

On the frequency dependence of the admittance of radiation damaged pad diodes

J. Schwandt, E. Fretwurst, E. Garruti, R. Klanner and G. Steinbrueck

Institute for Experimental Physics University of Hamburg

35th RD50 Workshop 18.11.-20.11.2019

SPONSORED BY THE

Federal Ministry of Education and Research

INTRODUCTION

Questions:

- What is the cause of the frequency dependence of the capacitance of irradiated sensors?
- Is there a simple model for $Y(f; V, \Phi_{eq}, T)$ [admittance $Y = Z^{-1}$]?

Common answer:

• *C*(*f*) is the result of the response time of radiation-induced states

Our approach :

• Model fits to Y(f) data for irradiated pad diodes ($\Phi_{eq} = 3 \text{ to } 13 \times 10^{15} \text{ cm}^{-2}$)

Model:

$$Z_{model} = \int_0^d dZ = \frac{1}{A} \int_0^d \frac{\rho(y) \, dy}{1 + i \cdot \omega \cdot \epsilon \cdot \rho(y)} = (Y_{model})^-$$

Assumption for Y_{model}:

• Rad. damage affects only the resistivity $\rho(y)$ – no effects of response time to traps!

Expectation: for highly irradiated sensor

- In non-depleted (ohmic) region: $\rho = \rho_{intr}$ (generation = recombination)
- In depleted (high-field) region: $\rho \gg \rho_{intr}$ (free charge carrier density due to generation + current)

Analysis: For every voltage and Φ_{eq} : χ^2 -fit of $C_p(f) = Im(Y/\omega)$ and $\varphi(f) = atan(Im(Y/\omega)/Re(Y/\omega))$ use a 3-parameter ad-hoc parametrisation: $\rho(\eta, V) = \rho_0(V) + \rho_1(V) \cdot e^{-\eta/\lambda(V)}$

4 different ρ parametrisations used for fits \rightarrow similar results for $\rho(\eta)$

SENSORS AND MEASUREMENTS

Large diodes from CMS HPK campaign:

1. Material

- **p-type** (p-stop, p-spray)
 - Thinned float zone FTH200 (200 μm thick)
- 2. Irradiations
 - 24 GeV/c
 - Φ_{eq} = 3 , 6, 7.75, 13•10¹⁵ cm⁻²
 - Annealing for 80min@60°C
- 3. Measurements
 - Reverse voltage: $0 \rightarrow 1000 \text{ V}$, **T= -20°C** and **-30°C**, 16 frequencies 100 Hz \rightarrow 2 MHz (125 x 16 measurements per T and Φ_{eq})
 - Forward voltage: $0 \rightarrow$ up to voltage for which current is 0.5 mA, T= -20°C and -30°C 16 frequencies 100 Hz \rightarrow 2 MHz
 - n⁺-contact and guard ring grounded
 - In addition I_{pad} and I_{guard} measured separately

QUALITY OF Y-F FITS

Data described by model: $\delta C \sim 0.5 \%$, $\delta \phi \sim 0.5^{\circ}$

Data described by model: $\delta C \sim 0.5 \%$, $\delta \varphi \sim 0.5^{\circ}$

QUALITY OF Y-F FITS

$C_p(V, \Phi_{eq})$ for selected f

Data described by model: No need for response time of rad.-induced traps

RESISTIVITY

Resistivity $\rho(\eta)$ vs. Φ_{eq}

 $T = -30^{\circ}C:$ $\rho_{intr} = 70 \text{ M}\Omega \cdot \text{cm (calc.)}$ $\rho_{min} = 81 \text{ M}\Omega \cdot \text{cm (fit)}$ $T = -20^{\circ}C:$ $\rho_{intr} = 23 \text{ M}\Omega \cdot \text{cm (calc.)}$ $\rho_{min} = 27 \text{ M}\Omega \cdot \text{cm (fit)}$ Approx. agreement

Non-depleted region:

ρ ~ ρ_{intr} = constant

 (generation-recombination equilibrium)
 width decreases with V
 and increases with Φ_{eq}

Width depleted region: increases with V and decreases with Φ_{eq} for V > 500 V \rightarrow fully depleted

For high ρ, ρ is only poorly determined

η-region with $\rho \gg \rho_{intr} \rightarrow$ "effective" depletion depth

SUMMARY

Frequency dependence of Y

- Simple model with a position-dependent resistivity ρ(η) describes the Y(f;V,Φ_{eq}) data of highly-irradiated sensors
- Low field region with $\rho \sim \rho_{intr}$, which decreases with V and increases with $\Phi_{\rm eq}$
- High ρ → depleted region, high field region increases with V until the entire sensor is depleted
- No need to include the response-time of radiation-induced traps in the model!!!

Progress towards understanding of the f-dependence of C but the understanding of the results is not so clear

Thank you for your attention!