QUARKS TO COSMOS

Chronis Dimitrios
Florou Konstantina
Papacharalampous Ioanna
Schinas Christos

Project goals

The basics of physics analyses at the Compact Muon Solenoid (CMS) experiment:

Analyzing heavy ion collisions recorded by CMS

Search for heavy elementary particles (Z bosons and top quarks)

Use of the software available for basic-level usage of open data

Visualizing the CMS data

Project Roadmap

Introduction to particle and nuclear physics

Getting to know VirtualBox, C++ and ROOT

Basics of **CMS offline software**

Final Code

Analyzing the results

Introduction to particle and nuclear physics

What are we made of?

Elementary particles and elementary forces

QGP: the hottest state of matter

studying it with Z boson and top quarks

A glimpse to heavy ion physics

a case to understand asymptotic freedom

Standand Model

A Glimpse to Heavy Ion Physics

As the two heavy ions collide and then move apart:

- A plasma, called quark gluon plasma, is continually produced
- Each drop of QGP evolves in time and disintegrates quickly
- Hadrons are finally created and detected by experiments

Z boson and top quark in heavy ion collisions

Z bosons and leptons are colorless

They don't interact with Quark-gluon plasma

In contrast to top quarks

No energy loss due to QGP interaction

Energy loss due to QGP interaction

Final Code

Use of CMSSW EDAnalyzers

software to acquire, produce, process, analyze CMS data

Extract trigger and lepton information

Produce ROOT files from CMS public heavy-ion

data

cms-sw/cmssw

CMS Offline Software

Final Code Triggers + Muon Selection

filtering the data

if (TMath::Abs(MuEta[j])>2.4) continue; //

Accepted values

Final Code Triggers + Electron Selection

if (ElePt[i]< 20) continue;</pre>

Accepted values

Analyzing Results

searching for Z bosons

Analyzing Results

searching for Z bosons

Analyzing Results searching for top quarks

Visualizing the Data

Use of ISpy Analyzers for 2011 Heavy Ion data

Production of event display files

Double Electron Event

Muon-Electron Event

Double Muon Event

EXTRA SLIDES

Virtual Box and C++

CMS-specific CernVM image

Learning the basics of bash and CMS offline software

A simple demo for testing and validating

Processed the first event records (!)

How do we write and execute C++ code

How do we use ROOT (with C++)

C++ and ROOT

Write and execute C++ code

"include", "main", and "make"

use ROOT (with C++)

Int_t, Float_t, TFile, TTree, TBranch

Write a .root file

filling a histogram with a "for" loop

Browse and read a .root file

TBrowser X and GetEntry()

Basics of CMS offline software

Compile and execute CMSSW

"cmsrel", "cmsenv", "scram b", "csmRun"

EDAnalyzer and what does it contain

.xml, src/X.cc, and X_cfg.py

Modify the src/X.cc

storing lepton info in the output .root file

What the interesting events are

triggering at > 20 GeV

Z boson in heavy ion collisions

Z boson: is one of the weak force "messengers".

We cannot "see" it directly: we now it's there for its decay products.

