Data analysis on the cloud

Roumeliotis Fotis Giannakopoulou Teodora

Supervisor: Spyridon Trigazis

Who are we?

We are High-school students that came at CERN through the greek HSSIP.

Roumeliotis Fotis

Trikala

Giannakopoulou Theodora

Komotini

Description of the project

With our arrival, we started working on a project in the IT-department by the name "Analyzing massive datasets in the cloud". During this project we learnt about:

- Cloud compute resources (Virtual Machines with diff OS, Containers, Volumes)
- Storage Systems/solutions
- Clusters (Kubernetes, HTcondor)

Cloud computing

- -What are clouds made of?
- -Linux servers mostly.

Motivation of Cloud Computing

- Can be used by anyone in the world to access compute resources and large datasets
- It's very important for scientists in order to store, share and gain access to scientific data
- Is used in experiments (like LHCb, ALICE, ATLAS, CMS at CERN)
- It helps analyse massive amounts of data and plays an important role in the evolution of science.

Cloud compute resources (I) <u>Virtual machines</u>

Virtual servers simulate physical servers and they come with advantages compared to physical hardware:

- Security: If one is compromised the others are safe
- Flexibility: Access by different people, hardware partitioning

VMs give us the chance to create a new one in just a few minutes.

Cloud compute resources (II)

Containers

However server virtualisation is presenting some problems like CPU and memory overhead.

- Reproducible environments with container images
- Isolation→ Security
- Resource limits→ Resource management

Storage Systems

- AFS: a user's personal catalogue that can be found through different servers
- EOS: that's where all scientific data is stored, with much larger capacity than
 AFS
- <u>cernbox:</u> upload pictures/archives and save them on the cloud (backed by EOS)
- openstack block storage volumes: gives you the chance to create volumes and attach them to different servers.

OpenStack Infrastructure

Production since 2013

~ 3600 cluster nodes ~ 8,900 Physical servers (430,000 cores)

Clusters

When we talk about clusters we mean objects of the same kind, which are synchronized and work as a team.

Control plane

Control plane: Scheduling and configuration of workloads.

Data plane: Runs workloads and access user data.

Examples: Kubernetes, HTCondor (Batch), Slurm (HPC)

Kubernetes

"Kubernetes is an open-source system for automating deployment, scaling, and management of containerized applications." (https://kubernetes.io/)

- Run in any cloud (on Premise, AWS, GCP, Azure, etc)
- Application/Experiment lifecycle
- Scalable workloads

Examples

- Creation of personal VMs with different OS and clusters
 https://clouddocs.web.cern.ch/tutorial/openstack_command_line.html
- Creation and attachment of volumes to different servers
- Aviator https://gitlab.cern.ch/cloud-infrastructure/aviator
- Event reconstruction /analysis of the CMS experiment (S'Cool Lab)
 https://github.com/cms-opendata-education/scool-lab-sc18-opendata/
- Word count: a programme on Python that counts words on a given text.
- Math examples

Accessing computing resources

- Access LXPLUS by signing in (You can use putty and choose different hosts like lxplus8.cern.ch with CentOS 8)
 - "LXPLUS (Linux Public Login User Service) is the interactive logon service to Linux for all CERN users. The cluster LXPLUS consists of public machines provided by the IT Department for interactive work." (Ixplusdoc.web.cern.ch)
- Gain access and authentication by switching to your project using export OS_PROJECT_NAME="<name of the project>"

Interacting with OpenStack

```
[thgianna@lxplus800 ~]$ openstack server list --name thgianna-c8 -c Name -c Status -c Image -c Flavor
               Status | Image
                                                   Flavor
 Name
 thgianna-c8 | ACTIVE | C8 - x86_64 [2021-09-01] | m2.medium
[thgianna@lxplus800 ~]$ openstack server show froumeli-personal
 Field
                               Value
 OS-EXT-AZ:availability zone
                               cern-geneva-c
 OS-EXT-STS:power state
                               Running
 OS-EXT-STS:vm state
                               active
 OS-SRV-USG:launched at
                               2021-09-14T12:14:26.000000
 addresses
                               CERN NETWORK=188.184.102.246, 2001:1458:d00:3b::100:3ed
 created
                               2021-09-14T12:13:067
 flavor
                               m2.small (17895)
 id
                               7b5a5b74-9116-4f83-9f5f-542dc40ab6cc
 image
                               CC7 - x86 64 [2021-09-01] (69ba9cec-17e4-4082-a3d8-a680db0a1421)
                               froumeli-personal-laptop
 key name
                               froumeli-personal
 name
                               9h461h5c-df46-42f3-9464-f7ef19dbc69a
 project id
 status
                               ACTIVE
                               froumeli
 user id
```


Interacting with kubernetes

```
[thgianna@lxplus800 ~]$ kubectl get nodes
NAME
                                            STATUS
                                                     ROLES
                                                              AGE
                                                                      VERSTON
thgianna-cluster-01-gtct2vrsnukb-master-0
                                            Ready
                                                     master
                                                              3d3h
                                                                     v1.21.1
thgianna-cluster-01-gtct2vrsnukb-node-0
                                            Ready
                                                     <none>
                                                              3d3h
                                                                     v1.21.1
[thgianna@lxplus800 ~]$ kubectl get pods
NAME
                           READY
                                   STATUS
                                             RESTARTS
                                                        AGE
aviator-6ccd95446c-8gnlm
                           1/1
                                   Running
                                                        3d1h
[thgianna@lxplus800 ~]$ kubectl get svc
NAME
             TYPE
                         CLUSTER-IP
                                         EXTERNAL-IP
                                                       PORT(S)
                                                                      AGE
                         10.254.58.141
aviator
            NodePort
                                                       80:32592/TCP
                                                                       3d1h (188.184.72.56:32592)
                                         <none>
```


Interactive Physics Analysis

- hub.cern.ch
- ml.cern.ch

https://github.com/cms-opendata-education/scool-lab-sc18-opendata/

Example word count program on jupyter

Examples we can use at home

Compute function root and minima

https://scipy-lectures.org/intro/scipy/auto_examples/plot_optimize_example2.html

https://matplotlib.org/stable/gallery/showcase/integral.html

https://scipy-lectures.org/

Links

- https://jupyter-tutorial.readthedocs.io/en/latest/first-steps/install.html
- https://jupyter-docker-stacks.readthedocs.io/en/latest/
- https://colab.research.google.com/
- https://www.kaggle.com/
- https://docs.docker.com/get-docker/
- https://getfedora.org/ https://opensource.com/article/18/5/dual-boot-linux
- https://docs.microsoft.com/en-us/windows/wsl/install
- https://www.virtualbox.org/wiki/Downloads

Thank you for your time!

