

# Charm Physics Confronts High-pT Lepton Tails

# Admir Greljo

2003.12421

JPPM, 06.05.2020

## Introduction



- '70 The GIM mechanism
- '74 November revolution  $J/\psi$

'19 CP violation

- Charm is a cornerstone of the SM
- A unique arena for QCD and Flavor physics

## Introduction



- '70 The GIM mechanism
- '74 November revolution  $J/\psi$

'19 CP violation

- Charm is a cornerstone of the SM
- A unique arena for QCD and Flavor physics

Question: How unique is the charm sector as a probe of <u>New Physics</u> within the zoo of flavor and collider phenomenology? What is the role of charm in a broader quest for a microscopic theory beyond the SM?

## Opportunities across the scales



## Contemporary experiments



Harvesting large statistics!



## **Contents**

4

#### 2003.12421

#### Charm Physics Confronts High- $p_T$ Lepton Tails

Javier Fuentes-Martin, Admir Greljo, Jorge Martin Camalich, Jose David Ruiz-Alvarez

#### 1 Introduction

- 2 Theoretical framework:  $c o d^i ar e^lpha 
  u^eta$ 
  - 2.1 The high-energy effective theory
  - 2.2 The low-energy effective theory

#### 3 Decays of charmed mesons

#### 4 High- $p_T$ lepton production at the LHC

- 4.1 Short-distance new physics in high- $p_T$  tails
- 4.2 Recast of the existing experimental searches
- 4.3 Possible caveats within and beyond the EFT

#### 5 Interplay between low and high energy

- 5.1 Four-fermion interactions
- 5.2 W vertex corrections

#### 6 Neutral currents

- 6.1 Theoretical framework:  $c \to u e^{\alpha} \bar{e}^{\beta}$
- 6.2 Rare charm decays
- 6.3 High- $p_T$  dilepton tails
- 6.4 Comments on  $\Delta S = 1$  and  $\Delta B = 1$  rare transitions

#### 7 Constraints from $SU(2)_L$ gauge invariance

- 7.1 Charged currents
- 7.2 Neutral currents

#### 8 Conclusions

#### Rare FCNC c → u I+ I<sup>-</sup> transition

Tiny SM decay rates: short-distance contribution negligible, efficient GIM suppression, long-distance dominated  $BR(D^0 \to \mu^+\mu^-) \sim \mathcal{O}(10^{-13})$ 

#### Rare FCNC c → u I+ I<sup>-</sup> transition

Tiny SM decay rates: short-distance contribution negligible, efficient GIM suppression, long-distance dominated  $BR(D^0 \to \mu^+\mu^-) \sim \mathcal{O}(10^{-13})$  Already strong experimental upper limits  $BR(D^0 \to \mu^+\mu^-) \lesssim 6 \times 10^{-9}$  LHCb

#### Rare FCNC c → u I+ I<sup>-</sup> transition

- Tiny SM decay rates: short-distance contribution negligible, efficient GIM suppression, long-distance dominated  $BR(D^0 \to \mu^+\mu^-) \sim \mathcal{O}(10^{-13})$
- Already strong experimental upper limits  $BR(D^0 \to \mu^+\mu^-) \lesssim 6 \times 10^{-9}$  LHCb
- Practically <u>null test of the SM</u> sensitive to New Physics

#### Rare FCNC c → u I+ I<sup>-</sup> transition

- Tiny SM decay rates: short-distance contribution negligible, efficient GIM suppression, long-distance dominated  $BR(D^0 \to \mu^+\mu^-) \sim \mathcal{O}(10^{-13})$
- Already strong experimental upper limits  $BR(D^0 \to \mu^+\mu^-) \lesssim 6 \times 10^{-9}$
- Practically <u>null test of the SM</u> sensitive to New Physics

• Take NP solely affecting charm

$$\mathcal{L}_{NP} \approx \frac{\epsilon_V^{\ell\ell}}{15 \, \text{TeV}} \, (\bar{\ell}_R \gamma^\mu \ell_R) (\bar{u}_R \gamma^\mu c_R)$$

#### Rare FCNC c → u I+ I<sup>-</sup> transition

Tiny SM decay rates: short-distance contribution negligible, efficient GIM suppression, long-distance dominated  $BR(D^0 \to \mu^+\mu^-) \sim \mathcal{O}(10^{-13})$ 

Already strong experimental upper limits  $BR(D^0 \to \mu^+\mu^-) \lesssim 6 \times 10^{-9}$ 

Practically <u>null test of the SM</u> sensitive to New

**Physics** 

• Take NP solely affecting charm

$$\mathcal{L}_{NP} \approx \frac{\epsilon_V^{\ell\ell}}{15 \, \mathrm{TeV}} \, (\bar{\ell}_R \gamma^\mu \ell_R) (\bar{u}_R \gamma^\mu c_R)$$



#### Rare FCNC c → u I+ I<sup>-</sup> transition

- Tiny SM decay rates: short-distance contribution negligible, efficient GIM suppression, long-distance dominated  $BR(D^0 \to \mu^+\mu^-) \sim \mathcal{O}(10^{-13})$
- Already strong experimental upper limits  $BR(D^0 \to \mu^+\mu^-) \lesssim 6 \times 10^{-9}$
- Practically <u>null test of the SM</u> sensitive to New Physics

• Take NP solely affecting charm

$$\mathcal{L}_{NP} \approx \frac{\epsilon_V^{\ell\ell}}{15 \, \text{TeV}} \, (\bar{\ell}_R \gamma^\mu \ell_R) (\bar{u}_R \gamma^\mu c_R)$$

#### Rare FCNC c → u I+ I<sup>-</sup> transition

- Tiny SM decay rates: short-distance contribution negligible, efficient GIM suppression, long-distance dominated  $BR(D^0 \to \mu^+ \mu^-) \sim \mathcal{O}(10^{-13})$
- Already strong experimental upper limits  $BR(D^0 \to \mu^+\mu^-) \lesssim 6 \times 10^{-9}$
- Practically <u>null test of the SM</u> sensitive to New Physics

Take NP solely affecting charm 
$$\mathscr{L}_{NP} \approx \frac{\epsilon_V^{\ell\ell}}{15\,\mathrm{TeV}}\,(\bar{\ell}_R\gamma^\mu\ell_R)(\bar{u}_R\gamma^\mu c_R)$$
 Calculate

c u > I+ I- Drell-Yan 
$$u \times \ell$$

#### Rare FCNC c → u I+ I<sup>-</sup> transition

- Tiny SM decay rates: short-distance contribution negligible, efficient GIM suppression, long-distance dominated  $BR(D^0 \to \mu^+ \mu^-) \sim \mathcal{O}(10^{-13})$
- Already strong experimental upper limits  $BR(D^0 \to \mu^+\mu^-) \lesssim 6 \times 10^{-9}$
- Practically <u>null test of the SM</u> sensitive to New Physics

Take NP solely affecting charm

$$\mathcal{L}_{NP} \approx \frac{\epsilon_V^{\ell\ell}}{15 \, \mathrm{TeV}} \, (\bar{\ell}_R \gamma^\mu \ell_R) (\bar{u}_R \gamma^\mu c_R)$$

Calculate

c u > I+ I- Drell-Yan 
$$u \times \ell$$





Charged currents 
$$c 
ightarrow d^i ar{e}^{lpha} 
u^{eta}$$

### 2.2 The low-energy effective theory

$$\mathcal{L}_{CC} = -\frac{4G_F}{\sqrt{2}} V_{ci} \left[ \left( 1 + \epsilon_{V_L}^{\alpha\beta i} \right) \mathcal{O}_{V_L}^{\alpha\beta i} + \epsilon_{V_R}^{\alpha\beta i} \mathcal{O}_{V_R}^{\alpha\beta i} + \epsilon_{S_L}^{\alpha\beta i} \mathcal{O}_{S_L}^{\alpha\beta i} + \epsilon_{S_R}^{\alpha\beta i} \mathcal{O}_{S_R}^{\alpha\beta i} + \epsilon_T^{\alpha\beta i} \mathcal{O}_T^{\alpha\beta i} \right] + \text{h.c.},$$

$$\begin{split} \epsilon_{X,SM}^{\alpha\beta i} &= 0 \text{ for all } X & \mathcal{O}_{V_L}^{\alpha\beta i} &= (\bar{e}_L^\alpha \gamma_\mu \nu_L^\beta)(\bar{c}_L \gamma^\mu d_L^i) \,, \\ \mathcal{O}_{S_L}^{\alpha\beta i} &= (\bar{e}_R^\alpha \nu_L^\beta)(\bar{c}_R d_L^i) \,, \\ \mathcal{O}_{S_L}^{\alpha\beta i} &= (\bar{e}_R^\alpha \nu_L^\beta)(\bar{c}_R d_L^i) \,, \\ \mathcal{O}_{T}^{\alpha\beta i} &= (\bar{e}_R^\alpha \sigma_{\mu\nu} \nu_L^\beta)(\bar{c}_R \sigma^{\mu\nu} d_L^i) \,. \end{split} \\ \mathcal{O}_{S_R}^{\alpha\beta i} &= (\bar{e}_R^\alpha \nu_L^\beta)(\bar{c}_L d_R^i) \,, \end{split}$$

## 2.1 The high-energy effective theory





## 2.1 The high-energy effective theory

$$\mathcal{L}_{ ext{SMEFT}} \supset rac{1}{v^2} \sum_k \mathcal{C}_k \, \mathcal{O}_k$$

• The full list of 4F operators (\*) Warsaw basis

$$\mathcal{O}_{lq}^{(3)} = (\bar{l}_L \gamma_\mu \tau^I l_L) (\bar{q}_L \gamma^\mu \tau^I q_L) ,$$

$$\mathcal{O}_{lequ}^{(1)} = (\bar{l}_L^p e_R) \epsilon_{pr} (\bar{q}_L^r u_R) ,$$

• W vertex correction

$$(\phi^{\dagger} i D_{\mu}^{I} \phi)(\bar{q}_{L} \gamma^{\mu} \tau^{I} q_{L})$$
$$(\tilde{\phi}^{\dagger} i D_{\mu} \phi)(\bar{u}_{R} \gamma^{\mu} d_{R})$$



$$\mathcal{O}_{ledq} = (\bar{l}_L e_R)(\bar{d}_R q_L),$$

$$\mathcal{O}_{lequ}^{(3)} = (\bar{l}_L^p \sigma_{\mu\nu} e_R) \epsilon_{pr} (\bar{q}_L^r \sigma^{\mu\nu} u_R),$$

$$\mathcal{O}_{lq}^{(3)} = (\bar{l}_L \gamma_\mu \tau^I l_L)(\bar{q}_L \gamma^\mu \tau^I q_L), \qquad \mathcal{O}_{ledq} = (\bar{l}_L e_R)(\bar{d}_R q_L), \qquad (\phi^\dagger i \overset{\leftrightarrow}{D_\mu} \phi)(\bar{q}_L \gamma^\mu \tau^I q_L) \\
\mathcal{O}_{lequ}^{(1)} = (\bar{l}_L^p e_R) \epsilon_{pr}(\bar{q}_L^r u_R), \qquad \mathcal{O}_{lequ}^{(3)} = (\bar{l}_L^p \sigma_{\mu\nu} e_R) \epsilon_{pr}(\bar{q}_L^r \sigma^{\mu\nu} u_R), \qquad (\tilde{\phi}^\dagger i D_\mu \phi)(\bar{u}_R \gamma^\mu d_R)$$

## Matching



$$\mathcal{O}_{V_L}^{\alpha\beta i} = (\bar{e}_L^{\alpha}\gamma_{\mu}\nu_L^{\beta})(\bar{c}_L\gamma^{\mu}d_L^i), \qquad \mathcal{O}_{V_R}^{\alpha\beta i} = (\bar{e}_L^{\alpha}\gamma_{\mu}\nu_L^{\beta})(\bar{c}_R\gamma^{\mu}d_R^i), \\
\mathcal{O}_{S_L}^{\alpha\beta i} = (\bar{e}_R^{\alpha}\nu_L^{\beta})(\bar{c}_R d_L^i), \qquad \mathcal{O}_{S_R}^{\alpha\beta i} = (\bar{e}_R^{\alpha}\nu_L^{\beta})(\bar{c}_L d_R^i), \\
\mathcal{O}_{T}^{\alpha\beta i} = (\bar{e}_R^{\alpha}\sigma_{\mu\nu}\nu_L^{\beta})(\bar{c}_R\sigma^{\mu\nu}d_L^i).$$

- $\bullet$  SMEFT 4F operators match to  $V_L$  ,  $S_R$  ,  $S_L$  , T but not to  $V_R$
- V<sub>I</sub> and V<sub>R</sub> receive chirality-preserving W vertex corrections
- Effects from chirality-flipping vertex corrections are beyond dim-6  $\bar{\psi}\sigma^{\mu\nu}\psi\,\phi F_{\mu\nu}$
- SMEFT effects in leptonic W couplings, G<sub>F</sub>, and CKM determination neglected
- RGEs allow to connect low and high p<sub>T</sub>
- RGE effects sizeable for scalar and tensor operators

Caveats beyond this setup will be discussed later

## **Crossing symmetry**



$$\frac{c \to d^i \bar{e}^\alpha \nu^\beta}{\text{Leptonic decays:}} \qquad D_{(s)} \to \bar{e}^\alpha \nu$$

$$\frac{c \to d^i \bar{e}^\alpha \nu^\beta}{\text{Leptonic decays:}} \qquad D_{(s)} \to \bar{e}^\alpha \nu$$

- Pseudoscalar meson  $J^P(D_{(s)}) = 0^-$
- QCD invariant under Lorentz symmetry and Parity =>

$$\langle 0 | \bar{q} \sigma^{\mu\nu} q | D \rangle = 0$$
,  $\langle 0 | \bar{q} \gamma^{\mu} q | D \rangle = 0$ ,  $\langle 0 | \bar{q} q | D \rangle = 0$ 

Leptonic decays sensitive only to axial vector and pseudo scalar operators

$$\epsilon_A^{\alpha\beta i} = \epsilon_{V_B}^{\alpha\beta i} - \epsilon_{V_L}^{\alpha\beta i}$$
  $\epsilon_P^{\alpha\beta i} = \epsilon_{S_B}^{\alpha\beta i} - \epsilon_{S_L}^{\alpha\beta i}$ 

$$\frac{c \to d^i \bar{e}^\alpha \nu^\beta}{\text{Leptonic decays:}} \qquad D_{(s)} \to \bar{e}^\alpha \nu$$

- Pseudoscalar meson  $J^P(D_{(s)}) = 0^-$
- QCD invariant under Lorentz symmetry and Parity =>

$$\langle 0 | \bar{q} \sigma^{\mu\nu} q | D \rangle = 0, \quad \langle 0 | \bar{q} \gamma^{\mu} q | D \rangle = 0, \quad \langle 0 | \bar{q} q | D \rangle = 0$$

Leptonic decays sensitive only to axial vector and pseudo scalar operators

$$\epsilon_A^{\alpha\beta i} = \epsilon_{V_R}^{\alpha\beta i} - \epsilon_{V_L}^{\alpha\beta i} \qquad \epsilon_P^{\alpha\beta i} = \epsilon_{S_R}^{\alpha\beta i} - \epsilon_{S_L}^{\alpha\beta i}$$

$$BR(D^{+} \to \bar{e}^{\alpha} \nu^{\alpha}) = \tau_{D^{+}} \frac{m_{D^{+}} m_{\alpha}^{2} f_{D}^{2} G_{F}^{2} |V_{cd}|^{2} \beta_{\alpha}^{4}}{8\pi} \left| 1 - \epsilon_{A}^{\alpha d} + \frac{m_{D}^{2}}{m_{\alpha} (m_{c} + m_{u})} \epsilon_{P}^{\alpha d} \right|^{2}$$

$$\frac{c \to d^i \bar{e}^\alpha \nu^\beta}{\text{Leptonic decays:}} \qquad D_{(s)} \to \bar{e}^\alpha \nu$$

- Pseudoscalar meson  $J^P(D_{(s)}) = 0^-$
- QCD invariant under Lorentz symmetry and Parity =>

$$\langle 0 | \bar{q} \sigma^{\mu\nu} q | D \rangle = 0, \quad \langle 0 | \bar{q} \gamma^{\mu} q | D \rangle = 0, \quad \langle 0 | \bar{q} q | D \rangle = 0$$

Leptonic decays sensitive only to axial vector and pseudo scalar operators

$$\epsilon_A^{\alpha\beta i} = \epsilon_{V_R}^{\alpha\beta i} - \epsilon_{V_L}^{\alpha\beta i} \qquad \epsilon_P^{\alpha\beta i} = \epsilon_{S_R}^{\alpha\beta i} - \epsilon_{S_L}^{\alpha\beta i}$$

$$BR(D^{+} \to \bar{e}^{\alpha} \nu^{\alpha}) = \tau_{D^{+}} \frac{m_{D^{+}} m_{\alpha}^{2} f_{D}^{2} G_{F}^{2} |V_{cd}|^{2} \beta_{\alpha}^{4}}{8\pi} \left| 1 - \epsilon_{A}^{\alpha d} + \frac{m_{D}^{2}}{m_{\alpha} (m_{c} + m_{u})} \epsilon_{P}^{\alpha d} \right|^{2}$$

LQCD: Precise decay constants

$$f_D = 212.0(7) \text{ MeV}$$
  
 $f_{D_s} = 249.9(5) \text{ MeV}$ 

$$\frac{c \to d^i \bar{e}^\alpha \nu^\beta}{\text{Leptonic decays:}} \qquad D_{(s)} \to \bar{e}^\alpha \nu$$

- Pseudoscalar meson  $J^P(D_{(s)}) = 0^-$
- QCD invariant under Lorentz symmetry and Parity =>

$$\langle 0 \, | \, \bar{q} \sigma^{\mu\nu} q \, | \, D \rangle = 0 \,, \quad \langle 0 \, | \, \bar{q} \gamma^{\mu} q \, | \, D \rangle = 0 \,, \quad \langle 0 \, | \, \bar{q} q \, | \, D \rangle = 0$$

Leptonic decays sensitive only to axial vector and pseudo scalar operators

$$\epsilon_A^{\alpha\beta i} = \epsilon_{V_R}^{\alpha\beta i} - \epsilon_{V_L}^{\alpha\beta i}$$
  $\epsilon_P^{\alpha\beta i} = \epsilon_{S_R}^{\alpha\beta i} - \epsilon_{S_L}^{\alpha\beta i}$ 

$$BR(D^{+} \to \bar{e}^{\alpha} \nu^{\alpha}) = \tau_{D^{+}} \frac{m_{D^{+}} m_{\alpha}^{2} f_{D}^{2} G_{F}^{2} |V_{cd}|^{2} \beta_{\alpha}^{4}}{8\pi} \left| 1 - \epsilon_{A}^{\alpha d} + \frac{m_{D}^{2}}{m_{\alpha} (m_{c} + m_{u})} \epsilon_{P}^{\alpha d} \right|^{2}$$

LQCD: Precise decay constants

$$f_D = 212.0(7) \text{ MeV}$$
  
 $f_{D_s} = 249.9(5) \text{ MeV}$ 

Chirality suppression for the axial vector



 $A: ar{e}_L \gamma^\mu 
u_L, \quad P: ar{e}_R 
u_L$ 



|                 |                    | <u>-</u>                  |
|-----------------|--------------------|---------------------------|
| $\underline{i}$ | $\mid \alpha \mid$ | Branching ratios, see PDG |
|                 | $\mid e \mid$      | (*) upper limit, CLEO     |
| d               | $\mid \mu \mid$    | BES3                      |
|                 | $\mid 	au$         | BES3                      |
|                 | $\mid e \mid$      | (*) upper limit, BELLE    |
| s               | $\mu$              | BES3                      |
|                 | $\mid 	au$         | BES3                      |







| i | $\mid \alpha \mid$                                       | $\epsilon_V^{lpha i}$ | $\epsilon_A^{lpha i}$                      | $\epsilon_S^{lpha i}$ | $\epsilon_P^{lpha i}$                                | $\epsilon_T^{lpha i}$ |
|---|----------------------------------------------------------|-----------------------|--------------------------------------------|-----------------------|------------------------------------------------------|-----------------------|
| d | $\left  egin{array}{c} e \ \mu \ 	au \end{array}  ight $ |                       | [-32, 34] $[-0.013, 0.07]$ $[-0.27, 0.21]$ |                       | [-0.005, 0.005] $[-0.0024, 0.0004]$ $[-0.11, 0.15]$  |                       |
| S | $\left  egin{array}{c} e \ \mu \ 	au \end{array}  ight $ |                       | [-27, 29] $[-0.07, 0.02]$ $[-0.07, 0.014]$ |                       | [-0.005, 0.004] $[-0.0007, 0.0022]$ $[-0.008, 0.04]$ |                       |

95% CL ranges on WCs at 2 GeV (one parameter fit).

- Stringent limits on P operators
- Limits on A depend strongly on the lepton flavour



- Semileptonic decays:  $D \to \pi(K) \bar{\ell} \nu$ 
  - QCD invariant under Lorentz symmetry and Parity =>

$$\langle P_i | \bar{q} \gamma^{\mu} \gamma^5 q | D \rangle = 0, \quad \langle P_i | \bar{q} \gamma^5 q | D \rangle = 0$$

• Semileptonic decays sensitive to <u>vector</u>, <u>scalar and tensor</u> operators

$$\epsilon_{V}^{\alpha\beta i} = \epsilon_{V_R}^{\alpha\beta i} + \epsilon_{V_L}^{\alpha\beta i}$$
  $\epsilon_{S}^{\alpha\beta i} = \epsilon_{S_R}^{\alpha\beta i} + \epsilon_{S_L}^{\alpha\beta i}$   $\epsilon_{T}^{\alpha\beta i}$ 



- Semileptonic decays:  $D \to \pi(K) \bar{\ell} \nu$ 
  - QCD invariant under Lorentz symmetry and Parity =>

$$\langle P_i | \bar{q} \gamma^{\mu} \gamma^5 q | D \rangle = 0, \quad \langle P_i | \bar{q} \gamma^5 q | D \rangle = 0$$

Semileptonic decays sensitive to <u>vector</u>, <u>scalar and tensor</u> operators

$$\epsilon_{V}^{\alpha\beta i} = \epsilon_{V_R}^{\alpha\beta i} + \epsilon_{V_L}^{\alpha\beta i}$$
  $\epsilon_{S}^{\alpha\beta i} = \epsilon_{S_R}^{\alpha\beta i} + \epsilon_{S_L}^{\alpha\beta i}$   $\epsilon_{T}^{\alpha\beta i}$ 

$$\frac{\mathrm{BR}(D \to P_i \,\bar{\ell}^{\alpha} \nu^{\alpha})}{\mathrm{BR}_{\mathrm{SM}}} = \left| 1 + \epsilon_V^{\alpha i} \right|^2 + 2 \,\mathrm{Re} \left[ (1 + \epsilon_V^{\alpha i}) (x_S \,\epsilon_S^{\alpha i*} + x_T \,\epsilon_T^{\alpha i*}) \right] + y_S \,|\epsilon_S^{\alpha i}|^2 + y_T \,|\epsilon_T^{\alpha i}|^2$$



- Semileptonic decays:  $D o \pi(K) \bar{\ell} \nu$ 
  - QCD invariant under Lorentz symmetry and Parity =>

$$\langle P_i | \bar{q} \gamma^{\mu} \gamma^5 q | D \rangle = 0, \quad \langle P_i | \bar{q} \gamma^5 q | D \rangle = 0$$

Semileptonic decays sensitive to <u>vector</u>, <u>scalar and tensor</u> operators

$$\epsilon_{V}^{\alpha\beta i} = \epsilon_{V_R}^{\alpha\beta i} + \epsilon_{V_L}^{\alpha\beta i}$$
  $\epsilon_{S}^{\alpha\beta i} = \epsilon_{S_R}^{\alpha\beta i} + \epsilon_{S_L}^{\alpha\beta i}$   $\epsilon_{T}^{\alpha\beta i}$ 

$$\frac{\mathrm{BR}(D \to P_i \, \bar{\ell}^{\alpha} \nu^{\alpha})}{\mathrm{BR}_{\mathrm{SM}}} = \left| 1 + \epsilon_V^{\alpha i} \right|^2 + 2 \, \mathrm{Re} \left[ (1 + \epsilon_V^{\alpha i}) (\mathbf{x}_S \, \epsilon_S^{\alpha i*} + \mathbf{x}_T \, \epsilon_T^{\alpha i*}) \right] + \mathbf{y}_S \, |\epsilon_S^{\alpha i}|^2 + \mathbf{y}_T \, |\epsilon_T^{\alpha i}|^2$$



| P       | $\mid \alpha$                                      | $ m \mid BR_{SM}$                                                                                         | $x_S$                                | $x_T$                                | $y_S$                | $y_T$ |
|---------|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------|--------------------------------------|--------------------------------------|----------------------|-------|
| $\pi^-$ | $\left \begin{array}{c}e\\\mu\end{array}\right $   | $\begin{array}{ c c c c c c } 2.65(18) \cdot 10^{-3} \\ 2.61(17) \cdot 10^{-3} \end{array}$               | $1.12(10) \cdot 10^{-3}$ $0.228(19)$ | $1.21(15) \cdot 10^{-3}$ $0.23(3)$   | 2.74(22)<br>2.73(18) | \ /   |
| $K^-$   | $\begin{array}{ c c } \hline e \\ \mu \end{array}$ | $\begin{array}{ c c c c c }\hline 3.48(26) \cdot 10^{-2} \\ 3.39(25) \cdot 10^{-2} \\ \hline \end{array}$ | $1.29(8) \cdot 10^{-3}$ $0.251(16)$  | $1.18(11) \cdot 10^{-3}$ $0.224(20)$ | 2.00(11)<br>2.00(11) | ` '   |





- The largest available phase space  $m_{D^+}-m_{\pi^0}\simeq 1.735~{
  m GeV}$
- No limits on tauonic V, S,T operators [Caveat: Excited resonances or  $D_{(s)} \to \tau \nu \gamma$  ]



| $i \mid$ | $\alpha \mid \epsilon_{\mathbf{N}}^{\alpha}$ | $\epsilon_A^{lpha i}$ | $\epsilon_S^{lpha i}$         | $\epsilon_P^{lpha i}$ | $\epsilon_T^{lpha i}$              |
|----------|----------------------------------------------|-----------------------|-------------------------------|-----------------------|------------------------------------|
| d        |                                              | , 0.11]<br>, 0.07]    | [-0.29, 0.29] $[-0.33, 0.17]$ | _                     | $[-0.5, 0.5] \\ [-0.6, 0.22] \\ -$ |
| s        |                                              | [, 0.08]<br>[, 0.06]  | [-0.29, 0.29] $[-0.4, 0.16]$  |                       | [-0.5, 0.5] $[-0.9, 0.22]$ $-$     |

95% CL ranges on WCs at 2 GeV (one parameter fit).

- Limits on scalar and tensor operators are weak, dominated by the quadratic contribution.
- Vector operators constrained at the few percent level. Form factor errors relevant.
- Future improvements ~ 3x on the rates at BESIII. Challenge for LQCD to keep up.

$$\begin{array}{c} c \to d^i \bar{e}^\alpha \nu^\beta \\ \hline & \text{Leptonic decays:} \qquad D_{(s)} \to \bar{e}^\alpha \nu \\ \hline & \text{Semileptonic decays:} \qquad D \to \pi(K) \bar{\ell} \nu \end{array}$$

| i | $\mid \alpha \mid$                                       | $\epsilon_V^{lpha i}$                                                        | $\epsilon_A^{lpha i}$                      | $\epsilon_S^{lpha i}$         | $\epsilon_P^{lpha i}$                                | $\epsilon_T^{lpha i}$          |
|---|----------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------|-------------------------------|------------------------------------------------------|--------------------------------|
| d | $\left  egin{array}{c} e \ \mu \ 	au \end{array}  ight $ | $   \begin{bmatrix}     -0.02, \ 0.11 \\     -0.06, \ 0.07   \end{bmatrix} $ | [-32, 34] $[-0.013, 0.07]$ $[-0.27, 0.21]$ | [-0.29, 0.29] $[-0.33, 0.17]$ | [-0.005, 0.005] $[-0.0024, 0.0004]$ $[-0.11, 0.15]$  | [-0.5, 0.5] $[-0.6, 0.22]$     |
| s | $\left  egin{array}{c} e \ \mu \ 	au \end{array}  ight $ | $   \begin{bmatrix}     -0.07, 0.08 \\     -0.09, 0.06 \end{bmatrix} $       | [-27, 29] $[-0.07, 0.02]$ $[-0.07, 0.014]$ | [-0.29, 0.29] $[-0.4, 0.16]$  | [-0.005, 0.004] $[-0.0007, 0.0022]$ $[-0.008, 0.04]$ | [-0.5, 0.5] $[-0.9, 0.22]$ $-$ |

95% CL ranges on WCs at 2 GeV (one parameter fit).

$$c \to d^i \bar{e}^\alpha \nu^\beta$$

$$D_{(s)} \to \bar{e}^{\alpha} \nu$$

Leptonic decays:  $D_{(s)} \to \bar{e}^{\alpha} \nu$  Semileptonic decays:  $D \to \pi(K) \bar{\ell} \nu$ 

- Not considered / future directions
  - D > V, no lattice QCD predictions
  - Baryonic Ac decays, data not precise
  - Kinematic distributions

### Charmed meson decays

• In the UV, the relevant operator basis is the "chiral basis" not the "parity basis"

### Charmed meson decays

• In the UV, the relevant operator basis is the "chiral basis" not the "parity basis"

## Vector $\epsilon_{V_L}^{lphaeta i}$

$$\mathcal{O}_{lq}^{(3)} = (\bar{l}_L \gamma_\mu \tau^I l_L) (\bar{q}_L \gamma^\mu \tau^I q_L)$$

- Electron: Semileptonic
- Muon: Semileptonic and leptonic comparable
- Tau: Leptonic

### Charmed meson decays

• In the UV, the relevant operator basis is the "chiral basis" not the "parity basis"

### Vector $\epsilon_{V_L}^{lphaeta i}$

$$\mathcal{O}_{lq}^{(3)} = (\bar{l}_L \gamma_\mu \tau^I l_L)(\bar{q}_L \gamma^\mu \tau^I q_L)$$

- Electron: Semileptonic
- Muon: Semileptonic and leptonic comparable
- Tau: Leptonic

### Scalar, Tensor

$$\mathcal{O}_{ledq} = (\bar{l}_L e_R)(\bar{d}_R q_L),$$

$$\mathcal{O}_{lequ}^{(3)} = (\bar{l}_L^p \sigma_{\mu\nu} e_R) \epsilon_{pr} (\bar{q}_L^r \sigma^{\mu\nu} u_R),$$

$$\mathcal{O}_{lequ}^{(1)} = (\bar{l}_L^p e_R) \epsilon_{pr} (\bar{q}_L^r u_R),$$

$$i \mid \alpha \mid \epsilon_{S_L}^{\alpha i} (-\epsilon_{S_R}^{\alpha i}) \times \mathbf{10^3} \quad \epsilon_T^{\alpha i} \times \mathbf{10^2}$$

$$\mid e \mid [-2.5, 2.7] \quad [-1.6, 1.5]$$

$$d \mid \mu \mid [-0.2, 1.2] \quad [-0.7, 0.13]$$

$$\tau \mid [-70, 60] \quad [-33, 44]$$

$$s \mid \mu \mid [-1.1, 0.3] \quad [-0.2, 0.6]$$

$$\tau \mid [-19, 4.0] \quad [-2.0, 12]$$

95% CL ranges on WCs at I TeV (one parameter fit).

RGE flow to P operator at low energies

### **Crossing symmetry**





High-pt lepton production at the LHC

### High-pt lepton production at the LHC

In the high-energy limit  $\sqrt{s} \gg m_W$ 

W-vertex Chirality preserving: 
$$\frac{1}{\Lambda^2} \psi^2 \phi D \phi$$

$$4F \quad \frac{1}{\Lambda^2} \psi^4$$

Chirality flipping: 
$$\frac{1}{\Lambda^2} \psi^2 \phi F$$

### High-pt lepton production at the LHC

In the high-energy limit  $\sqrt{s} \gg m_W$ 

### W-vertex

Chirality preserving:  $\frac{1}{\Lambda^2} \psi^2 \phi D \phi$ 





$$\mathscr{A} \sim \frac{m_W^2}{\Lambda^2}$$

$$(\mathcal{A}_{SM} \sim g^2)$$

Chirality flipping:



$$\mathscr{A} \sim \frac{g\sqrt{s}}{\Lambda^2}$$

$$4F \frac{1}{\Lambda^2} \psi$$

### High-pt lepton production at the LHC

In the high-energy limit  $\sqrt{s}\gg m_W$ 

### W-vertex

Chirality preserving:  $\frac{1}{\Lambda^2} \psi^2 \phi D \phi$ 



$$\mathscr{A} \sim \frac{m_W^2}{\Lambda^2}$$

$$(\mathcal{A}_{SM} \sim g^2)$$

Chirality flipping:  $\frac{1}{\Lambda^2} \psi^2 \phi F$ 





Scattering amplitudes induced by 4F contact interactions grow with energy before the completion kicks in to insure unitarity.

Partonic level cross section

$$\hat{\sigma}(s) = \frac{G_F^2 |V_{ij}|^2}{18\pi} s \left[ \left| \delta^{\alpha\beta} \frac{m_W^2}{s} - \epsilon_{V_L}^{\alpha\beta ij} \right|^2 + \frac{3}{4} \left( |\epsilon_{S_L}^{\alpha\beta ij}|^2 + |\epsilon_{S_R}^{\alpha\beta ij}|^2 \right) + 4 |\epsilon_T^{\alpha\beta ij}|^2 \right]$$

Partonic level cross section

$$\hat{\sigma}(s) = \frac{G_F^2 |V_{ij}|^2}{18\pi} s \left[ \left| \delta^{\alpha\beta} \frac{m_W^2}{s} - \epsilon_{V_L}^{\alpha\beta ij} \right|^2 + \frac{3}{4} \left( |\epsilon_{S_L}^{\alpha\beta ij}|^2 + |\epsilon_{S_R}^{\alpha\beta ij}|^2 \right) + 4 |\epsilon_T^{\alpha\beta ij}|^2 \right]$$

- In the relativistic limit, chiral fermions act as independent particles with definite helicity.
- Therefore, the interference among operators is achieved only when the operators match the same flavor and chirality for all four fermions.
- The lack of interference tends to increase the cross section in the high-p $_{T}$ tails, and allows to set bounds on several NP operators simultaneously.
- Different / complementary to charm decays.

Most of the bounds from  $D_{(S)}$  mesons decays depend on interference terms among different WCs, and it becomes difficult to break flat directions without additional observables.

Five quark flavors accessible in the incoming proton PDFs

$$\mathcal{L}_{q_i\bar{q}_j}(\tau,\mu_F) = \int_{\tau}^{1} \frac{dx}{x} f_{q_i}(x,\mu_F) f_{\bar{q}_j}(\tau/x,\mu_F)$$

Five quark flavors accessible in the incoming proton PDFs

$$\mathcal{L}_{q_i\bar{q}_j}(\tau,\mu_F) = \int_{\tau}^{1} \frac{dx}{x} f_{q_i}(x,\mu_F) f_{\bar{q}_j}(\tau/x,\mu_F)$$

The relative correction to the x-section in the tail

$$\frac{\Delta\sigma}{\sigma} \approx R_{ij} \times \frac{d_X \epsilon_X^2}{\left(m_W^2/s\right)^2}$$

$$d_X = 1, \frac{3}{4}, 4 \text{ for } X = V, S, T$$

$$R_{ij} \equiv \frac{(\mathcal{L}_{u_i \bar{d}_j} + \mathcal{L}_{d_j \bar{u}_i}) \times |V_{ij}|^2}{(\mathcal{L}_{u\bar{d}} + \mathcal{L}_{d\bar{u}}) \times |V_{ud}|^2}$$

Five quark flavors accessible in the incoming proton PDFs

$$\mathcal{L}_{q_i\bar{q}_j}(\tau,\mu_F) = \int_{\tau}^{1} \frac{dx}{x} f_{q_i}(x,\mu_F) f_{\bar{q}_j}(\tau/x,\mu_F)$$

The relative correction to the x-section in the tail

$$\frac{\Delta\sigma}{\sigma} \approx R_{ij} \times \frac{d_X \epsilon_X^2}{\left(m_W^2/s\right)^2}$$

$$d_X = 1, \frac{3}{4}, 4 \text{ for } X = V, S, T$$



Five quark flavors accessible in the incoming proton PDFs

$$\mathcal{L}_{q_i\bar{q}_j}(\tau,\mu_F) = \int_{\tau}^{1} \frac{dx}{x} f_{q_i}(x,\mu_F) f_{\bar{q}_j}(\tau/x,\mu_F)$$

The relative correction to the x-section in the tail

$$\frac{\Delta\sigma}{\sigma} \approx R_{ij} \times \frac{d_X \epsilon_X^2}{\left(m_W^2/s\right)^2}$$

$$d_X = 1, \frac{3}{4}, 4 \text{ for } X = V, S, T$$

### Energy enhancement



$$\left(s/m_W^2\right)^2 \sim \mathcal{O}(10^5)$$

# PDF and CKM suppression $(C_{-1} + C_{-1}) \times |V \cdot \cdot|^{2}$





Five quark flavors accessible in the incoming proton PDFs

$$\mathcal{L}_{q_i\bar{q}_j}(\tau,\mu_F) = \int_{\tau}^{1} \frac{dx}{x} f_{q_i}(x,\mu_F) f_{\bar{q}_j}(\tau/x,\mu_F)$$

The relative correction to the x-section in the tail

$$\frac{\Delta\sigma}{\sigma} \approx R_{ij} \times \frac{d_X \epsilon_X^2}{\left(m_W^2/s\right)^2}$$

$$d_X = 1, \frac{3}{4}, 4 \text{ for } X = V, S, T$$

$$\begin{split} \left| \Delta \sigma / \sigma \right|_{tails} &\lesssim \mathcal{O}(0.1) \\ \text{e.g.} &\rightarrow \epsilon_L^{cs} \lesssim \mathcal{O}(0.01) \end{split}$$

### Energy enhancement



$$\left(s/m_W^2\right)^2 \sim \mathcal{O}(10^5)$$

### PDF and CKM suppression

$$R_{ij} \equiv rac{(\mathcal{L}_{u_i ar{d}_j} + \mathcal{L}_{d_j ar{u}_i}) imes |V_{ij}|^2}{(\mathcal{L}_{u ar{d}} + \mathcal{L}_{d ar{u}}) imes |V_{u d}|^2}$$
 $R_{ij} = rac{\mathcal{L}_{u_i ar{d}_j} + \mathcal{L}_{d_j ar{u}_i}}{\mathcal{L}_{u ar{d}} + \mathcal{L}_{d ar{u}}} imes rac{|V_{ij}|^2}{|V_{u d}|^2}$ 
 $R_{ij} = rac{\mathcal{L}_{u_i ar{d}_j} + \mathcal{L}_{d_j ar{u}_i}}{\mathcal{L}_{u ar{d}} + \mathcal{L}_{d ar{u}}} imes rac{|V_{ij}|^2}{|V_{u d}|^2}$ 
 $R_{ij} = rac{\mathcal{L}_{u_i ar{d}_j} + \mathcal{L}_{d_j ar{u}_i}}{\mathcal{L}_{u ar{d}} + \mathcal{L}_{d ar{u}}} imes rac{|V_{ij}|^2}{|V_{u d}|^2}$ 
 $R_{ij} = rac{\mathcal{L}_{u_i ar{d}_j} + \mathcal{L}_{d_j ar{u}_i}}{\mathcal{L}_{u ar{d}} + \mathcal{L}_{d ar{u}}} imes rac{|V_{ij}|^2}{|V_{u d}|^2}$ 
 $R_{ij} = rac{\mathcal{L}_{u_i ar{d}_j} + \mathcal{L}_{d_j ar{u}_i}}{\mathcal{L}_{u ar{d}} + \mathcal{L}_{d ar{u}}} imes rac{|V_{ij}|^2}{|V_{u ar{d}}|^2}$ 
 $R_{ij} = rac{\mathcal{L}_{u_i ar{d}_j} + \mathcal{L}_{d_j ar{u}_i}}{\mathcal{L}_{u ar{d}} + \mathcal{L}_{d ar{u}}} imes rac{|V_{ij}|^2}{|V_{u ar{d}}|^2}$ 
 $R_{ij} = rac{\mathcal{L}_{u_i ar{d}_j} + \mathcal{L}_{d_j ar{u}_i}}{\mathcal{L}_{u ar{d}} + \mathcal{L}_{d ar{u}}} imes rac{|V_{ij}|^2}{|V_{u ar{d}}|^2}$ 
 $R_{ij} = rac{\mathcal{L}_{u_i ar{d}_j} + \mathcal{L}_{d_j ar{u}_i}}{\mathcal{L}_{u ar{d}} + \mathcal{L}_{d ar{u}}} imes rac{|V_{ij}|^2}{|V_{u ar{d}}|^2}$ 



#### Recast of the existing experimental searches

- Charged (and neutral) Drell-Yan is extremely well measured at the LHC.
- We recast the available searches fitting the transverse mass distribution at the reco level.



| Channel                                        | Statistics $[fb^{-1}]$ | Experiment |  |
|------------------------------------------------|------------------------|------------|--|
| $\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$ | 36                     | CMS        |  |
|                                                | 36                     | ATLAS      |  |
| $e\nu, \mu\nu$                                 | 139                    | ATLAS      |  |
|                                                | 36                     | ATLAS      |  |
|                                                | 36                     | CMS        |  |
| $\tau\tau$                                     | 36                     | ATLAS      |  |
| $	au	au, e\mu, e	au, \mu	au$                   | 2.2                    | CMS        |  |
| $ee, \mu\mu$                                   | 139                    | ATLAS      |  |
|                                                | 140                    | CMS        |  |
|                                                | 36                     | CMS        |  |
|                                                | 36                     | ATLAS      |  |
| $e\mu,e\tau,\mu\tau$                           | 36                     | ATLAS      |  |
|                                                | 36                     | ATLAS      |  |
| г                                              | ٨٠ : ا ـ ا ـ ا ـ ـ ـ ١ |            |  |

[Available data]

Full-fledged simulations validated by reproducing the official SM prediction. The SM background systematics included conservatively. The modified frequentist CLs method used.

### Recast of the existing experimental searches

| $\overline{i}$ | $\mid \alpha \mid$ | $\epsilon_{V_L}^{lphalpha i}	imes 10^2$                                                              | $ \epsilon_{V_L}^{lphaeta i} 	imes 10^2$ | $ \epsilon_{S_{L,R}}^{lphaeta i}(\mu) 	imes 10^2$ |                   | $ \epsilon_T^{lphaeta i}(\mu) 	imes 10^3$ |                     |
|----------------|--------------------|------------------------------------------------------------------------------------------------------|------------------------------------------|---------------------------------------------------|-------------------|-------------------------------------------|---------------------|
|                |                    |                                                                                                      | $(\alpha \neq \beta)$                    | $\mu=1\mathrm{TeV}$                               | $\mu=2~{\rm GeV}$ | $\mu=1~{\rm TeV}$                         | $\mu = 2~{\rm GeV}$ |
|                | $\mid e \mid$      |                                                                                                      | 0.67(0.42)                               | 0.72(0.46)                                        | 1.5(0.96)         | 4.3(2.7)                                  | 3.4(2.2)            |
| d              | $\mid \mu \mid$    | [-0.85, 1.2]                                                                                         | 1.0(0.38)                                | 1.1(0.42)                                         | 2.3(0.86)         | 6.6(2.4)                                  | 5.2(1.9)            |
|                | $\mid 	au$         | [-1.4, 1.8]                                                                                          | 1.6(0.68)                                | 1.5(0.55)                                         | 3.1(1.1)          | 8.7(3.1)                                  | 6.9(2.5)            |
| s              | $\mid e \mid$      | $     \begin{bmatrix}       -0.28, 0.59 \\       -0.46, 0.78 \\       -0.65, 1.2     \end{bmatrix} $ | 0.42(0.26)                               | 0.43(0.28)                                        | 0.91(0.57)        | 2.8(1.5)                                  | 2.2(1.2)            |
|                | $\mid \mu \mid$    | [-0.46, 0.78]                                                                                        | 0.63(0.23)                               | 0.68(0.25)                                        | 1.4(0.52)         | 4.0(1.4)                                  | 3.1(1.1)            |
|                | $\mid 	au$         | -0.65, 1.2                                                                                           | 0.93(0.40)                               | 0.87(0.31)                                        | 1.8(0.65)         | 5.2(1.8)                                  | 4.1(1.5)            |

95% CL ranges on WCs. Naive HL-LHC projection in ().

#### 1.2 Recast of the existing experimental searches

| i | $\mid \alpha \mid$ | $\epsilon_{V_L}^{lphalpha i}	imes 10^2$ | $ \epsilon_{V_L}^{lphaeta i} 	imes 10^2$ | $ \epsilon_{S_{L,R}}^{lphaeta i}(\mu) 	imes 10^2$ |                   | $ \epsilon_T^{lphaeta i}(\mu) 	imes 10^3$ |                   |
|---|--------------------|-----------------------------------------|------------------------------------------|---------------------------------------------------|-------------------|-------------------------------------------|-------------------|
|   |                    |                                         | $(\alpha \neq \beta)$                    | $\mu=1~{\rm TeV}$                                 | $\mu=2~{\rm GeV}$ | $\mu=1\mathrm{TeV}$                       | $\mu=2~{\rm GeV}$ |
| d | $\mid e \mid$      |                                         | 0.67(0.42)                               | 0.72(0.46)                                        | 1.5(0.96)         | 4.3(2.7)                                  | 3.4(2.2)          |
|   | $\mid \mu \mid$    | [-0.85, 1.2]                            | 1.0(0.38)                                | 1.1(0.42)                                         | 2.3(0.86)         | 6.6(2.4)                                  | 5.2(1.9)          |
|   | $\mid 	au$         | [-1.4, 1.8]                             | 1.6(0.68)                                | 1.5(0.55)                                         | 3.1(1.1)          | 8.7(3.1)                                  | 6.9(2.5)          |
| s | $\mid e \mid$      |                                         | 0.42(0.26)                               | 0.43(0.28)                                        | 0.91(0.57)        | 2.8(1.5)                                  | 2.2(1.2)          |
|   | $\mid \mu \mid$    | [-0.46, 0.78]                           | 0.63(0.23)                               | 0.68(0.25)                                        | 1.4(0.52)         | 4.0(1.4)                                  | 3.1(1.1)          |
|   | $\mid 	au$         | $\left[ -0.65, 1.2 \right]$             | 0.93(0.40)                               | 0.87(0.31)                                        | 1.8(0.65)         | 5.2(1.8)                                  | 4.1(1.5)          |

95% CL ranges on WCs. Naive HL-LHC projection in ().

- Similar results for **d** and **s** strange PDF versus Cabibo squared.
- Approx all limits O(0.01).

$$\epsilon_{V_L}^{\alpha\beta i}:\epsilon_{S_{L,R}}^{\alpha\beta i}:\epsilon_T^{\alpha\beta i}\approx 1:\frac{2}{\sqrt{3}}:\frac{1}{2}$$

- Quadratic terms dominates the limits also for V<sub>L</sub>.
- The most sensitive bins fall in the range [I I.5] TeV
- Dedicated future analysis: angular dependence, lepton charge asymmetry, etc.

#### How well do we know the bckg?

The SM prediction (NNLO QCD + NLO EW) suffices the experimental precision.

### How well do we know the signal?

The uncertainty on the signal prediction from NLO QCD and PDF replicas estimated to be ~ 10 % on the rate in the most sensitive bin. Electroweak corrections at the similar level.  $\Delta\epsilon_X/\epsilon_X\approx 0.5\,\Delta\sigma/\sigma$ 

#### How well do we know PDFs?

◆ The PDF determination assumes the SM.The impact of the Drell-Yan data in the global PDF fit is small at the moment.The issue is there in the future.



Interplay between low and high energy



**Figure 2**. Exclusion limits at 95% CL on  $c \to d(s)\bar{e}^{\alpha}\nu^{\alpha}$  transitions in  $(\epsilon_{V_L}^{\alpha\alpha d}, \epsilon_{V_L}^{\alpha\alpha s})$  plane were  $\alpha = e$  (top left),  $\alpha = \mu$  (top right), and  $\alpha = \tau$  (bottom). The region colored in pink is excluded by  $D_{(s)}$  meson decays, while the region colored in blue is excluded by high- $p_T$  LHC.

$$\mathcal{O}_{lq}^{(3)} = (\bar{l}_L \gamma_\mu \tau^I l_L)(\bar{q}_L \gamma^\mu \tau^I q_L)$$



 High-p<sub>T</sub> limits are almost an order of magnitude stronger for all transitions

0.02

0.04

 Future projections from BESIII likely not competitive with future projections from the HL-LHC

Figure 2. Exclusion limits at 95% CL on  $c \to d(s)\bar{e}^{\alpha}\nu^{\alpha}$  transitions in  $(\epsilon_{V_L}^{\alpha\alpha d}, \epsilon_{V_L}^{\alpha\alpha s})$  plane were  $\alpha = e$  (top left),  $\alpha = \mu$  (top right), and  $\alpha = \tau$  (bottom). The region colored in pink is excluded by  $D_{(s)}$  meson decays, while the region colored in blue is excluded by high- $p_T$  LHC.

$$\mathcal{O}_{lq}^{(3)} = (\bar{l}_L \gamma_\mu \tau^I l_L) (\bar{q}_L \gamma^\mu \tau^I q_L)$$

**Figure 3**. 95% CL regions for the combined fits of  $\epsilon_{S_L}^{\alpha\beta i}$  and  $\epsilon_T^{\alpha\beta i}$  to the charmed-meson decay data with  $\beta=\alpha$  (red solid line) or  $\beta\neq\alpha$  (light-red dash-dotted line) and to monolepton LHC data (blue solid line). Projections for the high-luminosity phase of the LHC (3 ab<sup>-1</sup>), obtained by rescaling the expected limits with luminosity, are represented by dashed ellipses.

$$\mathcal{O}_{lequ}^{(1)} = (\bar{l}_L^p e_R) \epsilon_{pr} (\bar{q}_L^r u_R) 
\mathcal{O}_{lequ}^{(3)} = (\bar{l}_L^p \sigma_{\mu\nu} e_R) \epsilon_{pr} (\bar{q}_L^r \sigma^{\mu\nu} u_R)$$

Tau: High-p<sub>T</sub> more sensitive



**Figure 3**. 95% CL regions for the combined fits of  $\epsilon_{S_L}^{\alpha\beta i}$  and  $\epsilon_T^{\alpha\beta i}$  to the charmed-meson decay data with  $\beta=\alpha$  (red solid line) or  $\beta\neq\alpha$  (light-red dash-dotted line) and to monolepton LHC data (blue solid line). Projections for the high-luminosity phase of the LHC (3 ab<sup>-1</sup>), obtained by rescaling the expected limits with luminosity, are represented by dashed ellipses.

$$\mathcal{O}_{lequ}^{(1)} = (\bar{l}_L^p e_R) \epsilon_{pr} (\bar{q}_L^r u_R)$$
$$\mathcal{O}_{lequ}^{(3)} = (\bar{l}_L^p \sigma_{\mu\nu} e_R) \epsilon_{pr} (\bar{q}_L^r \sigma^{\mu\nu} u_R)$$



**Figure 3**. 95% CL regions for the combined fits of  $\epsilon_{SL}^{\alpha\beta i}$  and  $\epsilon_{T}^{\alpha\beta i}$  to the charmed-meson decay data with  $\beta=\alpha$  (red solid line) or  $\beta\neq\alpha$  (light-red dash-dotted line) and to monolepton LHC data (blue solid line). Projections for the high-luminosity phase of the LHC (3 ab<sup>-1</sup>), obtained by rescaling the expected limits with luminosity, are represented by dashed ellipses.

$$\mathcal{O}_{lequ}^{(1)} = (\bar{l}_L^p e_R) \epsilon_{pr} (\bar{q}_L^r u_R) 
\mathcal{O}_{lequ}^{(3)} = (\bar{l}_L^p \sigma_{\mu\nu} e_R) \epsilon_{pr} (\bar{q}_L^r \sigma^{\mu\nu} u_R)$$



**Figure 3**. 95% CL regions for the combined fits of  $\epsilon_{S_L}^{\alpha\beta i}$  and  $\epsilon_T^{\alpha\beta i}$  to the charmed-meson decay data with  $\beta=\alpha$  (red solid line) or  $\beta\neq\alpha$  (light-red dash-dotted line) and to monolepton LHC data (blue solid line). Projections for the high-luminosity phase of the LHC (3 ab<sup>-1</sup>), obtained by rescaling the expected limits with luminosity, are represented by dashed ellipses.

$$\mathcal{O}_{lequ}^{(1)} = (\bar{l}_L^p e_R) \epsilon_{pr} (\bar{q}_L^r u_R) 
\mathcal{O}_{lequ}^{(3)} = (\bar{l}_L^p \sigma_{\mu\nu} e_R) \epsilon_{pr} (\bar{q}_L^r \sigma^{\mu\nu} u_R)$$

• Negative interference with the dominant SM Drell-Yan channel  $u\bar{d}\to \bar{e}^\alpha\nu^\alpha$ Different scaling with s, only a partial cancellation possible.

Negative interference with the dominant SM Drell-Yan channel  $u \bar d o \bar e^{\alpha} 
u^{\alpha}$ 

Different scaling with s, only a partial cancellation possible.

Higher dimensional operators

$$\mathcal{L}_{\text{EFT}} \supset -\frac{4G_F}{\sqrt{2}} V_{ci} \left[ \epsilon_{V_L}^{(6)} \left( \bar{e}_L^{\alpha} \gamma_{\mu} \nu_L^{\alpha} \right) \left( \bar{c}_L \gamma^{\mu} d_L^i \right) - \frac{1}{M_{\text{NP}}^2} \epsilon_{V_L}^{(8)} \left( \bar{e}_L^{\alpha} \gamma_{\mu} \nu_L^{\alpha} \right) \partial^2 (\bar{c}_L \gamma^{\mu} d_L^i) \right] + \text{h.c.}$$

$$\hat{\sigma}(s) = \frac{G_F^2 |V_{ci}|^2}{18\pi} s \left| \frac{m_W^2}{s} - \epsilon_{V_L}^{(6)} - \frac{s}{M_{\text{NP}}^2} \epsilon_{V_L}^{(8)} \right|^2$$

$$= \frac{G_F^2 |V_{ci}|^2}{18\pi} s \left[ \frac{m_W^4}{s^2} - 2\frac{m_W^2}{s} \text{Re}(\epsilon_{V_L}^{(6)}) + |\epsilon_{V_L}^{(6)}|^2 - 2\frac{m_W^2}{M_{\text{NP}}^2} \text{Re}(\epsilon_{V_L}^{(8)}) \right] + \mathcal{O}\left(\frac{1}{M_{\text{NP}}^6}\right)$$

Negative interference with the dominant SM Drell-Yan channel  $u\bar{d}\to \bar{e}^\alpha\nu^\alpha$ Different scaling with s, only a partial cancellation possible.

Higher dimensional operators

$$\mathcal{L}_{\text{EFT}} \supset -\frac{4G_F}{\sqrt{2}} V_{ci} \left[ \epsilon_{V_L}^{(6)} \left( \bar{e}_L^{\alpha} \gamma_{\mu} \nu_L^{\alpha} \right) \left( \bar{c}_L \gamma^{\mu} d_L^i \right) - \frac{1}{M_{\text{NP}}^2} \epsilon_{V_L}^{(8)} \left( \bar{e}_L^{\alpha} \gamma_{\mu} \nu_L^{\alpha} \right) \partial^2 (\bar{c}_L \gamma^{\mu} d_L^i) \right] + \text{h.c.}$$

$$\hat{\sigma}(s) = \frac{G_F^2 |V_{ci}|^2}{18\pi} s \left| \frac{m_W^2}{s} - \epsilon_{V_L}^{(6)} - \frac{s}{M_{\text{NP}}^2} \epsilon_{V_L}^{(8)} \right|^2$$

$$= \frac{G_F^2 |V_{ci}|^2}{18\pi} s \left[ \frac{m_W^4}{s^2} - 2 \frac{m_W^2}{s} \text{Re}(\epsilon_{V_L}^{(6)}) + |\epsilon_{V_L}^{(6)}|^2 - 2 \frac{m_W^2}{M_{\text{NP}}^2} \text{Re}(\epsilon_{V_L}^{(8)}) \right] + \mathcal{O}\left(\frac{1}{M_{\text{NP}}^6}\right)$$

Dominant term

Negative interference with the dominant SM Drell-Yan channel  $u\bar{d}\to \bar{e}^\alpha\nu^\alpha$ Different scaling with s, only a partial cancellation possible.

Higher dimensional operators

$$\mathcal{L}_{\text{EFT}} \supset -\frac{4G_F}{\sqrt{2}} V_{ci} \left[ \epsilon_{V_L}^{(6)} \left( \bar{e}_L^{\alpha} \gamma_{\mu} \nu_L^{\alpha} \right) \left( \bar{c}_L \gamma^{\mu} d_L^i \right) - \frac{1}{M_{\text{NP}}^2} \epsilon_{V_L}^{(8)} \left( \bar{e}_L^{\alpha} \gamma_{\mu} \nu_L^{\alpha} \right) \partial^2 \left( \bar{c}_L \gamma^{\mu} d_L^i \right) \right] + \text{h.c.}$$

$$\hat{\sigma}(s) = \frac{G_F^2 |V_{ci}|^2}{18\pi} s \left| \frac{m_W^2}{s} - \epsilon_{V_L}^{(6)} - \frac{s}{M_{\text{NP}}^2} \epsilon_{V_L}^{(8)} \right|^2$$

$$= \frac{G_F^2 |V_{ci}|^2}{18\pi} s \left[ \frac{m_W^4}{s^2} - 2 \frac{m_W^2}{s} \text{Re}(\epsilon_{V_L}^{(6)}) + |\epsilon_{V_L}^{(6)}|^2 - 2 \frac{m_W^2}{M_{\text{NP}}^2} \text{Re}(\epsilon_{V_L}^{(8)}) \right] + \mathcal{O}\left(\frac{1}{M_{\text{NP}}^6}\right)$$

cancelation?

Negative interference with the dominant SM Drell-Yan channel  $\,u ar d \, o \, ar e^{lpha} 
u^{lpha}$ 

Different scaling with s, only a partial cancellation possible.

Higher dimensional operators

$$\mathcal{L}_{\text{EFT}} \supset -\frac{4G_F}{\sqrt{2}} V_{ci} \left[ \epsilon_{V_L}^{(6)} \left( \bar{e}_L^{\alpha} \gamma_{\mu} \nu_L^{\alpha} \right) \left( \bar{c}_L \gamma^{\mu} d_L^i \right) - \frac{1}{M_{\text{NP}}^2} \epsilon_{V_L}^{(8)} \left( \bar{e}_L^{\alpha} \gamma_{\mu} \nu_L^{\alpha} \right) \partial^2 \left( \bar{c}_L \gamma^{\mu} d_L^i \right) \right] + \text{h.c.}$$

$$\hat{\sigma}(s) = \frac{G_F^2 |V_{ci}|^2}{18\pi} s \left| \frac{m_W^2}{s} - \epsilon_{V_L}^{(6)} - \frac{s}{M_{\text{NP}}^2} \epsilon_{V_L}^{(8)} \right|^2$$

$$= \frac{G_F^2 |V_{ci}|^2}{18\pi} s \left[ \frac{m_W^4}{s^2} - 2 \frac{m_W^2}{s} \text{Re}(\epsilon_{V_L}^{(6)}) + |\epsilon_{V_L}^{(6)}|^2 - 2 \frac{m_W^2}{M_{\text{NP}}^2} \text{Re}(\epsilon_{V_L}^{(8)}) \right] + \mathcal{O}\left(\frac{1}{M_{\text{NP}}^6}\right)$$

If 
$$|\mathrm{Re}(\epsilon_{V_L}^{(8)})| \leq |\mathrm{Re}(\epsilon_{V_L}^{(6)})|$$
 then < since  $M_{\mathrm{NP}}^2 > s$ 

Negative interference with the dominant SM Drell-Yan channel  $\,u ar d \, o \, ar e^{lpha} 
u^{lpha}$ 

Different scaling with s, only a partial cancellation possible.

Higher dimensional operators

$$\mathcal{L}_{\text{EFT}} \supset -\frac{4G_F}{\sqrt{2}} V_{ci} \left[ \epsilon_{V_L}^{(6)} \left( \bar{e}_L^{\alpha} \gamma_{\mu} \nu_L^{\alpha} \right) \left( \bar{c}_L \gamma^{\mu} d_L^i \right) - \frac{1}{M_{\text{NP}}^2} \epsilon_{V_L}^{(8)} \left( \bar{e}_L^{\alpha} \gamma_{\mu} \nu_L^{\alpha} \right) \partial^2 \left( \bar{c}_L \gamma^{\mu} d_L^i \right) \right] + \text{h.c.}$$

$$\hat{\sigma}(s) = \frac{G_F^2 |V_{ci}|^2}{18\pi} s \left| \frac{m_W^2}{s} - \epsilon_{V_L}^{(6)} - \frac{s}{M_{\text{NP}}^2} \epsilon_{V_L}^{(8)} \right|^2$$

$$= \frac{G_F^2 |V_{ci}|^2}{18\pi} s \left[ \frac{m_W^4}{s^2} - 2 \frac{m_W^2}{s} \text{Re}(\epsilon_{V_L}^{(6)}) + |\epsilon_{V_L}^{(6)}|^2 - 2 \frac{m_W^2}{M_{\text{NP}}^2} \text{Re}(\epsilon_{V_L}^{(8)}) \right] + \mathcal{O}\left(\frac{1}{M_{\text{NP}}^6}\right)$$

If 
$$|\mathrm{Re}(\epsilon_{V_L}^{(8)})| \leq |\mathrm{Re}(\epsilon_{V_L}^{(6)})|$$
 then



since 
$$M_{\mathrm{NP}}^2 > s$$

(\*) A single tree-level schannel resonance exchange predicts

$$\epsilon_{V_L}^{(6)} = \epsilon_{V_L}^{(8)}$$

Negative interference with the dominant SM Drell-Yan channel  $u \bar d o \bar e^{lpha} 
u^{lpha}$ 

Different scaling with s, only a partial cancellation possible.

Higher dimensional operators

$$\mathcal{L}_{\text{EFT}} \supset -\frac{4G_F}{\sqrt{2}} V_{ci} \left[ \epsilon_{V_L}^{(6)} \left( \bar{e}_L^{\alpha} \gamma_{\mu} \nu_L^{\alpha} \right) \left( \bar{c}_L \gamma^{\mu} d_L^i \right) - \frac{1}{M_{\text{NP}}^2} \epsilon_{V_L}^{(8)} \left( \bar{e}_L^{\alpha} \gamma_{\mu} \nu_L^{\alpha} \right) \partial^2 \left( \bar{c}_L \gamma^{\mu} d_L^i \right) \right] + \text{h.c.}$$

$$\hat{\sigma}(s) = \frac{G_F^2 |V_{ci}|^2}{18\pi} s \left| \frac{m_W^2}{s} - \epsilon_{V_L}^{(6)} - \frac{s}{M_{\text{NP}}^2} \epsilon_{V_L}^{(8)} \right|^2$$

$$= \frac{G_F^2 |V_{ci}|^2}{18\pi} s \left[ \frac{m_W^4}{s^2} - 2\frac{m_W^2}{s} \text{Re}(\epsilon_{V_L}^{(6)}) + |\epsilon_{V_L}^{(6)}|^2 - 2\frac{m_W^2}{M_{\text{NP}}^2} \text{Re}(\epsilon_{V_L}^{(8)}) \right] + \mathcal{O}\left(\frac{1}{M_{\text{NP}}^6}\right)$$

If 
$$|\mathrm{Re}(\epsilon_{V_L}^{(8)})| \leq |\mathrm{Re}(\epsilon_{V_L}^{(6)})|$$
 then



since 
$$M_{\mathrm{NP}}^2 > s$$

(\*) A single tree-level schannel resonance exchange predicts

$$\epsilon_{V_L}^{(6)} = \epsilon_{V_L}^{(8)}$$

A significant cancellation would require a peculiar NP scenario.

EFT expansion parameter  $s/M_{NP}^2$ 



The EFT is no longer valid if a new mass threshold is at or below the typical energy of the process

EFT expansion parameter  $s/M_{NP}^2$ 



- The EFT is no longer valid if a new mass threshold is at or below the typical energy of the process
- Inverting the obtained limits on the WCs from Drell-Yan tails  $\frac{v_{EW}}{\sqrt{\epsilon_X}} \sim 3 \, \text{TeV}$



- The EFT is no longer valid if a new mass threshold is at or below the typical energy of the process
- Inverting the obtained limits on the WCs from Drell-Yan tails  $\frac{v_{EW}}{\sqrt{\epsilon_X}} \sim 3 \text{ TeV}$
- Perturbative unitarity suggests that the largest scales currently probed are at most few x 10 TeV for strongly coupled theories. Any suppression in the matching, such as loop, weak coupling, or flavor spurion, brings the actual NP mass scale down.

EFT expansion parameter  $s/M_{NP}^2$ 



- The EFT is no longer valid if a new mass threshold is at or below the typical energy of the process
- Inverting the obtained limits on the WCs from Drell-Yan tails  $\frac{v_{EW}}{\sqrt{\epsilon_X}} \sim 3 \text{ TeV}$
- Perturbative unitarity suggests that the largest scales currently probed are at most few  $\times$  10 TeV for strongly coupled theories. Any suppression in the matching, such as loop, weak coupling, or flavor spurion, brings the actual NP mass scale down.



EFT expansion parameter  $s/M_{NP}^2$ 



- The EFT is no longer valid if a new mass threshold is at or below the typical energy of the process
- Inverting the obtained limits on the WCs from Drell-Yan tails  $\frac{v_{EW}}{\sqrt{\epsilon_X}} \sim 3$  **TeV**
- Perturbative unitarity suggests that the largest scales currently probed are at most few  $\times$  10 TeV for strongly coupled theories. Any suppression in the matching, such as loop, weak coupling, or flavor spurion, brings the actual NP mass scale down.



EFT expansion parameter  $s/M_{NP}^2$ 



- The EFT is no longer valid if a new mass threshold is at or below the typical energy of the process
- Inverting the obtained limits on the WCs from Drell-Yan tails  $\frac{v_{EW}}{\sqrt{\epsilon_X}} \sim 3$  **TeV**
- Perturbative unitarity suggests that the largest scales currently probed are at most few x 10 TeV for strongly coupled theories. Any suppression in the matching, such as loop, weak coupling, or flavor spurion, brings the actual NP mass scale down.



EFT expansion parameter  $s/M_{NP}^2$ 



- The EFT is no longer valid if a new mass threshold is at or below the typical energy of the process
- Inverting the obtained limits on the WCs from Drell-Yan tails  $\frac{v_{EW}}{\sqrt{\epsilon_X}} \sim 3 \, \text{TeV}$
- Perturbative unitarity suggests that the largest scales currently probed are at most few x 10 TeV for strongly coupled theories. Any suppression in the matching, such as loop, weak coupling, or flavor spurion, brings the actual NP mass scale down.

### Tree-level UV completions



EFT expansion parameter  $s/M_{NP}^2$ 



- The EFT is no longer valid if a new mass threshold is at or below the typical energy of the process
- Inverting the obtained limits on the WCs from Drell-Yan tails  $\frac{v_{EW}}{\sqrt{\epsilon_X}} \sim 3 \, \text{TeV}$
- Perturbative unitarity suggests that the largest scales currently probed are at most few x 10 TeV for strongly coupled theories. Any suppression in the matching, such as loop, weak coupling, or flavor spurion, brings the actual NP mass scale down.



### Tree-level UV completions



EFT bounds are overly conservative

EFT expansion parameter  $s/M_{NP}^2$ 



- The EFT is no longer valid if a new mass threshold is at or below the typical energy of the process
- Inverting the obtained limits on the WCs from Drell-Yan tails  $\frac{v_{EW}}{\sqrt{\epsilon_X}} \sim 3 \text{ TeV}$
- Perturbative unitarity suggests that the largest scales currently probed are at most few x 10 TeV for strongly coupled theories. Any suppression in the matching, such as loop, weak coupling, or flavor spurion, brings the actual NP mass scale down.



### Tree-level UV completions



EFT expansion parameter  $s/M_{NP}^2$ 



- The EFT is no longer valid if a new mass threshold is at or below the typical energy of the process
- Inverting the obtained limits on the WCs from Drell-Yan tails  $\frac{v_{EW}}{\sqrt{\epsilon_X}} \sim 3 \text{ TeV}$
- Perturbative unitarity suggests that the largest scales currently probed are at most few x 10 TeV for strongly coupled theories. Any suppression in the matching, such as loop, weak coupling, or flavor spurion, brings the actual NP mass scale down.





- EFT expansion parameter  $s/M_{NP}^2$
- **EFT** validity

The EFT is no longer valid if a new mass threshold is at or below the typical

- To conclude, the comparison of low- and high-p<sub>T</sub> data within an EFT framework is a useful exercise even if the EFT validity is not guaranteed.
- If high- $p_T$  provides stronger limits relative to the ones derived from low- $p_T$ , this will also hold in a generic NP model barring tuned cancellations.

Explicit models



EFT bounds are a good proxy

## **Neutral currents**

$$c 
ightarrow u \, e^{lpha} ar{e}^{eta}$$

• Exercise repeated, see 2003.12421

# Constraints from SU(2) gauge invariance

$$q_L^i = \begin{pmatrix} V_u^{ij} u_L^j \\ V_d^{ij} d_L^j \end{pmatrix}, \quad V = V_u^{\dagger} V_d \qquad \qquad l_L^{\alpha} = \begin{pmatrix} \nu_L^{\alpha} \\ e_L^{\alpha} \end{pmatrix},$$

• Imposing SU(2) gauge invariance yields strong constraints on the WCs entering in charm decays by relating them to other transitions, such as  $\mathbf{K}$ ,  $\mathbf{\pi}$  or  $\mathbf{\tau}$  decays.

# Constraints from SU(2) gauge invariance

$$q_L^i = \begin{pmatrix} V_u^{ij} u_L^j \\ V_d^{ij} d_L^j \end{pmatrix}, \quad V = V_u^{\dagger} V_d \qquad \qquad l_L^{\alpha} = \begin{pmatrix} \nu_L^{\alpha} \\ e_L^{\alpha} \end{pmatrix},$$

• Imposing SU(2) gauge invariance yields strong constraints on the WCs entering in charm decays by relating them to other transitions, such as  $\mathbf{K}$ ,  $\mathbf{\pi}$  or  $\mathbf{\tau}$  decays.

#### **Example**

$$\mathcal{O}_{lq}^{(3)} = (\bar{l}_L \gamma_\mu \tau^I l_L)(\bar{q}_L \gamma^\mu \tau^I q_L)$$

$$\begin{split} \left[\mathcal{O}_{lq}^{(3)}\right]^{\alpha\beta ij} &= 2\left(V_{u}^{*ik}\,V_{d}^{jl}\,[\mathcal{O}_{V_{L}}]^{\alpha\beta kl} + V_{d}^{*ik}\,V_{u}^{jl}\,[\mathcal{O}_{V_{L}}^{\dagger}]^{\beta\alpha lk}\right) \\ &+ V_{u}^{*ik}\,V_{u}^{jl}\,\left[\left(\bar{\nu}_{L}^{\alpha}\gamma^{\mu}\nu_{L}^{\beta}\right)\left(\bar{u}_{L}^{k}\gamma_{\mu}u_{L}^{l}\right) - \left(\bar{e}_{L}^{\alpha}\gamma^{\mu}e_{L}^{\beta}\right)\left(\bar{u}_{L}^{k}\gamma_{\mu}u_{L}^{l}\right)\right] \\ &- V_{d}^{*ik}\,V_{d}^{jl}\,\left[\left(\bar{\nu}_{L}^{\alpha}\gamma^{\mu}\nu_{L}^{\beta}\right)\left(\bar{d}_{L}^{k}\gamma_{\mu}d_{L}^{l}\right) - \left(\bar{e}_{L}^{\alpha}\gamma^{\mu}e_{L}^{\beta}\right)\left(\bar{d}_{L}^{k}\gamma_{\mu}d_{L}^{l}\right)\right]\,, \end{split}$$

- i) Charged-current  $d_i \to u\ell\nu$  and  $\tau \to d_i u\nu$  transitions (1st line),
- ii) Neutral-current  $c \to u\ell\ell^{(\prime)}$ ,  $\tau \to \ell uu$  decays and  $\mu u \to eu$  conversion (2nd line),
- iii) Neutral-current  $s \to d\ell\ell^{(\prime)}$ ,  $s \to d\nu\nu$ ,  $\tau \to \ell d_i d_j$  decays and  $\mu d_i \to e d_i$  conversion (3rd line),

# Constraints from SU(2) gauge invariance

$$q_L^i = \begin{pmatrix} V_u^{ij} u_L^j \\ V_d^{ij} d_L^j \end{pmatrix}, \quad V = V_u^{\dagger} V_d \qquad \qquad l_L^{\alpha} = \begin{pmatrix} \nu_L^{\alpha} \\ e_L^{\alpha} \end{pmatrix},$$

• Imposing SU(2) gauge invariance yields strong constraints on the WCs entering in charm decays by relating them to other transitions, such as K,  $\pi$  or  $\tau$  decays.

#### **Example**

$$\mathcal{O}_{lq}^{(3)} = (\bar{l}_L \gamma_\mu \tau^I l_L) (\bar{q}_L \gamma^\mu \tau^I q_L)$$

$$\begin{split} \left[\mathcal{O}_{lq}^{(3)}\right]^{\alpha\beta ij} &= 2\left(V_{u}^{*ik}\,V_{d}^{jl}\left[\mathcal{O}_{V_{L}}\right]^{\alpha\beta kl} + V_{d}^{*ik}\,V_{u}^{jl}\left[\mathcal{O}_{V_{L}}^{\dagger}\right]^{\beta\alpha lk}\right) \\ &+ V_{u}^{*ik}\,V_{u}^{jl}\left[\left(\bar{\nu}_{L}^{\alpha}\gamma^{\mu}\nu_{L}^{\beta}\right)\left(\bar{u}_{L}^{k}\gamma_{\mu}u_{L}^{l}\right) - \left(\bar{e}_{L}^{\alpha}\gamma^{\mu}e_{L}^{\beta}\right)\left(\bar{u}_{L}^{k}\gamma_{\mu}u_{L}^{l}\right)\right] \\ &- V_{d}^{*ik}\,V_{d}^{jl}\left[\left(\bar{\nu}_{L}^{\alpha}\gamma^{\mu}\nu_{L}^{\beta}\right)\left(\bar{d}_{L}^{k}\gamma_{\mu}d_{L}^{l}\right) - \left(\bar{e}_{L}^{\alpha}\gamma^{\mu}e_{L}^{\beta}\right)\left(\bar{d}_{L}^{k}\gamma_{\mu}d_{L}^{l}\right)\right]\,, \end{split}$$

- i) Charged-current  $d_i o u \ell \nu$  and  $au o d_i u 
  u$  transitions (1st line),
- ii) Neutral-current  $c \to u\ell\ell^{(\prime)}$ ,  $\tau \to \ell uu$  decays and  $\mu u \to eu$  conversion (2nd line),
- iii) Neutral-current  $s \to d\ell\ell^{(\prime)}$ ,  $s \to d\nu\nu$ ,  $\tau \to \ell d_i d_j$  decays and  $\mu d_i \to e d_i$  conversion (3rd line),

#### Counterexample

$$\mathcal{O}_{eu} = (\bar{e}_R \gamma^\mu e_R)(\bar{u}_R \gamma^\mu u_R)$$



 $SU(2)_L \ {
m relations}$ 

 $SU(2)_L$ 

relations

 $D_{(s)}$  physics

33

D(s) decays, high-p<sub>T</sub> lepton tails and SU(2)<sub>L</sub> relations chart the space of the SMEFT affecting semi(leptonic) charm flavor transitions.

## The end

I apologise for missing citations, see the reference list of 2003.12421