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Big science —> big data

Grid/cloud
distributed
Exascale computing (102 bytes) computing
500k processor
cores

800 million pp collisions per second



The data processing chain

Online processing
Trigger 1 ms 106 -108 sec

Collision Detectors Event Full Storage Offlim?
fragments event analysis



Collisions at the LHC
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Searching the Higgs — needle in a haystack
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The needle in many, many haystacks
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Physics Selection at LHC
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Physics software

* The scientific software needed to process this huge amount of data
from the LHC detectors is developed by the LHC collaborations

* Must cope with the unprecedented conditions and challenges (trigger rate, data volumes,
etc.)

* Each collaboration has written millions of lines of code

* Modern technologies and methods

* Object-oriented programming languages and frameworks
* Re-use of a number of generic and domain-specific ‘open-source’ packages

* The organization of this large software production activity is by itself a
huge challenge

e Large number of developers distributed worldwide
* Integration and validation require large efforts

10



Processmg Stages
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Processmg Stages - Trigger

mmmmmmmm

%}

e | gl o
{ g:glyss J mﬁﬂ M
TN\ S

Analysis Object Data (AOD)

EEEEEEE

(extracted by physics topic)

reconstruction @/ j

12



Trigger Levels

olLevel-1

o Hardwired processors (ASIC, FPGA, ...)
o Pipelined massive parallel

o Partial information, quick and simple event characteristics (pt, total energy, etc.)
o 3-4 pys maximum latency

oLevel-2 (optional)
o Specialized processors using partial data

oHigh Level
o Software running in processor farms
o Complex algorithms using complete event information
o Latency at the level of fractions of second ~ 1:102
o Output rate adjusted to what can be afforded

~ 1:104

~ 1:101



Trigger Levels and Rates
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Processing Stages - Reconstruction
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What is reconstruction

Tracker ‘hits’ form a puzzle
Which tracks created them?

Each energy deposition is a

clue

There are thousands of
measurements in each snap-shot

The experiment’s

reconstruction must obtain a

solution!

In well measured magnetic field
Matches the traces to tracks




The Reconstruction challenge

Starti ng from {+30 minimum bias events)
this event

All charged tracks with pt > 2 GeV

LOOki ng for Reconstructed tracks with pt > 25 GeV
this “signature”

- Selectivity: 1in 10"
(Like looking for a needle in 20 million haystacks)
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How it works —a simple example

 Combine space points on
first three planes (seeds)

Magnetic field B
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How it works —a simple example

 Combine space points on
first three planes (seeds)

* Prolongate to subsequent
planes

 Calculate differences
between measured points
and predictions

Magnetic field B

(Kalman @
filter)
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How it works —a simple example

* Combine space points on
first three planes (seeds)

®

* Prolongate to
subsequent planes

* Calculate differences
between measured points
and predictions

P= 11 GeV/c

* Do track fitting, using PID
hypothesis

* Finally the track
candidates are identified

P= 22 GeV/c

P= 7.5 GeV/c
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ATLAS reconstruction procedure

Inside-out Outside-in Special
Algorithms

Track candidates
(Combinatorial Kalman Filter)

Track candidates
(Combinatorial Kalman Filter)




Detector conditions data

* Reflects changes in state of the t Versi
ersion

detector with time
* Event Data cannot be A Time
|
re.constrycted or analyzed T ghner —FFI—'HI = H
without it cen T [T 71
. t1 2 t3t4 156 1718 19 10111
* Versioning /
. Data Item Time=T
* Tagging

* Ability to extract slices of data
required to run with job

* Long life-time



Online and offline reconstruction

Are collisions first-tagged really interesting enough to keep
(given capacity constraints)?

Online reconstruction — seek to reconstruct ‘as much as you can’
quickly to enable decision

Critical part of experiment — collisions which are not recorded
are lost

Later there is more time to reconstruct the contents of a
collision — but this is also complex



Processing Stages - Analysis
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Data analysis

e Uses the results of Reconstruction
* The products are reconstructed tracks, energy deposits (calorimeters)
e Hierarchy of data from original (RAW), to summary (AOD)

e Extract observables from data (e.g. invariant mass, particle
correlations, ...)
* Understand errors and features, by comparing with simulation
* Compare with physics hypothesis, theory predictions, explore new physics
* Programmed mainly in C++ & Python

* An experiment’s physics teams use the (large) pool of data

* No longer in one central location, but in multiple locations (cost, space of
building, computers, disks, network) .... using the GRID



ROOT

o “At the root of the experiments”, project started in
1995

o Open Source project (LGPL3)
o mainly written in C++; 4 MLOC

o ROOT provides (amongst other things):

o Interactive C++ interpreter (on top of LLVM and Clang)

o Efficient data storage mechanism; 177 PB LHC data
stored in ROOT (2015, now about 500 PB)

o High-level interface for analysis in C++ and Python
(RDataFrame)

o Advanced statistical analysis algorithms

o histogramming, fitting, minimization, statistical methods ...
o Scientific visualization: 2D/3D graphics, PDF, Latex
o Geometrical modeler

26
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Processing Stages - Simulation
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What is simulation?

* Simulation = doing ‘virtual’ experiment
* Take all the known physics
e Start from your ‘initial condition’ (two protons colliding)

 Calculate the ‘final state’ of your detector to get the ‘experimental’
results

* Solve equations of motion, detector electronics response, etc

* IMPOSSIBLE to be done analytically



Monte Carlo simulation

e What is Monte Carlo?

* Throwing random numbers

e to calculate integrals
* to pick among possible choices

* Why Monte Carlo?
e complexity of the problem
* lack of analytical description

* need of randomness like in nature
* Quantum mechanics: amplitudes => probabilities
* Noting is certain, but anything that possibly can happen, will!
* Want to generate events in as much detail as possible
» get average and fluctuations right
* make random choices, ~as in nature

30



Laplace method of calculating t (1886)

* Area of the square=4
* Areaofthecircle=mn

* Probability of random points
inside the circle=mt / 4

* Random points: N
* Random points inside circle : N,

n~4N./N
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Why do we need simulation?

* To design the apparatus
(detector) to fulfill its role

 To prepare the reconstruction
and analysis of results

* Training on ‘known’ (simulated)
events (MC ‘truth’)

30— e Data ATLAS Preliminary

E, _ B Background 22" Ho7Z" 4l
£ 25— round Z+jets,
e To understand the results I e oo
* We need to know what to wop Sy o Tovifua- 4ot
expect to :

15;

* Verify existing models
* Find new physics

* Understand systematic errors

10—
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Simulation chain for HEP experiments

Event
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Monte Carlo generators

e Simulate particles reaction in
vacuum

* knows nothing about the
surrounding detector

 All Standard Model processes
are included

* No propagation of particles,
just generation of the products
of the ‘primary’ collision

* The output of the ’generators’
is the input to the ‘transport’
code

AVAYAVaV

Xis any fermion in
the Standar

Standard Model Interactions
(Forces Mediated by Gauge Bosons)

/ /
A X A4 X
| Y 7
\J/ I\ {
Rx KX

d Model.

Xis electrically d;arged. Xisany quark.

000000

.\}.;.; "
\

1:1" D Av Lo q .
w w gﬂk}\@«; P
At QVAVAVLV P oSl
\ \ ) go
U
U is a up-type quark; Lis alepton and v is the i

Dis adown-type quark.  corresponding neutrino.

S
SX

Xisa photon

wl p Wi
W+ L™ =~

orZ-boson. X and Y are any two
electroweak bosons such
that charge is conserved.
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Transport Code: Geant4

* Geant4 is a toolkit (C++) for the simulation
of the passage of particles through matter.

* Its areas of application include high energy,
nuclear and accelerator physics, as well as
studies in medical and space science

* In HEP has been successfully employed for
* Detector design
e Calibration/alignment
* Data analysis

XMM—N&MOI\




What does Geant4 do?

* ‘propagates’ particles through
geometrical structures of materials,
including magnetic field

* simulates processes the particles
undergo
e creates secondary particles
* decays particles

* calculates the deposited energy
along the trajectories and allows to
store the information for further
processing (‘hits’)
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Simulation ingredients

Silicon
Tracker
- We model
- Detector’s Geometry
- Shape, Location, Material
- Physics interactions

- All known processes
- Electromagnetic
* Nuclear (strong)
- Weak (decay
- we ‘shoot’ particles and
‘Eropagate’ them through
the modeled detector

2.5 MeV e-

— electron
Ototal = 2 c)-per-interaction
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Geometry and Materials

How to implement (efficiently)
this in your computer program?

You need ‘bricks’
* ‘solids’, ‘shapes’
e you need to position them
* you want to ‘reuse’ as much as
possible the same ‘templates’
Database of Materials
* National Institute of Standards
(NIST)
Magnetic Fields

* numerical integration of the
equation of motion (Runge-
Kutta method)
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Physics...

o What happens to particles in
matter?

o We want to model the physics we
know

o each possible physics process
provides the “interaction length”
compared with distance to next
geometrical boundary

o the smallest wins

o generating a “final state” and
secondaries tracks

o Electromagnetic
o gammas and charged particles

o Hadronic
o neutrons, mesons (K,t), muons, ...

39



ATLAS
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ATLAS Calorimeter (a very, very small part of
it

Towers in Sampling 3
ApxAn = 0.0245x0.05

2%

/\-

Square rowers in
Sampling 2

.{“d@//}"
N
Ap= 0.0245

™~ <Z

o

. Kordas “Geant4 for the ATLAS EM calo” — CALOR2000, Annecy, 12 October2000 (¢
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Summary: data rates

oParticle beams cross every 25 ns (40 MHz)
o Up to 25 particle collisions per beam crossing (for Run2, higher for Run3)

o Up to 10° collisions per second inelastic p-p scatiering 106
. . (] 103
oBasically 2 event filter/trigger levels E— —
o Hardware trigger (e.g. FPGA) 299, Z> iz 2
t 1
o Software trigger (PC farm) Higgs boson (al; m, = 120GeV) 0.04
Higgs boson (simple signatures) 0.0003

o Data processing starts at readout
o Reducing 10° p-p collisions per second to O(1000)

oRaw data to be stored permanently: >15 PB/year

This is our Big Data problem!!



Big Data requires Big Computing

o The LHC experiments rely on distributed computing resources: -‘c?
o WLCG - a global solution, based on the Grid WLCG
technologies/middleware. o UG Compt
o distributing the data for processing, user access, local analysis facilities etc. ot
o ?éctri]ryglgfiig:eption envisaged as the seed for global adoption of the 450’035?:“;%":01@5
g ~200 PB of disk space
o Tiered structure ~200 PB of tape space

o Tier-0 at CERN: the central facility for data processing and archival

o 11 Tier-1s: big computing centers with high quality of service used
for most complex/intensive processing operations and archival

o ~140 Tier-2s: computing centers across the world used primarily for
data analysis and simulation.

o So far computing was not a limiting factor for the Physics
program of the LHC experiments
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Running jobs on LCG

Running jobs at all sites
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A Success Story!
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Higgs boson-like particle discovery‘
claimed at LHC

By Paul Rincon

The moment when Cem o t s Hegas resulls

Cern scientists reporting from the Large Hadron Collider (LHC)

have claimed the discovery of a new particle consistent with the Relaf

Higgs boson,

Oes
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Challenges for HEP Software

* High-luminosity LHC will produce 7x-10x today’s event rate
* More precise Higgs physics (5x), rare signals, new physics
* Timescale: 2017-2018
e Constant computing budget

* Technology evolves, but we need to be able to make use of it
* Massive parallelism, Al, hybrid computing, ...

* Huge pressure for both experiment software systems and common
software
* Important R&D ongoing for experiment upgrades
* Hardware and software
 R&D for the common simulation tools



Conclusion

* Modern HEP experiments would be impossible without computing

* Online triggering and selection
* Offline reconstruction, analysis and simulation

* Huge data volumes
 Distributed processing



