

35th RD50 Workshop Radiation hard semiconductor devices

Review of neutron irradiated 6" SoI LGAD sensors CNM 11486

Evangelos – Leonidas Gkougkousis

Institut de Física d'Altes Energies

CERN – November 19th, 2019

•Overview

Introduction

Electrical characterisation

Dark Rate

Charged Particle measurements

Operating parameters

Conclusions

• Introduction

- Structure descriptio0n and irradiations
- Electrical characterisation
 - IV measurements
 - Gain modelling and breakdown definition
 - Acceptor removal coefficient
 - Gain reduction computation

• Dark Rate measurements

- Methodology
- Maximum operating points
- Charged particle measurements
 - Introduction and setup
 - Gain, Time resolution and charge estimation
 - Efficiency
- Operating Parameters
 - HV Envelope and headroom
 - Power dissipation
- Conclusions and plans

•Introduction

Introduction

Electrical characterisation

Dark Rate

Charged Particle measurements

Operating parameter

Conclusions

- First 6" CNM LGAD run
- > 50µm active on 250µm SoI substrate
- Only single diodes
- ➢ 2 types of structures:
 - > 3x3 mm² active on 5x5mm² die
 - > 1.3x1.3 mm² active on 3x3mm² die

> 2 gain layer doping splits: medium (wafer 2) & high (wafer 3)

Fluence (n _{eq} /cm²)	Irradiated devices				Neutr Fast
	Wafer 2	Wafer 3	PINs	Annealing	-dons@JSI
3e14	2 5x5mm ²	2 5x5mm ²	2 5x5mm ²	80 min @ 60 °C	 Irradiated in July 2019 Not an official campaign A number of groups has received them
7e14	2 5x5mm ²	2 5x5mm ²	2 5x5mm ²		
1e15	2 5x5mm ²	2 5x5mm ²	2 5x5mm ²		
3e15	2 5x5mm ²	2 5x5mm ²	2 5x5mm ²		
5e15	2 5x5mm ²	2 5x5mm ²	2 5x5mm ²		

19 / 10 / 2019

Introduction

Electrical characterisation

Dark Rate

Charged Particle measurement

Operating parameter

Conclusion

- ✓ Measure separately GR and Pad current
- \checkmark Measurements at -10, -20 and -30C
- ✓ Scaling with temperature and fluence corresponds to expectations

19 / 10 / 2019

Introduction

Electrical characterisation

Dark Rate

Charged Particle measurements

Operating parameter

Conclusion

Breakdown Mode Gain Breakdown

- Increased current from pad
- Ratio of I_{pad}/I_{GR} diverges
- Case at 3e14 and 7e14
- More gain, higher the ratio

- Increase current from Guard Ring
- Ratio of I_{pad}/I_{GR} converges
- Case for 1e15, 3e15 and 5e15
- Case also for PINs at any fluence

IV & Breakdown

Introduction

Electrical characterisation

Current (A)

- \checkmark Measure pad IV (-10°C, -20°C, -30°C)
- Select a stable range where behaviour follows Schottky model
- \checkmark Define common for all temperatures stable range, after depletion and much before breakdown
- ✓ Perform exponential fit and request $R^2 ≥$ 99%
- \checkmark Calculate the multiplier with respect to the expected current

Define breakdown in multiplier value

Introduction

Breakdown Voltage

Electrical characterisation

Dark Rate

Charged Particle measurements

Operating parameter

Conclusions

- ✓ Breakdown defined as the point where leakage current is twice the expected current
- ✓ Definition considers gain
- ✓ Gain is modeled as an exponential increase on top of the exponential bulk current
- ✓ Final model is the convolution of 2 exponentials

19 / 10 / 2019

Gain depletion Voltage					
Fluence (n _{eq} /cm²)	-20°C	-30 <i>°</i> C			
unirrad.	-34	-34			
3e14	-25	-25			
7e14	-20	-20			
1e15	-15	-15			
3e15	-6	-6			
5e15	0	0			

Introduction

Electrical characterisation

Charged Particle measurement

Operating parameter

Conclusions

- ✓ Since GR and pad share same bulk and p back-side, have the same radiation effects
- ✓ Geometrical factor not stable across fluences
- ✓ The fit is expected to be straight line in the exponential plain

19 / 10 / 2019

Introduction

Electrical characterisation

Dark Rate

Charged Particle measurements

Operating parameters

Conclusions

Concepts & Methods

- ✓ Sensors with gain present dark rate at high enough voltages
- ✓ Dark rate events result of thermal movement and random in nature
- \checkmark Follow the Poisson distribution

Quantification

+

. .

- ✓ Study the time between consecutive self-triggering
- ✓ Use mean of 4 events (3 values) to reject cosmic background

Self-trigger time:
$$\Delta T_{trig}^{i} = \frac{\sum_{j=1}^{n-1} (T_{j+1}^{trig} - T_{j}^{trig})}{n}$$

Self-trigger Rate: $R_{trig}^{i} = \frac{1}{\Delta T_{trigg}^{i}}$
Median of several rate measurements $\widetilde{R_{trig}} = \frac{R_{trig \lfloor (\#k+1) \div 2 \rfloor} + R_{trig \lceil (\#k+1) \div 2 \rceil}}{2}$

19 / 10 / 2019

Introduction

Electrical characterisation

Dark Rate

Charged Particle measurement

Operating parameter

Conclusions

Max. operating voltage

- $\checkmark\,$ Limitation on operating voltage occurs from dark rate
- \checkmark Appears sooner than breakdown
- ✓ As gain is removed, the operating point is pused closer to the breakdown value
- $\checkmark\,$ Depends highly on the diffusion profile of the gain layer
- $\checkmark\,$ Instabilities at high radiation fluences and dense profiles

19 / 10 / 2019

 \geq

 \triangleright

Introduction

characterisation

Electrical

Charged Particle measurements

Introduction

Electrical characterisation

Dark Rate

Charged Particle measurements

Operating parameter

Conclusions

- \checkmark 1000 events per point
- ✓ Very low collected charge (< 3fq for irradiated sensors)
- \checkmark High active area with larger capacitance
- ✓ Preliminary results, study ongoing

Introduction

Collected Charge

Introduction

Electrical characterisation

Dark Rate

Charged Particle measurements

Operating parameter

Conclusions

Efficiency vs HV

- ✓ Sr90 source follows exponential decay
- Sensor trigger distribution is convoluted with efficiency
- ✓ For 100% efficient sensor, median of trigger rate corresponds to radioactive decay

19 / 10 / 2019

Efficiency vs Headroom

Introduction

Introduction

Electrical characterisation

Dark Rate

Operating parameter

Conclusions

- ✓ 1.3x1.3 active area sensor becomes efficient rapidly
- ✓ Larger area (3x3) sensor has a hysteresis
- ✓ Possibly due to metallization opening over pad where field is reduced

MIP Relative Efficiency, CNM 11486 - neutron irradiated

- ✓ No significant effect on temperature variations
- ✓ 7e14 sensor never becomes fully efficient
- ✓ Limited in operating voltage by sensor stability

Conclusions & Outlook

Introduction

Electrical characterisation

Dark Rate

Charged Particle measurements

Operating parameters

Conclusions

✓ The CNM 11486 6" run was tested

- 1. Electrical tests
 - ✓ A gain reduction was observed with 12% expected gain left at 3e15
 - ✓ Breakdown voltage was defined and is expected to no be a limiting factor
 - \checkmark Acceptor removal observed following the exponential decrease
- 2. Dark rate
 - ✓ Dark rate was observed for non-irradiated and mildly irradiated sensors up to 10khz at lower than breakdown voltage
 - \checkmark Main limiting factor in voltage operation
- 3. Charge particle studies
 - ✓ 50psec time resolution for the 1.3x1.3 diodes and 70psec for the 3x3mm2
 - ✓ Low collected charge for both irradiated and uneradicated
- 4. Efficiency
 - ✓ 3e15 & 7e14 fluences never become fully efficient
 - ✓ Unirradiated and higher fluences reach 100% efficiency with st least 20V headroom

Backup

PIN Breakdown Mode

19 / 10 / 2019

5e15, double junction

19 / 10 / 2019

Acceptor removal

19 / 10 / 2019

WaveForm

PIN Diodes

19 / 10 / 2019