01—
0.25 008~ |
0.2 C
= 006
0.15(— C
st 0.04/—
005 002
E rilivie = IO T x10°
0 o 180 — I Ly 10°

200 250 I P S il i

Deposited energy [eV] 50 100 150
W1836 sensitivity (according to 14.1 MeV

deposited E distribution) to 300- and 500- keV

neutrons

200 ‘ 250

Deposited energy [eV]
‘W1836 sensitivity (according to 14.1 MeV

deposited E distribution) to 20 MeV neutrons
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GEANT4 SIMULATION

NEAR FUTURE PLANS

e Validate simulation for lower energy neutron
with 252Cf source (already available at BNL) —
neutron emitter @ 2 MeV. e

e Lower trigger threshold from

o Ejep th @Q10mV o Eyep th @Q2mV
10 mV to 2 mV (x4 average
N, s W1836: ~30 keV W1836: ~6 keV
noise); expected sensitivity to
E, < 100 keV: W1837: ~20 keV W1837: ~4 keV
W1840: ~22 keV W1840: ~4 keV

e Testing AC-LGAD response to DT (14.1 MeV) and 22Cf (2 MeV) neutrons
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AC-LGADs

THE AC-LGAD CONCEPT

>~ LiMITs OF LGADSs
>~ THE AC-LGAD CONCEPT
>~ FABRICATION OF AC-LGADs @ BNL
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INTRODUCTION DATA GEANT4 SiMULATION AC-LGADs CONCLUSIONS

LimiTs oF LGADS

Lateral dimensions of Gain layer must be much larger than thickness of substrate, to create

uniform multiplication.
Dead volume (local gain ~ 1) extends within the implanted region of the gain layer:

» Pixels/strips (pitch ~ 100 mm) with gain layer below the implant have a Fill Factor «100%
(Voltage dependent)

» Large pads (~ 1 mm) are preferred (e.g. ATLAS HGTD or CMS MTD)

» Good for timing, hardly for 4D reconstruction

» Various possible ways to overcome this issue with different geometries

aluminum

JTE

I Dead Volume | ctive p Dead Volume
Epitaxial layer — p !_ d_ Volume i |

T substrate — p** r
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AC-LGADs

AC-LGAD

CONCEPT
Main differences w/r to LGADs: Expected Results:
; +
1. One large low-doped high-p n > ~ 100% Fill Factor and fast timing information at a

implant running overall the active

area, instead of a high-doped ) . o .
low-p nt+ » Signal generated by drift of multiplied holes into the

substrate but AC-coupled through dielectric

per-pixel level achieved

2. Thin insulator over the n™, where
fine-pitch electrodes are placed,
patterned over the insulator

» Electrons collect at the resistive n™ and then slowly
flow to a ohmic contact at the edge.

) dielectric  AC- pads
aluminum {

(] a
< <
L) JTE e — 0)
n

| -l
b o) Epitaxial layer — p° Epitaxial layer — 6
)

n t substrate — p** T t substrate — p** T <
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AC-LGADs

AC-LGAD

FaBRICATION AT BNL

Process:
» Process starts from a Std (DC-) LGAD Pad
» Change METAL (Aluminum) and thus Contacts

» n™" runs at the periphery only; replaced by resistive
n" in the active area with 10/100 less dose

» Thin insulator (100 nm SiN) over the n™

dielectric AC-pads
{ — — F

Epitaxial layer — p

JTE

substrate — p**

Std-LGAD Pad:

AC-LGAD Pixels:
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AC-LGADs

AC-LGAD CHARACTERIZATION

RECALIBRATION OF GAIN LAYER

In the very first AC-LGADs wafers, used the same gain layer dose as in LGADs.
Problem: the n™ is little doped, and its depleted thickness is not negligible; the p* gain layer is
deeper, leading to lower Breakdown Voltage.

2500.0

7 6x10'°1 -
2000.0 £ (b)
c
g £
g £ at0r — AC LGAD g
£ 3 — S LGAD
2 Qo
51000.0 Foot moves by 6V £
° © 16|
22x10 [ 4
£
500.0 8‘
a
1
0.0 0 10 20 30 40 8,0 0_5D - 1.0 15
m
Vrev [V] epth (um)

Gain layer dose has been lowered in following production, while keeping the process flow very
similar.
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AC-LGADs

TESTS WITH IR, RED LASER AND SR

>~ LGAD vs AC-LGAD COMPARISON
>~ (CROSS-TALK STUDIES
> TIMING PERFORMANCE
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AC-LGADs

AC-LGAD

SIGNAL COMPARISON WITH LGADs

» Sensor wire-bonded to 16 channel Trans-impedance
Amplifier board by FermiLab

» AC-LGAD: 3x3 pixel matrix, 200pm x 200pm
AC-coupled pads bonded to TAs

> LGAD: same AC-LGAD device where the nt™ is
read-out by the TA (same bias conditions and gain)

1 ACLGAD
3 s LGAD

» Comparison of pulse amplitudes of betas from °Sr.

> Essentially equal distribution (same gain) for LGAD
and AC-LGAD Amplitudes

» All signal goes through Cac = 20pF

» Is this signal well spatially localized? Need to
N TP I T estimate Cross-Talk between pixels/strips 19 /24
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AC-LGADs
CROSS-TALK
PixeL Map
2 3 Cross-talk measured as ratio between signal amplitude
peaks in different pixels
4 . 6 | Dose n™ 1/10 | Dose n™ 1/100
ratio A5/A1 9% 17%
7 8 9 ratio A9/A1 16% 11%
Response of a single pixel as
a function of shining position O CSeCton A | Chevee collecton (AU Charge collection (AU
of IR or red laser (TCT = 2 = I
Scan) . s409 38400~ mm} B 10

mzoo»

Border effect: the n* is a oo
sl o]

low resistance path that Wf o
couples the signals back to 2200 209 - .

the pixel under measure. 200

P T e aam00sbin bbbl Lol
TOSISOOAEOR08S 10052005005 400550058 THTODIOOSGIRONGS IOV 20 s s aonssonsionssoos s o )
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AC-LGADs

CROSS-TALK

STRIP MAP
|i 5 6 7 8

Response of a single strip as
a function of shining position
of IR or red laser (TCT
scan).

Border effect: the n™ is a
low resistance path that
couples the signals back to
the strip under measure.

yiom)

Cross-talk measured as ratio between signal amplitude
peaks in different strips

Charge collection [A.U.]

[ Crosstalk
ratio A2/A1 100%
ratio A3/A1 13%
ratio Ad/A1l 6%
ratio A6/A1l 4%

Charge collection [A.U.]

Charge collection [A.U.]
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tuLATION AC-LGADs CoNc

TIMING RESOLUTION

» AC-LAGDs and LGADs show similar response
(waveforms)— expected ~ same timing
performance

» Using beta signals from a ?9Sr source on AC-LGADs
lead to estimated ojister ~20 ps

» NEXT: Measuring timing resolution in coincidences
with a trigger sensor, using 3D-printed Beta Scope
setup ready with ~ 180 MBq “Sr source

» Developed a setup such that our probe station can
operate both at room temperature and at -30°C
which will be used for pre/post irradiation IV and
CV scans
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CONCLUSIONS

CONCLUSIONS

LGADs can be used to detect neutrons in the 100s keV - MeV (and beyond?)
energy range in high flux conditions for applications where fast time (~20 - 30
ps) measurements are needed

Fast timing for fast neutrons ensured by jitter measurement of O(15 - 20) ps

Good agreement between data and G4 simulation; extrapolations from GEANT4
simulations shows potential sensitivity to neutrons with energies <100 keV

By changing a few photolithographic masks and tuning process flow parameters,
AC-LGADs have been fabricated as well

Precision space resolution (50-100 pum) available with AC-LGAD technology

Cross-talk and time resolution tested with mips and TCT, leading to positive
results 23 /24
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CONCLUSIONS

ADDITIONAL INFO/LINKS

» G. Giacomini, W. Chen, F. Lanni, and A. Tricoli, Development of a technology
for the fabrication of Low-Gain Avalanche Diodes at BNL

» G. Giacomini, W. Chen, G. D’Amen, A. Tricoli, Fabrication and performance
of AC-coupled LGADs
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BACKUP
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MOTIVATION

Low-Gain Avalanche Diodes (LGAD) are gathering interest in the
Physics community thanks to fast-timing and radiation-hardness:

> HEP: ATLAS (HGTD) and CMS (MTD) timing detectors at
the HL-LHC

» NASA: neutron flux studies
» Medical Imaging: PET scans

» Quantum information, Nuclear and forward physics,
etc...

MIPs detection capabilities already proven, investigating the
response to neutrons in the O(MeV) region (fast neutrons)

Wafer of LGADs produced at BNL
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SENSOR GAIN COMPUTATION

Signals max amplitude Max amplitude scaled by Gain (normalized)
5 £ Legend 5 02— Legend
< 018 —+— w1836_50um < —+— w1836_50um
E Nl ~+ w1837_50um w1837 50um
016 - w1840_50um |- w1840_50um
E —+— w1849_300um —+ w1849_300um
014 ]
012
01—

o o
f
AN ERANRAAN RN

L. I P p—

| | | | | | |
0.02 0.04 006 0.08 0.1 0 0001 0002 0003 0004 0005 0006 0007 0008 0.009 0.01
Max amplitude [V] Max amplitude [V]

e Sensor Gain:
Distributions of maximum signal amplitude (left) are

divided by the sensor gain G, (right), as obtained WI836: ~ 15
from X-ray measurements. W1837: ~ 20

W1840: ~ 25
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SLEW RATE

S5 04— Legend
< B —+— w1836(50um)
0.35 —— w1837(50um)
E —+— w1840(50um)
. . 03E 1 w1849(300um)
Average signal Noise F
> W1836: (0.3940.54) mV 025E=
> W1837: (0.1040.43) mV 02
> W1840: (0.194+0.5) mV 015
> W1849: (-0.1140.42) mV 01
005
oF = N
= I T A T Y T T I I T
0 10 20 30 40 5 60 70 8 _ 90 100
Slew rate [V/s]
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SENSITIVE RANGE

Full width at half maximum (normalized)

Sensitive region limited by trigger voltage

% F S s Thomtony (10 mV for W1836, W1837, W1840, 3.5 mV
© o5 —+ sty for W1849) and maximum signal amplitude
F i st gty in oscilloscope window.
04f-
sl Energy distributions constrained in region
F between:
02F- (FW HM)
F Iin = V21 Vi ———+
o " 2355
g Li& JHJL L with V7" = trigger level and V;7*® = max
o ‘ ‘ T 'fj‘ ‘ WT“ 10 window amplitude
0 2 4 6 8 12
FWHM [s]
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LGAD FABRICATION AT BNL

> 4aAl p-type epitaxial wafers (100), NA <
1x10*em ™) 50mm thick(Vgepr ~120V).
Also FZ used.

» 4 ion implantations (JTE and gain at high
energy)

» 6 photolithographic masks

> p-spray isolation (patterned externally to

the active area to avoid implant on gain
region).

» Little thermal drive-in (mainly for the JTE
aASJunction Termination Edge for

protection from high Eat the border of the
shallow n-+implant)

> layout with pads of 1x1 mm?, 2x2 mm?,
3x3 mm? and arrays.
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Low GAIN AVALANCHE DIODE
LGAD propucTIiION @ BNL

Silicon Fabrication Facility and wire- and bump- bonding Lpon
@ BNL Instrumentation Div., full characterization, design
and simulation of silicon sensors @ Si-Lab

1sE.08 3.25e12cm?

2 .15e12 cm2

LGAD Current

> Leakage current (measured on diodes) for 1x1 mm
of ~ 10 pA (1 nA/cm?) 10809

» Consistent from batch to batch

3e12 cm?

5.06-10

» Clearly current depends on gain layer dose, so does
the breakdown voltage

» GR can stand higher voltages Bias Voltage (V)
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LGAD STRUCTURE

Thin device 50um ( W1837,W1840)
» 1x1 mm? sensor size
» 50 wm 28Si p epitaxial layer, 1°B and ''B
doped (7x10"em™?)
> different doping concentrations (3, 3.25 and
2.7 x10"3em ™) and gain layer thickness
» 500 um substrate

Thick device 300um (W1849)

>
>

3x3 mm? sensor size
300 pm 28Si p- substrate, 1°B and 'B
doped (5x10*em™?)

sensor volume ~54 times bigger than 50um
devices

Wafer structure
Aluminum thin layer, thickness 0.5 um
Silicon Oxide SiO2, thickness 0.3 - 0.5 um
n++ layer, >'P doped, thickness 0.5 um
Gain p+ layer, 'B doped, thickness 0.5 pm

aluminum

Epitaxial layer — p-

)}

substrate — p**
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SIGNAL WAVEFORMS

w1836_50um w1840_50um
g oo I £
l oo
k. I oosf- Waveforms acquired with
E | o | Tektroniz MSO64 mixed-signals
0.04— | C |
F \ .
ok I octf- \ oscilloscope;
i B L !
SER— i o ety gt
S [REREEE Lo o bkag® RS R R Lo X107 N
20 -5 -0 -5 4 5 10 15 onwmc[gl 20 -5 -0 -5 ) 5 10 15 2Tum[s] \\ l (\“-))“, W1837, W184O (50 um)
o wi1837_50um - w1849_300um show narrow peaks with widths
g oo o O(1 ns), while W1849 (300 pum)
T ooz T or .
s * L produces longer (~ 8 times)
ogsc- b \ signals.
005— 0.04] |
004— [ |
on ooel \
002- § \
00— o= W
[ 10° C | L 1 x10°
e N B & o $ 5%

20 o ]
Time [s] Time (5]
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SENSOR GAIN COMPUTATION

Signals max amplitude Max amplitude scaled by Gain (normalized)
B £ Legend 3 02— Legend
< 0.18— —— w1836_50um < r w1836_50um
| —— w1837 50um —— w1837_50um
016 — | w1840_50um | w1840_50um
= —+— w1849_300um +— w1849_300um
0.4 ]
012
01—
0.08—
0.08[—
0.04[
0.02—
O: et S
L L L | | | | | | |
0.02 0.04 0.06 0.08 0.1 0 0.001 0.002 0.003 0004 0005 0.006 0.007 0.008 0.009 0.01
Max amplitude [V] Max amplitude [V]
Dlstrlbutlons of maximum signal ‘amphtude (left) are e 50 um Gain: e 300 pum Gain:
divided by the sensor gain Gy, (right), as obtained W1836: ~ 15
from X-ray measurements. W1849: ~ 10
of W1837: ~ 20
W1840: ~ 25
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JITTER MEASUREMENT

Jitter is an important component of the time
resolution of the sensor and is computed as ratio

Slew rate (normalized)
between the noise (~0.5 mV for all the sensors)

and slew rate (dV/dt): 5 o4 o
< E —— w1836(50um)
av\ e L Miasooum)
g = <Unoise (E) > 0_31 —+— w1849(300um)
0.257
0.2
Sensor | Gain | Jitter [ps] o5

WI836: | ~15 | 14.8 & 3.6
W1837: | ~20 | 17.5+4.3
W1840: | ~25 | 21.3+4.3 —
WI1849: | ~10 | 2224 + 42.7 Siew e [V}

0.

0.0!

6

o o
[T I I T T
b
°r
of
or

=
o
n
153
@
S
a
3
o
1=
-3
S
~
=)
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DEPOSITED ENERGY DISTRIBUTIONS

300 pm SENSOR COMPARISON

Legend

W1849 (300um) has been compared to the 50
w1836_50um

MIm Sensors: 0.14 —+— w1837_50um
i w1840_50um

» Compatible shape in the sensitive range : —— w1849_300um
after gain correction

AU.

» Higher detection efficiency (x54 times
volume)

» Different minimum threshold of sensitive

range:
dep. =~ 30keV (50pm) vs ~ 200keV
(300Mm) ‘ ‘30‘0‘ - ‘4(‘)0‘ - ‘5(‘)0‘ - ‘60‘0‘ - ‘7(‘)0‘ - ‘8(‘)0‘ - ‘9(‘)0‘ - ‘10&;03

Deposited energy [eV]
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CHARACTERIZATION OF NEUTRON PROCESSES

3 35 4
Deposited energy [eV]

» Neutron Elastic interaction

significant for 14 MeV neutron
interactions with deposited
energy up to ~ 1.85 MeV

Neutron Inelastic interaction
dominant contribution for high
deposited energies

In the range Egep = [30, 450] keV
minimal contributions from
photons and electrons
electromagnetic processes
(ionization, Compton effect,
photoelectric effect) and decays
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SCAN OF NEUTRON ENERGY SENSITIVITY

Distributions of deposited energy
for neutrons with:

> K = 10/100 keV
(top-left)

> K = 200/300 keV
(top-right)

> K = 500/700 keV

L L <10° (RS R RN AR R AR RRER] o

25 % 40 45
Deposited energy [eV] Deposited energy [eV]

(bottom-left) 3
> K =1MeV 3
(bottom-right) oaa|
for Trigger threshold 10 mV and °°‘5;
G = 15, expected sensitivity to “t
300 keV neutrons n

I I I L L L L l10? | L

L | 10°
0 20 30 40 50 60 70 [ 20 0 60 80 00

I
120 140
eposited energy [eV]
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LGAD STRUCTURE

Wafer structure ( W1837,W1840)
> 1x1 mm? sensor size > 500 pm substrate
> 50 um 28Si p epitaxial layer, °B and ''B » Aluminum thin layer, thickness 0.5 um
doped (7x10"em™3) » Silicon Oxide SiOaz, thickness 0.3 - 0.5 um
» Different doping concentrations (3, 3.25 and » n++ layer, 3P doped, thickness 0.5 um
2.7 x10"3em ™) and gain layer thickness > Gain p+ layer, "'B doped, thickness 0.5 pm

aluminum
JTEn

Epitaxial layer — p-

t substrate — p** j:
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DEVELOPMENT OF LGADS AND AC-LGAD AT BNL AND NEUTRON DETECTION

GEANT4 SIMULATION

INTRODUCTION

Sensor response modelled with GEANT4 10.4 Simulation parameters:
MonteCarlo simulation software

> QGSP_BIC_HP physics list used for
high precision simulation of neutrons < 20
MeV

» 10 million 14.1 MeV neutrons generated
each simulation run with randomized initial
direction

» 1.6 mm of 2 Aluminum interposed between

neutron generator and sensor, to simulate
the Deuterium-Tritium generator casing
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AC-LGAD CHARACTERIZATION

IV-curvE

w1844 - single AC pad - ACLGAD 1mm x 1 mm
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