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Accelerators & particle physics
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Big science –> big data
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distributed
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500k processor 
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Exascale computing (1018 bytes)

800 million pp collisions per second



The data processing chain

5

Collision Detectors Event
fragments

Full
event Storage Offline

analysis

Trigger
Online processing

1 ms 106 -108 sec



Collisions at the LHC
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Searching the Higgs – needle in a haystack



The needle in many, many haystacks
• Cross sections (probabilities) of physics 

processes vary over many orders of 
magnitude
• Inelastic: GHz
• W® !"n: 100 Hz
• t tbar production: 10 Hz
• Higgs (125 GeV/c2): 0.1 Hz

• Selection needed: 1:1010–11

one Higgs on 10.000.000.000 collisions

~3 million until 2017
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Physics Selection at LHC
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Physics software

• The scientific software needed to process this huge amount of data 
from the LHC detectors is developed by the LHC collaborations
• Must cope with the unprecedented conditions and challenges (trigger rate, data volumes, 

etc.)
• Each collaboration has written millions of lines of code

• Modern technologies and methods
• Object-oriented programming languages and frameworks
• Re-use of a number of  generic and domain-specific ‘open-source’ packages

• The organization of this large software production activity is by itself a 
huge challenge
• Large number of developers distributed worldwide
• Integration and validation require large efforts 
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Processing Stages
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Processing Stages - Trigger
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Trigger Levels

oLevel-1
o Hardwired processors (ASIC, FPGA, …)
o Pipelined massive parallel
o Partial information, quick and simple event characteristics (pt, total energy, etc.)
o 3-4 µs maximum latency

oLevel-2 (optional) 
o Specialized processors using partial data  

oHigh Level
o Software running in processor farms
o Complex algorithms using complete event information
o Latency at the level of fractions of second
o Output rate adjusted to what can be afforded  
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Trigger Levels and Rates 
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10-2

100

102

104

106

108

10-8 10-6 10-4 10-2 100

25 ns - µs ms sec

QED

W,Z
Top
Z*

Higgs

Available processing time

LEVEL-1 Trigger 40 MHz  
Hardwired processors  (ASIC, FPGA) 
  MASSIVE PARALLEL  
  Pipelined Logic Systems 
 

HIGH LEVEL TRIGGERS 1kHz 
Standard processor FARMs 

10-4

Rate (Hz)

- 1 µs
- 0.1 - 1 sec

- 1  
ms

SECOND LEVEL TRIGGERS 100 
kHz SPECIALIZED processors 
(feature extraction and global logic) 

Lvl-1

Lvl-2

HLT

Front end pipelines

Readout buffers

Processor farms

Switching network

Detectors

�Traditional�: 3 physical levels



Processing Stages - Reconstruction
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What is reconstruction

oTracker ‘hits’ form a puzzle
o Which tracks created them?

oEach energy deposition is a 
clue
o There are thousands of 

measurements in each snap-shot

oThe experiment’s 
reconstruction must obtain a 
solution!
o In well measured magnetic field
o Matches the traces to tracks
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The Reconstruction challenge
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How it works – a simple example
• Combine space points on 

first three planes (seeds)
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Magnetic field Β



How it works – a simple example
• Combine space points on 

first three planes (seeds)
• Prolongate to subsequent 

planes
• Calculate differences

between measured points 
and predictions

19

(Kalman 
filter)
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How it works – a simple example
• Combine space points on 

first three planes (seeds)
• Prolongate to 

subsequent planes
• Calculate differences 

between measured points 
and predictions

• Do track fitting, using PID 
hypothesis
• Finally the track 

candidates are identified
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ATLAS reconstruction procedure



Detector conditions data
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Data Item

Version

Time

t1 t2 t3t4 t5t6 t7t8 t9 t10t11

VDET alignment
HCAL calibration  
RICH pressure     

ECAL temperature       

Time = T

• Reflects changes in state of the 
detector with time 
• Event Data cannot be 

reconstructed or analyzed  
without it 
• Versioning
• Tagging
• Ability to extract slices of data 

required to run with job
• Long life-time



Online and offline reconstruction

• Are collisions first-tagged really interesting enough to keep 
(given capacity constraints)?
• Online reconstruction – seek to reconstruct ‘as much as you can’ 

quickly to enable decision
• Critical part of experiment – collisions which are not recorded 

are lost
• Later there is more time to reconstruct the contents of a 

collision – but this is also complex
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Processing Stages - Analysis
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Data analysis

• Uses the results of Reconstruction
• The products are reconstructed tracks, energy deposits (calorimeters) 
• Hierarchy of data from original (RAW), to summary (AOD)

• Extract observables from data (e.g. invariant mass, particle 
correlations, …)
• Understand errors and features, by comparing with simulation
• Compare with physics hypothesis, theory predictions, explore new physics
• Programmed mainly in C++ & Python

• An experiment’s physics teams use the (large) pool of data
• No longer in one central location, but in multiple locations (cost, space of 

building, computers, disks, network) .... using the GRID
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ROOT

o“At the root of the experiments”, project started in 
1995

oOpen Source project (LGPL3)
o mainly written in C++; 4 MLOC

oROOT provides (amongst other things):
o Interactive C++ interpreter (on top of LLVM and Clang)
o Efficient data storage mechanism; 177 PB LHC data 

stored in ROOT (2015, now about 500 PB)
o High-level interface for analysis in C++ and Python 

(RDataFrame)
o Advanced statistical analysis algorithms

o histogramming, fitting, minimization, statistical methods …
o Scientific visualization: 2D/3D graphics, PDF, Latex
o Geometrical modeler
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ROOT in plots
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Processing Stages - Simulation
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What is simulation?

• Simulation = doing ‘virtual’ experiment 
• Take all the known physics 
• Start from your ‘initial condition’ (two protons colliding) 
• Calculate the ‘final state’ of your detector to get the ‘experimental’ 

results 
• Solve equations of motion, detector electronics response, etc

• IMPOSSIBLE to be done analytically 
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Monte Carlo simulation

• What is Monte Carlo?
• Throwing random numbers

• to calculate integrals
• to pick among possible choices

• Why Monte Carlo?
• complexity of the problem 
• lack of analytical description 
• need of randomness like in nature 

• Quantum mechanics: amplitudes => probabilities
• Noting is certain, but anything that possibly can happen, will! 
• Want to generate events in as much detail as possible
• get average and fluctuations right
• make random choices, ∼as in nature
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Laplace method of calculating π (1886)
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Why do we need simulation?

• To design the apparatus 
(detector) to fulfill its role 
• To prepare the reconstruction 

and analysis of results
• Training on ‘known’ (simulated) 

events (MC ‘truth’)
• To understand the results

• We need to know what to 
expect to 
• Verify existing models 
• Find new physics 

• Understand systematic errors
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Simulation chain for HEP experiments
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Monte Carlo generators

• Simulate particles reaction in 
vacuum
• knows nothing about the 

surrounding detector
• All Standard Model processes 

are included 
• No propagation of particles, 

just generation of the products 
of the ‘primary’ collision
• The output of the ‘generators’ 

is the input to the ‘transport’ 
code
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Transport Code: Geant4

• Geant4 is a toolkit (C++) for the simulation 
of the passage of particles through matter. 
• Its areas of application include high energy, 

nuclear and accelerator physics, as well as 
studies in medical and space science

• In HEP has been successfully employed for
• Detector design
• Calibration/alignment
• Data analysis
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What does Geant4 do?
• ‘propagates’ particles through 

geometrical structures of materials, 
including magnetic field
• simulates processes the particles 

undergo
• creates secondary particles
• decays particles

• calculates the deposited energy 
along the trajectories and allows to 
store the information for further 
processing (‘hits’)

36



Simulation ingredients

•We model
• Detector’s Geometry

• Shape, Location, Material

• Physics interactions
• All known processes

• Electromagnetic
• Nuclear (strong) 
• Weak (decay 

• we ‘shoot’ particles and 
‘propagate’ them through 
the modeled detector
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Geometry and Materials

• How to implement (efficiently) 
this in your computer program?

• You need ‘bricks’
• ‘solids’, ‘shapes’
• you need to position them

• you want to ‘reuse’ as much as 
possible the same ‘templates’

• Database of Materials
• National Institute of Standards 

(NIST)

• Magnetic Fields
• numerical integration of the 

equation of motion (Runge-
Kutta method)
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Physics…
oWhat happens to particles in 

matter?
oWe want to model the physics we 

know
o each possible physics process 

provides the “interaction length” 
compared with distance to next 
geometrical boundary
o the smallest wins

o generating a “final state” and 
secondaries tracks

o Electromagnetic 
o gammas and charged particles

oHadronic
o neutrons, mesons (K,π), muons, ...
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Because of the detailed geometries, the 
detailed physics and the required precision the 
simulation is very CPU hungry



ATLAS
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ATLAS Calorimeter (a very, very small part of 
it)
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Summary: data rates

oParticle beams cross every 25 ns (40 MHz)
oUp to 25 particle collisions per beam crossing (for Run2, higher for Run3)
oUp to 109 collisions per second 

oBasically 2 event filter/trigger levels
oHardware trigger (e.g. FPGA)
o Software trigger (PC farm)
oData processing starts at readout
oReducing 109 p-p collisions per second to O(1000) 

oRaw data to be stored permanently: >15 PB/year
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This is our Big Data problem!!



Big Data requires Big Computing

o The LHC experiments rely on distributed computing resources:
o WLCG - a global solution, based on the Grid 

technologies/middleware.
o distributing the data for processing, user access, local analysis facilities etc.
o at time of inception envisaged as the seed for global adoption of the 

technologies

o Tiered structure
o Tier-0 at CERN: the central facility for data processing and archival
o 11 Tier-1s: big computing centers with high quality of service used 

for most complex/intensive processing operations and archival
o ~140 Tier-2s: computing centers across the world used primarily for 

data analysis and simulation.

o So far computing was not a limiting factor for the Physics 
program of the LHC experiments
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12 February 2016 J. Apostolakis 44

2010
(>10x today)



A Success Story!
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Challenges for HEP Software

• High-luminosity LHC will produce 7x-10x today’s event rate
• More precise Higgs physics (5x), rare signals, new physics
• Timescale: 2017-2018
• Constant computing budget
• Technology evolves, but we need to be able to make use of it

• Massive parallelism, AI, hybrid computing, …

• Huge pressure for both experiment software systems and common 
software
• Important R&D ongoing for experiment upgrades

• Hardware and software
• R&D for the common simulation tools
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Conclusion

• Modern HEP experiments would be impossible without computing
• Online triggering and selection
• Offline reconstruction, analysis and simulation

• Huge data volumes
• Distributed processing
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