

Development of SiC sensors for harsh environment applications

<u>S. Otero Ugobono</u>, P. Godignon, G. Pellegrini, J.M. Rafí Tatje, G. Rius Suñé

Centro Nacional de Microelectrónica, IMB-CNM-CSIC, Barcelona, Spain

Silicon Carbide (SiC)

Material properties and benefits

- Wide band gap material
- Low leakage current even after irradiation
- High breakdown voltage
- Possibility to work at room temperature after irradiation
- High saturation velocity
 - Potential for timing applications

ROHM, SiC Power Devices White Paper

Potential for fabrication of 3D detectors and other MEMS structures.

Current status of SiC technology

- SiC technology is fully developed for commercial applications
 - High quality 4- and 6-inch SiC wafers available
 - Sought after for power electronics
 - Diodes have been successfully developed

CNM, ALTER, Universitat de València

BepiColombo space mission

- Protection diodes for solar arrays
- Working temperature range -170°C to 300°C
 - Stable with thermal cycling
- High reliability and radiation hard

P. Godignon et al., ISPSD Hiroshima, 2010, pp. 351-354

Main potential applications

Nuclear fusion reactors

• Neutron diagnostics.

Aerospace

• Sensors and electronics.

Main potential applications

High energy physics

Sensors for large colliders

Planar Devices

Graphene-enhanced Radiation detector on Silicon Carbide for harsh Environments

AGENCIA ESTATAL DE

Project funding reference: RTC-2017-6369-3

Institutes and people involved

GRACE Project

Graphene-enhanced Radiation detector on Silicon Carbide for harsh Environments

Main target applications:

- Plasma diagnosis in fusion reactors (e.g. ITER)
- Monitoring and control of high-temperature-operation components in spacecrafts

GRACE Project

Graphene-enhanced Radiation detector on Silicon Carbide for harsh Environments

Devices tolerant to

- High radiation levels: neutrons, protons, heavy ions, α-, and β-particles.
- High temperatures: at least [200°C, 500°C].

J.M. Rafí et al., 2018 JINST 13 C01045

Cross section of a conventional 4-quadrant SiC sensor

Graphene-enhancement

- Graphene layer between SiC surface and metallisation
- The metallisation may be removed altogether
 - Useful for heavy-ion detection
- Graphene could potentially improve
 - SiC-metal electrical contact
 - Thermal management

Epitaxial graphene technology

Graphenisation: epitaxial growth of graphene layers

- Thermal decomposition of SiC surfaces
 - Selective sublimation of atomic silicon
 - C atoms rearrange into a honeycomb structure

W. Norimatsu et al., Phys. Chem. Chem. Phys. 2014,16, 3501-3511

G. Rius, P. Godignon, Epitaxial Graphene on Silicon Carbide: Modelling, Devices, and Applications, Pan Stanford Pte. Ltd. (2018)

Graphenisation a.k.a. graphitisation

Current work plan at CNM

- Optimisation of various contact configurations
 - Contact, and sheet resistivity study
 - Testing of different metal combinations
 - Effect of graphene in overall conductivity
 - Radiation hardness
 - Tolerance to high temperatures
 - Wire-bond reliability

Current work plan at CNM

Optimisation of various contact configurations

- Contact, and sheet resistivity study
- Testing of different metal combinations
- Effect of graphene in overall conductivity
- Radiation hardness
- Tolerance to high temperatures
- Wire-bond reliability

Future work

- Design and development of sensor prototypes
- Full characterisation to determine sensor viability:
 - electrical properties
 - charge collection efficiency
 - tolerance to high temperatures
 - tolerance to temperature fluctuations (thermal cycle tests)
 - endurance limit (mechanical stress)
- Irradiation campaigns
- Package design and development
- Device simulation

3D Devices

RD50 Project on SiC

Proof of concept of 3D detectors fabricated in Silicon Carbide (SiC) semiconductor layers

 Explore an innovative method to produce 3D SiC sensors:

Doping-selective electrochemical etching.

Institutes and people involved

Doping-selective electrochemical etching

Doping-selective electrochemical etching

Process already applied for thin epitaxial membrane fabrication

Electrochemical etching of highly doped 4H-SiC substrate

PSI, only!

n-SiC

 Adaptation and optimisation of the etching process for production of columnar electrodes

n++ SiC

up to 200um/h

doping selective

Work plan

- Explore the feasibility of the fabrication process
- Creation of Schottky contacts inside the columns through metal sputtering
- Irradiation campaigns and full characterisation:
 - Electrical tests (CV/IV)
 - TPA and blue-laser TCT
 - Timing tests

Summary

- SiC technology already fully developed for commercial applications
- CNM is developing innovative SiC sensors for harsh-environment applications
- Architectures under study: planar and 3D
- Work under way on both projects

Summary

- SiC technology already fully developed for commercial applications
- CNM is developing innovative SiC sensors for harsh-environment applications
- Architectures under study: planar and 3D
- Work under way on both projects
- Looking for collaborators for defect studies

Summary

- SiC technology already fully developed for commercial applications
- CNM is developing innovative SiC sensors for harsh-environment applications
- Architectures under study: planar and 3D
- Work under way on both projects
- Looking for collaborators for defect studies
- Interested in this technology for your experiment?

Thank you very much for your attention

