DEVELOPMENT OF LGADS AND AC-LGAD AT BNL AND NEUTRON DETECTION

INTRODUCTION DATA GEANT4 SIMULATION AC-LGADS CONCLUSIONS

DEVELOPMENT OF LGADS AND AC-LGAD AT BNL AND NEUTRON DETECTION

<u>G. D'Amen¹</u>, W. Chen¹, G. GIACOMINI¹, L. LAVITOLA², S. RAMSHANKER³, A. TRICOLI¹

¹Brookhaven National Laboratory (US) ²Universita' degli studi Federico II (IT) ³Oxford University (UK)

19 November 2019

INTRODUCTION DATA GEANT4 SIMULATION AC-LGADs Conclusions

OUTLINE

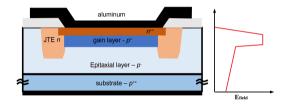
- Time resolution \mathbf{LGAD}
- I. Introduction to LGADs
- II. LGAD response to 90 Sr β^-
- III. LGAD interaction with fast neutrons
- IV. Comparison with Geant4 simulation
- Space & time $\mathbf{AC\text{-}LGAD}$
- V. The AC-LGAD concept & fabrication
- VI. Tests with IR, red laser and 90 Sr

Conclusions and Future activities

LGAD wafer (BNL)

AC-LGAD matrix (BNL)

DEVELOPMENT OF LGADS AND AC-LGAD AT BNL AND NEUTRON DETECTION


INTRODUCTION DATA GEANT4 SIMULATION AC-LGADS CONCLUSIONS

LOW GAIN AVALANCHE DIODE

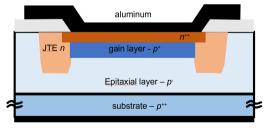
INTRODUCTION

Low Gain Avalanche Diode (LGAD): highly doped layer of p-implant (**Gain layer**) near p-n junction creates a high electric field that accelerates electrons enough to start multiplication.

- $\blacktriangleright\,$ Electric Field: ${\sim}300~{\rm kV/cm}$ in Gain Layer
- Silicon-based technology with low, adjustable gain (2 - 100)
- ▶ Breakdown Voltage ∝ Gain parameters (dose, energy)
- ▶ High Signal/Noise ratio
- Ability to achieve fast-timing O(20-30) ps in high radiation environments

Questions to be answered:

- MIPs detection capabilities already proven, fast neutron response to be characterized
- ▶ How fast is the response to fast neutrons?
- What are out limits of detectable neutron energy?

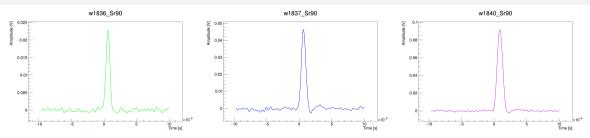

INTRODUCTION DATA GEANT4 SIMULATION AC-LGADS CONCLUSIONS

LGAD STRUCTURE

Wafer structure (W1836,W1837,W1840)

- \triangleright 1×1 mm² sensor size
- ▶ 50 μm^{28} Si p epitaxial layer, ¹⁰B and ¹¹B doped $(7 \times 10^{13} cm^{-3})$
- Different doping concentrations (3, 3.25 and 2.7 $\times 10^{13} cm^{-3}$) and gain layer thickness

- ▶ 500 μm substrate
- ▶ Aluminum thin layer
- ▶ Silicon Oxide SiO₂
- ▶ n++ layer, ³¹P doped
- \blacktriangleright Gain p+ layer, ¹¹B doped



DEVELOPMENT OF LGADS AND AC-LGAD AT BNL AND NEUTRON DETECTION

INTRODUCTION DATA GEANT4 SIMULATION AC-LGADS CONCLUSIONS

90 Sr interactions

SIGNAL WAVEFORMS

Waveforms from β^{-90} Sr signals

- > W1836, W1837, W1840 show narrow peaks with widths O(1 ns)
- $>\,$ Sensors Gain for β^- compatible to that of X-rays

	Sensor Gain (X-Ray):	
W1836:	~ 15	
W1837:	~ 20	
W1840 :	~ 25	

 $> \sigma_{jitter} \approx 20 \mathrm{ps}$

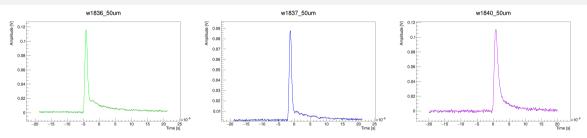
INTRODUCTION DATA GEANT4 SIMULATION AC-LGADS CONCLUSIONS

DEUTERIUM-TRITIUM NEUTRON GENERATOR

BNL Thermo-Fisher MP 320 Neutron Generator (prototype)

$${}^{3}T + {}^{2}D \rightarrow {}^{4}He + n(14.1 MeV) \tag{1}$$

Neutron energy spectrum very narrow $\sigma_E = \mathcal{O}(10^{-2} \text{ MeV})$ and isotropic, with estimated neutron production of 6×10^7 neutrons/sec, with a flux of 7×10^4 neutrons/(cm² sec) at sensor position



DEVELOPMENT OF LGADS AND AC-LGAD AT BNL AND NEUTRON DETECTION

INTRODUCTION DATA GEANT4 SIMULATION AC-LGADs CONCLUSIONS

FAST NEUTRON INTERACTIONS

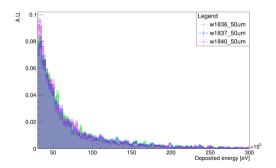
SIGNAL WAVEFORMS

Waveforms from neutron signals

- > Trigger = 10 mV
- > W1836, W1837, W1840 show narrow peaks with widths $\mathcal{O}(1 \text{ ns})$
- > Sensor Gain for neutrons compatible to the one measured with X-rays

	Sensor Gain (X-Ray):
W1836:	~ 15
W1837 :	~ 20
W1840 :	~ 25

FAST NEUTRON INTERACTIONS


Deposited Energy distributions

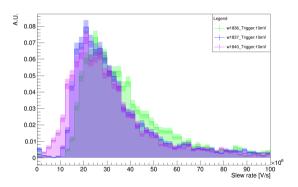
Energy deposited by the neutron interaction computed as integral of each signal:

$$E_{dep} \ [eV] = \frac{3.6 \ [eV]}{G_n \ R_{fb} \ q_e} \ \int_{wf} Adt$$

Good agreement with gain measure with X-ray in the "sensitive" range in deposited energy $(\propto (G_n))$, limited by **trigger voltage** and **maximum signal amplitude** in oscilloscope window.

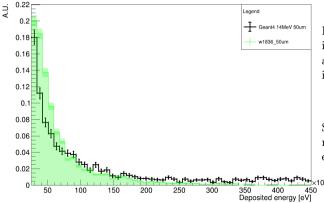
For a **10 mV trigger** level and $G_n = 15$, sensitivity to neutron signals with deposited energy as low as ~ **30 keV**.

INTRODUCTION DATA GEANT4 SIMULATION AC-LGADs CONCLUSIONS


FAST NEUTRON INTERACTIONS

JITTER MEASUREMENT

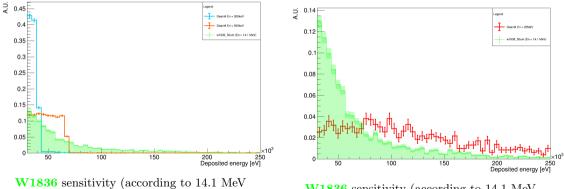
Jitter is an important component of the time resolution of the sensor; computed as ratio between the noise (~ 0.5 mV for all the sensors) and slew rate (dV/dt):


$$\sigma_j = \langle \sigma_{noise} \left(\frac{dV}{dt} \right)^{-1} \rangle \sim 20 \ ps$$

Slew rate (normalized)

INTRODUCTION DATA GEANT4 SIMULATION AC-LGADs CONCLUSIONS

GENERATED ENERGY SPECTRUM

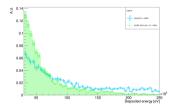


Distribution of energy deposited by neutron interaction as simulated by GEANT4 shows good agreement with experimental data from **W1836** in the sensor sensitive range $E_{dep} = [30, 450]$ keV

Superimposing E_{dep} distributions generated by neutrons with different energies can give us an estimate of minimum neutron energy sensitivity

NEUTRON ENERGY SENSITIVITY

Extrapolation of sensitivity to various neutron energies based on 14.1 MeV data


W1836 sensitivity (according to 14.1 MeV deposited E distribution) to 300- and 500- keV neutrons

W1836 sensitivity (according to 14.1 MeV deposited E distribution) to 20 MeV neutrons

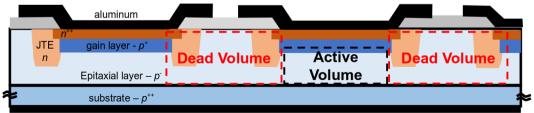
NEAR FUTURE PLANS

• Validate simulation for lower energy neutron with 252 Cf source (already available at BNL) \rightarrow neutron emitter @ 2 MeV.

• Lower trigger threshold from 10 mV to 2 mV (×4 average noise); expected sensitivity to $E_n < 100$ keV:

- E_{dep} th @10mV
 E_{dep} th @2mV
 W1836: ~30 keV
 W1837: ~20 keV
 W1837: ~24 keV
 W1840: ~22 keV
 W1840: ~4 keV
- Testing AC-LGAD response to DT (14.1 MeV) and 252 Cf (2 MeV) neutrons

The $\mathbf{AC\text{-}LGAD}$ concept

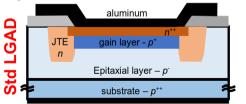

- > Limits of LGADs
- $>\,$ The AC-LGAD concept
- > FABRICATION OF AC-LGADS @ BNL

LIMITS OF LGADS

Lateral dimensions of Gain layer must be much larger than thickness of substrate, to create uniform multiplication.

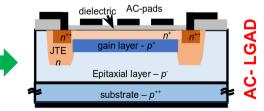
Dead volume (local gain ~ 1) extends within the implanted region of the gain layer:

- Pixels/strips (pitch ~ 100 mm) with gain layer below the implant have a Fill Factor «100% (Voltage dependent)
- ▶ Large pads (~ 1 mm) are preferred (e.g. ATLAS HGTD or CMS MTD)
- ▶ Good for timing, hardly for 4D reconstruction
- ▶ Various possible ways to overcome this issue with different geometries



AC-LGAD

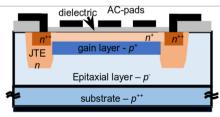
CONCEPT


Main differences w/r to LGADs:

- 1. One large low-doped high- ρ n⁺ implant running overall the active area, instead of a high-doped low- ρ n⁺⁺
- 2. Thin insulator over the n⁺, where fine-pitch electrodes are placed, patterned over the insulator

Expected Results:

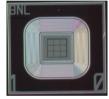
- $\blacktriangleright \sim 100\%$ Fill Factor and fast timing information at a per-pixel level achieved
- Signal generated by drift of multiplied holes into the substrate but AC-coupled through dielectric
- Electrons collect at the resistive n⁺ and then slowly flow to a ohmic contact at the edge.

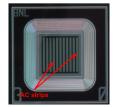


AC-LGAD

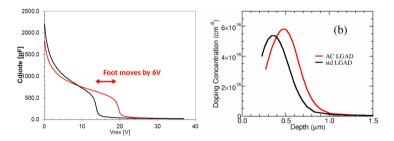

FABRICATION AT BNL

Process:


- ▶ Process starts from a Std (DC-) LGAD Pad
- ▶ Change METAL (Aluminum) and thus Contacts
- ▶ n⁺⁺ runs at the periphery only; replaced by resistive n⁺ in the active area with 10/100 less dose
- ▶ Thin insulator (100 nm SiN) over the n⁺


Std-LGAD Pad:

AC-LGAD **Pixels**:


AC-LGAD Strips:

AC-LGAD CHARACTERIZATION

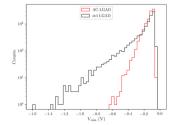
Recalibration of gain layer

In the very first AC-LGADs wafers, used the same gain layer dose as in LGADs. **Problem:** the n^+ is little doped, and its depleted thickness is not negligible; the p^+ gain layer is deeper, leading to lower Breakdown Voltage.

Gain layer dose has been lowered in following production, while keeping the process flow very similar.

Tests with IR, red laser and 90 Sr

- > LGAD vs AC-LGAD comparison
- > Cross-Talk studies
- > TIMING PERFORMANCE

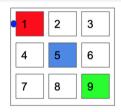

DEVELOPMENT OF LGADS AND AC-LGAD AT BNL AND NEUTRON DETECTION

Introduction Data Geant4 Simulation AC-LGADs Conclusions

AC-LGAD

SIGNAL COMPARISON WITH LGADS

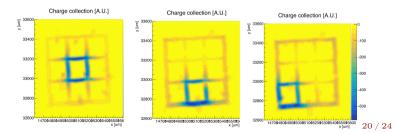
- Sensor wire-bonded to 16 channel Trans-impedance Amplifier board by FermiLab
- ► AC-LGAD: 3×3 pixel matrix, 200µm × 200µm AC-coupled pads bonded to TAs
- ▶ LGAD: same AC-LGAD device where the n⁺⁺ is read-out by the TA (same bias conditions and gain)



- Comparison of pulse amplitudes of betas from ⁹⁰Sr.
- Essentially equal distribution (same gain) for LGAD and AC-LGAD Amplitudes
- All signal goes through $C_{AC} = 20 pF$
- Is this signal well spatially localized? Need to estimate Cross-Talk between pixels/strips

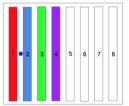
CROSS-TALK

Pixel Map



Response of a single pixel as a function of shining position of IR or red laser (TCT scan).

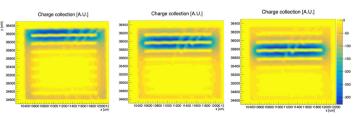
Border effect: the n⁺⁺ is a low resistance path that couples the signals back to the pixel under measure.


Cross-talk measured as ratio between signal amplitude peaks in different pixels

	Dose $n^+ 1/10$	Dose $n^+ 1/100$
ratio $A5/A1$	9%	17%
ratio $A9/A1$	16%	11%

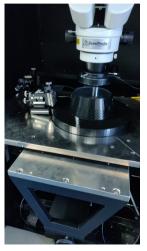
CROSS-TALK

 ${\rm Strip}\ {\rm Map}$



Response of a single strip as a function of shining position of IR or red laser (TCT scan).

Border effect: the n⁺⁺ is a low resistance path that couples the signals back to the strip under measure.


Cross-talk measured as ratio between signal amplitude peaks in different strips

	$\mathbf{Crosstalk}$
ratio $A2/A1$	100%
ratio $A3/A1$	13%
ratio $A4/A1$	6%
ratio $A6/A1$	4%

TIMING RESOLUTION

- ▶ AC-LAGDs and LGADs show similar response (waveforms)→ expected ~ same timing performance
- ▶ Using beta signals from a 90 Sr source on AC-LGADs lead to estimated $\sigma_{jitter} \sim 20$ ps
- NEXT: Measuring timing resolution in coincidences with a trigger sensor, using 3D-printed Beta Scope setup ready with ~ 180 MBq ⁹⁰Sr source
- Developed a setup such that our probe station can operate both at room temperature and at -30°C which will be used for pre/post irradiation IV and CV scans

CONCLUSIONS

LGADs can be used to detect neutrons in the 100s keV - MeV (and beyond?) energy range in high flux conditions for applications where fast time (~ 20 - 30 ps) measurements are needed

Fast timing for fast neutrons ensured by **jitter** measurement of $\mathcal{O}(15 - 20)$ ps

Good agreement between data and G4 simulation; extrapolations from GEANT4 simulations shows potential **sensitivity** to neutrons with energies <100 keV

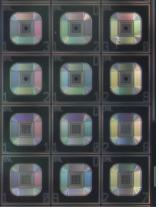
By changing a few photolithographic masks and tuning process flow parameters, **AC-LGADs** have been fabricated as well

Precision space resolution (50-100 μm) available with AC-LGAD technology

Cross-talk and **time resolution** tested with mips and TCT, leading to positive results

Additional info/links

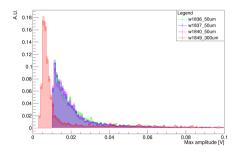
- ▶ G. Giacomini, W. Chen, F. Lanni, and A. Tricoli, *Development of a technology* for the fabrication of Low-Gain Avalanche Diodes at BNL
- ▶ G. Giacomini, W. Chen, G. D'Amen, A. Tricoli, *Fabrication and performance* of AC-coupled LGADs


BACKUP

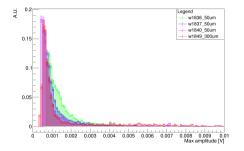
MOTIVATION

Low-Gain Avalanche Diodes (LGAD) are gathering interest in the Physics community thanks to fast-timing and radiation-hardness:

- ▶ **HEP:** ATLAS (HGTD) and CMS (MTD) timing detectors at the HL-LHC
- ▶ NASA: neutron flux studies
- ▶ Medical Imaging: PET scans
- Quantum information, Nuclear and forward physics, etc...


MIPs detection capabilities already proven, investigating the response to neutrons in the $\mathcal{O}(MeV)$ region (fast neutrons)

Wafer of LGADs produced at BNL

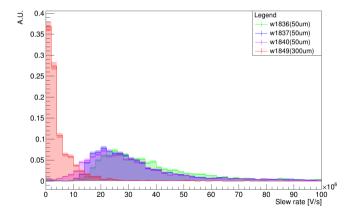

SENSOR GAIN COMPUTATION

Signals max amplitude

Distributions of maximum signal amplitude (left) are divided by the sensor gain G_n (right), as obtained from X-ray measurements.

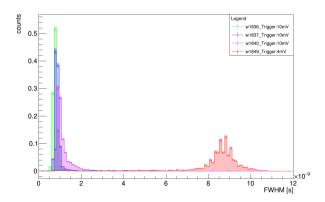
Max amplitude scaled by Gain (normalized)

• Sensor Gain:


W1836: ~ 15

- W1837: ~ 20
- W1840: ~ 25

SLEW RATE

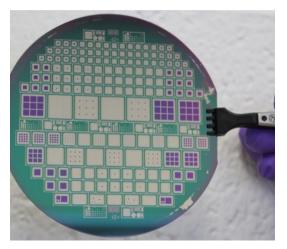

Average signal Noise

- ▶ W1836: (0.39±0.54) mV
- ▶ W1837: (0.10±0.43) mV
- ▶ W1840: (0.19±0.5) mV
- ▶ W1849: (-0.11±0.42) mV

SENSITIVE RANGE

Full width at half maximum (normalized)

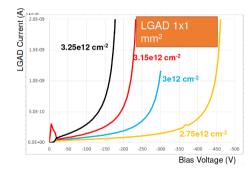
Sensitive region limited by trigger voltage (10 mV for W1836, W1837, W1840, 3.5 mV for W1849) and maximum signal amplitude in oscilloscope window.


Energy distributions constrained in region between:

$$I_{th} = \sqrt{2\pi} \ V_{th} \ \frac{\langle FWHM \rangle}{2.355}$$

with $V_{th}^{min} =$ trigger level and $V_{th}^{max} =$ max window amplitude

LGAD FABRICATION AT BNL


- ▶ 4âĂİ p-type epitaxial wafers (100), NA $\leq 1 \times 10^{14} \text{cm}^{-3}$, 50mm thick(V_{depl} ~120V). Also FZ used.
- ▶ 4 ion implantations (JTE and gain at high energy)
- ▶ 6 photolithographic masks
- p-spray isolation (patterned externally to the active area to avoid implant on gain region).
- ► Little thermal drive-in (mainly for the JTE âĂŞJunction Termination Edge for protection from high Eat the border of the shallow n+implant)
- layout with pads of 1x1 mm², 2x2 mm², 3x3 mm² and arrays.

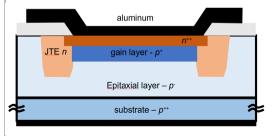
LOW GAIN AVALANCHE DIODE LGAD PRODUCTION @ BNL

Silicon Fabrication Facility and wire- and bump- bonding @ *BNL Instrumentation Div.*, full characterization, design and simulation of silicon sensors @ *Si-Lab*

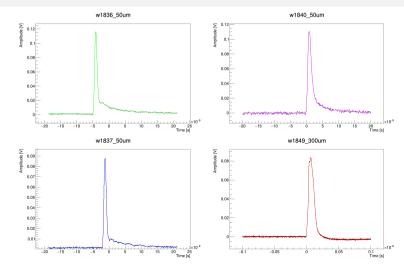
- Leakage current (measured on diodes) for 1x1 mm² of ~ 10 pA (1 nA/cm²)
- Consistent from batch to batch
- Clearly current depends on gain layer dose, so does the breakdown voltage
- ▶ GR can stand higher voltages

LGAD STRUCTURE

Thin device 50µm (W1836,W1837,W1840)


- \triangleright 1×1 mm² sensor size
- ▶ 50 μm^{28} Si p epitaxial layer, ¹⁰B and ¹¹B doped (7×10¹³cm⁻³)
- different doping concentrations (3, 3.25 and $2.7 \times 10^{13} cm^{-3}$) and gain layer thickness
- ▶ 500 μm substrate

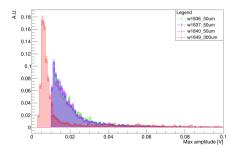
Thick device $300 \mu m$ (W1849)


- ▶ $3 \times 3 \text{ mm}^2$ sensor size
- ► 300 μm^{28} Si p- substrate, ¹⁰B and ¹¹B doped (5×10¹¹ cm⁻³)
- \blacktriangleright sensor volume ${\sim}54$ times bigger than $50\mu{\rm m}$ devices

Wafer structure

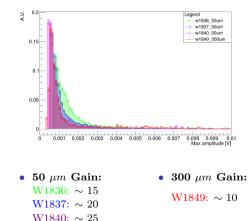
- ▶ Aluminum thin layer, thickness 0.5 μm
- $\blacktriangleright\,$ Silicon Oxide SiO2, thickness 0.3 0.5 μm
- ▶ n++ layer, ³¹P doped, thickness 0.5 μm
- ▶ Gain p+ layer, ¹¹B doped, thickness 0.5 μm

SIGNAL WAVEFORMS



Waveforms acquired with *Tektronix MSO64* mixed-signals oscilloscope;

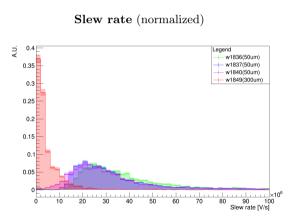
W1836, W1837, W1840 (50 μm) show narrow peaks with widths $\mathcal{O}(1 \text{ ns})$, while W1849 (300 μm) produces longer (~ 8 times) signals.


SENSOR GAIN COMPUTATION

Signals max amplitude

Distributions of maximum signal amplitude (left) are divided by the sensor gain G_n (right), as obtained from X-ray measurements.

Max amplitude scaled by Gain (normalized)

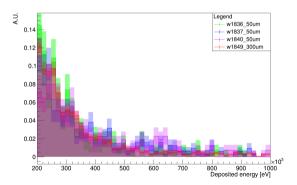


JITTER MEASUREMENT

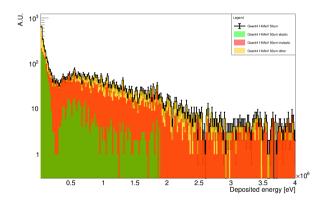
Jitter is an important component of the time resolution of the sensor and is computed as ratio between the noise (~ 0.5 mV for all the sensors) and slew rate (dV/dt):

$$\sigma_j = \langle \sigma_{noise} \left(\frac{dV}{dt} \right)^{-1} \rangle$$

Sensor	Gain	Jitter [ps]
W1836:	~ 15	14.8 ± 3.6
W1837:	~ 20	17.5 ± 4.3
W1840:	~ 25	21.3 ± 4.3
W1849:	~ 10	222.4 ± 42.7



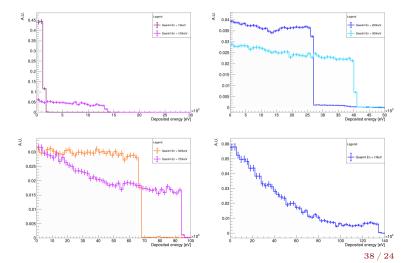
DEPOSITED ENERGY DISTRIBUTIONS


 $300 \ \mu m$ sensor comparison

W1849 (300 μ m) has been compared to the 50 μ m sensors:

- Compatible shape in the sensitive range after gain correction
- Higher detection efficiency (×54 times volume)
- Different minimum threshold of sensitive range:
 E^{min}_{dep} =~ 30keV (50µm) vs ~ 200keV (300µm)

CHARACTERIZATION OF NEUTRON PROCESSES

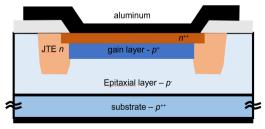

- ▶ Neutron Elastic interaction significant for 14 MeV neutron interactions with deposited energy up to ~ 1.85 MeV
- Neutron Inelastic interaction dominant contribution for high deposited energies
- In the range $E_{dep} = [30, 450]$ keV minimal contributions from photons and electrons **electromagnetic processes** (ionization, Compton effect, photoelectric effect) and **decays**

SCAN OF NEUTRON ENERGY SENSITIVITY

Distributions of deposited energy for neutrons with:

- $\ \, \bullet \ \ K = 10/100 \, \, \mathrm{keV} \\ (\textit{top-left})$
- $K = 200/300 \text{ keV} \\ (top-right)$
- $\ \, \mathbf{K} = 500/700 \, \, \mathrm{keV} \\ (\textit{bottom-left})$
- $K = 1 \text{ MeV} \\ (bottom-right)$

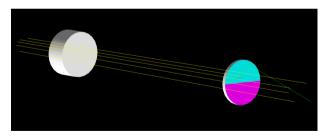
for Trigger threshold 10 mV and $G_n = 15$, expected sensitivity to 300 keV neutrons



LGAD STRUCTURE

Wafer structure (W1836,W1837,W1840)

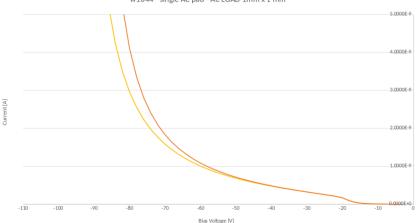
- \triangleright 1×1 mm² sensor size
- ▶ 50 μm^{28} Si p epitaxial layer, ¹⁰B and ¹¹B doped (7×10¹³cm⁻³)
- Different doping concentrations $(3, 3.25 \text{ and } 2.7 \times 10^{13} \text{ cm}^{-3})$ and gain layer thickness


- > 500 μm substrate
- Aluminum thin layer, thickness 0.5 μm
- Silicon Oxide SiO₂, thickness 0.3 0.5 μm
- $\blacktriangleright\,$ n++ layer, $^{31}{\rm P}$ doped, thickness 0.5 μm
- Gain p+ layer, ¹¹B doped, thickness 0.5 μm

GEANT4 SIMULATION

INTRODUCTION

Sensor response modelled with GEANT4 10.4 MonteCarlo simulation software



Simulation parameters:

- ▶ QGSP_BIC_HP physics list used for high precision simulation of neutrons ≤ 20 MeV
- 10 million 14.1 MeV neutrons generated each simulation run with randomized initial direction
- 1.6 mm of ²⁷Aluminum interposed between neutron generator and sensor, to simulate the Deuterium-Tritium generator casing

AC-LGAD CHARACTERIZATION

 $\operatorname{IV-CURVE}$

w1844 - single AC pad - AC LGAD 1mm x 1 mm