Charm Physics Confronts High-pT Lepton Tails # Admir Greljo 2003.12421 JPPM, 06.05.2020 ## Introduction - '70 The GIM mechanism - '74 November revolution J/ψ '19 CP violation - Charm is a cornerstone of the SM - A unique arena for QCD and Flavor physics ## Introduction - '70 The GIM mechanism - '74 November revolution J/ψ '19 CP violation - Charm is a cornerstone of the SM - A unique arena for QCD and Flavor physics Question: How unique is the charm sector as a probe of <u>New Physics</u> within the zoo of flavor and collider phenomenology? What is the role of charm in a broader quest for a microscopic theory beyond the SM? ## Opportunities across the scales ## Contemporary experiments Harvesting large statistics! ## **Contents** 4 #### 2003.12421 #### Charm Physics Confronts High- p_T Lepton Tails Javier Fuentes-Martin, Admir Greljo, Jorge Martin Camalich, Jose David Ruiz-Alvarez #### 1 Introduction - 2 Theoretical framework: $c o d^i ar e^lpha u^eta$ - 2.1 The high-energy effective theory - 2.2 The low-energy effective theory #### 3 Decays of charmed mesons #### 4 High- p_T lepton production at the LHC - 4.1 Short-distance new physics in high- p_T tails - 4.2 Recast of the existing experimental searches - 4.3 Possible caveats within and beyond the EFT #### 5 Interplay between low and high energy - 5.1 Four-fermion interactions - 5.2 W vertex corrections #### 6 Neutral currents - 6.1 Theoretical framework: $c \to u e^{\alpha} \bar{e}^{\beta}$ - 6.2 Rare charm decays - 6.3 High- p_T dilepton tails - 6.4 Comments on $\Delta S = 1$ and $\Delta B = 1$ rare transitions #### 7 Constraints from $SU(2)_L$ gauge invariance - 7.1 Charged currents - 7.2 Neutral currents #### 8 Conclusions #### Rare FCNC c → u I+ I⁻ transition Tiny SM decay rates: short-distance contribution negligible, efficient GIM suppression, long-distance dominated $BR(D^0 \to \mu^+\mu^-) \sim \mathcal{O}(10^{-13})$ #### Rare FCNC c → u I+ I⁻ transition Tiny SM decay rates: short-distance contribution negligible, efficient GIM suppression, long-distance dominated $BR(D^0 \to \mu^+\mu^-) \sim \mathcal{O}(10^{-13})$ Already strong experimental upper limits $BR(D^0 \to \mu^+\mu^-) \lesssim 6 \times 10^{-9}$ LHCb #### Rare FCNC c → u I+ I⁻ transition - Tiny SM decay rates: short-distance contribution negligible, efficient GIM suppression, long-distance dominated $BR(D^0 \to \mu^+\mu^-) \sim \mathcal{O}(10^{-13})$ - Already strong experimental upper limits $BR(D^0 \to \mu^+\mu^-) \lesssim 6 \times 10^{-9}$ LHCb - Practically <u>null test of the SM</u> sensitive to New Physics #### Rare FCNC c → u I+ I⁻ transition - Tiny SM decay rates: short-distance contribution negligible, efficient GIM suppression, long-distance dominated $BR(D^0 \to \mu^+\mu^-) \sim \mathcal{O}(10^{-13})$ - Already strong experimental upper limits $BR(D^0 \to \mu^+\mu^-) \lesssim 6 \times 10^{-9}$ - Practically <u>null test of the SM</u> sensitive to New Physics • Take NP solely affecting charm $$\mathcal{L}_{NP} \approx \frac{\epsilon_V^{\ell\ell}}{15 \, \text{TeV}} \, (\bar{\ell}_R \gamma^\mu \ell_R) (\bar{u}_R \gamma^\mu c_R)$$ #### Rare FCNC c → u I+ I⁻ transition Tiny SM decay rates: short-distance contribution negligible, efficient GIM suppression, long-distance dominated $BR(D^0 \to \mu^+\mu^-) \sim \mathcal{O}(10^{-13})$ Already strong experimental upper limits $BR(D^0 \to \mu^+\mu^-) \lesssim 6 \times 10^{-9}$ Practically <u>null test of the SM</u> sensitive to New **Physics** • Take NP solely affecting charm $$\mathcal{L}_{NP} \approx \frac{\epsilon_V^{\ell\ell}}{15 \, \mathrm{TeV}} \, (\bar{\ell}_R \gamma^\mu \ell_R) (\bar{u}_R \gamma^\mu c_R)$$ #### Rare FCNC c → u I+ I⁻ transition - Tiny SM decay rates: short-distance contribution negligible, efficient GIM suppression, long-distance dominated $BR(D^0 \to \mu^+\mu^-) \sim \mathcal{O}(10^{-13})$ - Already strong experimental upper limits $BR(D^0 \to \mu^+\mu^-) \lesssim 6 \times 10^{-9}$ - Practically <u>null test of the SM</u> sensitive to New Physics • Take NP solely affecting charm $$\mathcal{L}_{NP} \approx \frac{\epsilon_V^{\ell\ell}}{15 \, \text{TeV}} \, (\bar{\ell}_R \gamma^\mu \ell_R) (\bar{u}_R \gamma^\mu c_R)$$ #### Rare FCNC c → u I+ I⁻ transition - Tiny SM decay rates: short-distance contribution negligible, efficient GIM suppression, long-distance dominated $BR(D^0 \to \mu^+ \mu^-) \sim \mathcal{O}(10^{-13})$ - Already strong experimental upper limits $BR(D^0 \to \mu^+\mu^-) \lesssim 6 \times 10^{-9}$ - Practically <u>null test of the SM</u> sensitive to New Physics Take NP solely affecting charm $$\mathscr{L}_{NP} \approx \frac{\epsilon_V^{\ell\ell}}{15\,\mathrm{TeV}}\,(\bar{\ell}_R\gamma^\mu\ell_R)(\bar{u}_R\gamma^\mu c_R)$$ Calculate c u > I+ I- Drell-Yan $$u \times \ell$$ #### Rare FCNC c → u I+ I⁻ transition - Tiny SM decay rates: short-distance contribution negligible, efficient GIM suppression, long-distance dominated $BR(D^0 \to \mu^+ \mu^-) \sim \mathcal{O}(10^{-13})$ - Already strong experimental upper limits $BR(D^0 \to \mu^+\mu^-) \lesssim 6 \times 10^{-9}$ - Practically <u>null test of the SM</u> sensitive to New Physics Take NP solely affecting charm $$\mathcal{L}_{NP} \approx \frac{\epsilon_V^{\ell\ell}}{15 \, \mathrm{TeV}} \, (\bar{\ell}_R \gamma^\mu \ell_R) (\bar{u}_R \gamma^\mu c_R)$$ Calculate c u > I+ I- Drell-Yan $$u \times \ell$$ Charged currents $$c ightarrow d^i ar{e}^{lpha} u^{eta}$$ ### 2.2 The low-energy effective theory $$\mathcal{L}_{CC} = -\frac{4G_F}{\sqrt{2}} V_{ci} \left[\left(1 + \epsilon_{V_L}^{\alpha\beta i} \right) \mathcal{O}_{V_L}^{\alpha\beta i} + \epsilon_{V_R}^{\alpha\beta i} \mathcal{O}_{V_R}^{\alpha\beta i} + \epsilon_{S_L}^{\alpha\beta i} \mathcal{O}_{S_L}^{\alpha\beta i} + \epsilon_{S_R}^{\alpha\beta i} \mathcal{O}_{S_R}^{\alpha\beta i} + \epsilon_T^{\alpha\beta i} \mathcal{O}_T^{\alpha\beta i} \right] + \text{h.c.},$$ $$\begin{split} \epsilon_{X,SM}^{\alpha\beta i} &= 0 \text{ for all } X & \mathcal{O}_{V_L}^{\alpha\beta i} &= (\bar{e}_L^\alpha \gamma_\mu \nu_L^\beta)(\bar{c}_L \gamma^\mu d_L^i) \,, \\ \mathcal{O}_{S_L}^{\alpha\beta i} &= (\bar{e}_R^\alpha \nu_L^\beta)(\bar{c}_R d_L^i) \,, \\ \mathcal{O}_{S_L}^{\alpha\beta i} &= (\bar{e}_R^\alpha \nu_L^\beta)(\bar{c}_R d_L^i) \,, \\ \mathcal{O}_{T}^{\alpha\beta i} &= (\bar{e}_R^\alpha \sigma_{\mu\nu} \nu_L^\beta)(\bar{c}_R \sigma^{\mu\nu} d_L^i) \,. \end{split} \\ \mathcal{O}_{S_R}^{\alpha\beta i} &= (\bar{e}_R^\alpha \nu_L^\beta)(\bar{c}_L d_R^i) \,, \end{split}$$ ## 2.1 The high-energy effective theory ## 2.1 The high-energy effective theory $$\mathcal{L}_{ ext{SMEFT}} \supset rac{1}{v^2} \sum_k \mathcal{C}_k \, \mathcal{O}_k$$ • The full list of 4F operators (*) Warsaw basis $$\mathcal{O}_{lq}^{(3)} = (\bar{l}_L \gamma_\mu \tau^I l_L) (\bar{q}_L \gamma^\mu \tau^I q_L) ,$$ $$\mathcal{O}_{lequ}^{(1)} = (\bar{l}_L^p e_R) \epsilon_{pr} (\bar{q}_L^r u_R) ,$$ • W vertex correction $$(\phi^{\dagger} i D_{\mu}^{I} \phi)(\bar{q}_{L} \gamma^{\mu} \tau^{I} q_{L})$$ $$(\tilde{\phi}^{\dagger} i D_{\mu} \phi)(\bar{u}_{R} \gamma^{\mu} d_{R})$$ $$\mathcal{O}_{ledq} = (\bar{l}_L e_R)(\bar{d}_R q_L),$$ $$\mathcal{O}_{lequ}^{(3)} = (\bar{l}_L^p \sigma_{\mu\nu} e_R) \epsilon_{pr} (\bar{q}_L^r \sigma^{\mu\nu} u_R),$$ $$\mathcal{O}_{lq}^{(3)} = (\bar{l}_L \gamma_\mu \tau^I l_L)(\bar{q}_L \gamma^\mu \tau^I q_L), \qquad \mathcal{O}_{ledq} = (\bar{l}_L e_R)(\bar{d}_R q_L), \qquad (\phi^\dagger i \overset{\leftrightarrow}{D_\mu} \phi)(\bar{q}_L \gamma^\mu \tau^I q_L) \\ \mathcal{O}_{lequ}^{(1)} = (\bar{l}_L^p e_R) \epsilon_{pr}(\bar{q}_L^r u_R), \qquad \mathcal{O}_{lequ}^{(3)} = (\bar{l}_L^p \sigma_{\mu\nu} e_R) \epsilon_{pr}(\bar{q}_L^r \sigma^{\mu\nu} u_R), \qquad (\tilde{\phi}^\dagger i D_\mu \phi)(\bar{u}_R \gamma^\mu d_R)$$ ## Matching $$\mathcal{O}_{V_L}^{\alpha\beta i} = (\bar{e}_L^{\alpha}\gamma_{\mu}\nu_L^{\beta})(\bar{c}_L\gamma^{\mu}d_L^i), \qquad \mathcal{O}_{V_R}^{\alpha\beta i} = (\bar{e}_L^{\alpha}\gamma_{\mu}\nu_L^{\beta})(\bar{c}_R\gamma^{\mu}d_R^i), \\ \mathcal{O}_{S_L}^{\alpha\beta i} = (\bar{e}_R^{\alpha}\nu_L^{\beta})(\bar{c}_R d_L^i), \qquad \mathcal{O}_{S_R}^{\alpha\beta i} = (\bar{e}_R^{\alpha}\nu_L^{\beta})(\bar{c}_L d_R^i), \\ \mathcal{O}_{T}^{\alpha\beta i} = (\bar{e}_R^{\alpha}\sigma_{\mu\nu}\nu_L^{\beta})(\bar{c}_R\sigma^{\mu\nu}d_L^i).$$ - \bullet SMEFT 4F operators match to V_L , S_R , S_L , T but not to V_R - V_I and V_R receive chirality-preserving W vertex corrections - Effects from chirality-flipping vertex corrections are beyond dim-6 $\bar{\psi}\sigma^{\mu\nu}\psi\,\phi F_{\mu\nu}$ - SMEFT effects in leptonic W couplings, G_F, and CKM determination neglected - RGEs allow to connect low and high p_T - RGE effects sizeable for scalar and tensor operators Caveats beyond this setup will be discussed later ## **Crossing symmetry** $$\frac{c \to d^i \bar{e}^\alpha \nu^\beta}{\text{Leptonic decays:}} \qquad D_{(s)} \to \bar{e}^\alpha \nu$$ $$\frac{c \to d^i \bar{e}^\alpha \nu^\beta}{\text{Leptonic decays:}} \qquad D_{(s)} \to \bar{e}^\alpha \nu$$ - Pseudoscalar meson $J^P(D_{(s)}) = 0^-$ - QCD invariant under Lorentz symmetry and Parity => $$\langle 0 | \bar{q} \sigma^{\mu\nu} q | D \rangle = 0$$, $\langle 0 | \bar{q} \gamma^{\mu} q | D \rangle = 0$, $\langle 0 | \bar{q} q | D \rangle = 0$ Leptonic decays sensitive only to axial vector and pseudo scalar operators $$\epsilon_A^{\alpha\beta i} = \epsilon_{V_B}^{\alpha\beta i} - \epsilon_{V_L}^{\alpha\beta i}$$ $\epsilon_P^{\alpha\beta i} = \epsilon_{S_B}^{\alpha\beta i} - \epsilon_{S_L}^{\alpha\beta i}$ $$\frac{c \to d^i \bar{e}^\alpha \nu^\beta}{\text{Leptonic decays:}} \qquad D_{(s)} \to \bar{e}^\alpha \nu$$ - Pseudoscalar meson $J^P(D_{(s)}) = 0^-$ - QCD invariant under Lorentz symmetry and Parity => $$\langle 0 | \bar{q} \sigma^{\mu\nu} q | D \rangle = 0, \quad \langle 0 | \bar{q} \gamma^{\mu} q | D \rangle = 0, \quad \langle 0 | \bar{q} q | D \rangle = 0$$ Leptonic decays sensitive only to axial vector and pseudo
scalar operators $$\epsilon_A^{\alpha\beta i} = \epsilon_{V_R}^{\alpha\beta i} - \epsilon_{V_L}^{\alpha\beta i} \qquad \epsilon_P^{\alpha\beta i} = \epsilon_{S_R}^{\alpha\beta i} - \epsilon_{S_L}^{\alpha\beta i}$$ $$BR(D^{+} \to \bar{e}^{\alpha} \nu^{\alpha}) = \tau_{D^{+}} \frac{m_{D^{+}} m_{\alpha}^{2} f_{D}^{2} G_{F}^{2} |V_{cd}|^{2} \beta_{\alpha}^{4}}{8\pi} \left| 1 - \epsilon_{A}^{\alpha d} + \frac{m_{D}^{2}}{m_{\alpha} (m_{c} + m_{u})} \epsilon_{P}^{\alpha d} \right|^{2}$$ $$\frac{c \to d^i \bar{e}^\alpha \nu^\beta}{\text{Leptonic decays:}} \qquad D_{(s)} \to \bar{e}^\alpha \nu$$ - Pseudoscalar meson $J^P(D_{(s)}) = 0^-$ - QCD invariant under Lorentz symmetry and Parity => $$\langle 0 | \bar{q} \sigma^{\mu\nu} q | D \rangle = 0, \quad \langle 0 | \bar{q} \gamma^{\mu} q | D \rangle = 0, \quad \langle 0 | \bar{q} q | D \rangle = 0$$ Leptonic decays sensitive only to axial vector and pseudo scalar operators $$\epsilon_A^{\alpha\beta i} = \epsilon_{V_R}^{\alpha\beta i} - \epsilon_{V_L}^{\alpha\beta i} \qquad \epsilon_P^{\alpha\beta i} = \epsilon_{S_R}^{\alpha\beta i} - \epsilon_{S_L}^{\alpha\beta i}$$ $$BR(D^{+} \to \bar{e}^{\alpha} \nu^{\alpha}) = \tau_{D^{+}} \frac{m_{D^{+}} m_{\alpha}^{2} f_{D}^{2} G_{F}^{2} |V_{cd}|^{2} \beta_{\alpha}^{4}}{8\pi} \left| 1 - \epsilon_{A}^{\alpha d} + \frac{m_{D}^{2}}{m_{\alpha} (m_{c} + m_{u})} \epsilon_{P}^{\alpha d} \right|^{2}$$ LQCD: Precise decay constants $$f_D = 212.0(7) \text{ MeV}$$ $f_{D_s} = 249.9(5) \text{ MeV}$ $$\frac{c \to d^i \bar{e}^\alpha \nu^\beta}{\text{Leptonic decays:}} \qquad D_{(s)} \to \bar{e}^\alpha \nu$$ - Pseudoscalar meson $J^P(D_{(s)}) = 0^-$ - QCD invariant under Lorentz symmetry and Parity => $$\langle 0 \, | \, \bar{q} \sigma^{\mu\nu} q \, | \, D \rangle = 0 \,, \quad \langle 0 \, | \, \bar{q} \gamma^{\mu} q \, | \, D \rangle = 0 \,, \quad \langle 0 \, | \, \bar{q} q \, | \, D \rangle = 0$$ Leptonic decays sensitive only to axial vector and pseudo scalar operators $$\epsilon_A^{\alpha\beta i} = \epsilon_{V_R}^{\alpha\beta i} - \epsilon_{V_L}^{\alpha\beta i}$$ $\epsilon_P^{\alpha\beta i} = \epsilon_{S_R}^{\alpha\beta i} - \epsilon_{S_L}^{\alpha\beta i}$ $$BR(D^{+} \to \bar{e}^{\alpha} \nu^{\alpha}) = \tau_{D^{+}} \frac{m_{D^{+}} m_{\alpha}^{2} f_{D}^{2} G_{F}^{2} |V_{cd}|^{2} \beta_{\alpha}^{4}}{8\pi} \left| 1 - \epsilon_{A}^{\alpha d} + \frac{m_{D}^{2}}{m_{\alpha} (m_{c} + m_{u})} \epsilon_{P}^{\alpha d} \right|^{2}$$ LQCD: Precise decay constants $$f_D = 212.0(7) \text{ MeV}$$ $f_{D_s} = 249.9(5) \text{ MeV}$ Chirality suppression for the axial vector $A: ar{e}_L \gamma^\mu u_L, \quad P: ar{e}_R u_L$ | | | <u>-</u> | |-----------------|--------------------|---------------------------| | \underline{i} | $\mid \alpha \mid$ | Branching ratios, see PDG | | | $\mid e \mid$ | (*) upper limit, CLEO | | d | $\mid \mu \mid$ | BES3 | | | $\mid au$ | BES3 | | | $\mid e \mid$ | (*) upper limit, BELLE | | s | μ | BES3 | | | $\mid au$ | BES3 | | i | $\mid \alpha \mid$ | $\epsilon_V^{lpha i}$ | $\epsilon_A^{lpha i}$ | $\epsilon_S^{lpha i}$ | $\epsilon_P^{lpha i}$ | $\epsilon_T^{lpha i}$ | |---|--|-----------------------|--|-----------------------|--|-----------------------| | d | $\left egin{array}{c} e \ \mu \ au \end{array} ight $ | | [-32, 34] $[-0.013, 0.07]$ $[-0.27, 0.21]$ | | [-0.005, 0.005] $[-0.0024, 0.0004]$ $[-0.11, 0.15]$ | | | S | $\left egin{array}{c} e \ \mu \ au \end{array} ight $ | | [-27, 29] $[-0.07, 0.02]$ $[-0.07, 0.014]$ | | [-0.005, 0.004] $[-0.0007, 0.0022]$ $[-0.008, 0.04]$ | | 95% CL ranges on WCs at 2 GeV (one parameter fit). - Stringent limits on P operators - Limits on A depend strongly on the lepton flavour - Semileptonic decays: $D \to \pi(K) \bar{\ell} \nu$ - QCD invariant under Lorentz symmetry and Parity => $$\langle P_i | \bar{q} \gamma^{\mu} \gamma^5 q | D \rangle = 0, \quad \langle P_i | \bar{q} \gamma^5 q | D \rangle = 0$$ • Semileptonic decays sensitive to <u>vector</u>, <u>scalar and tensor</u> operators $$\epsilon_{V}^{\alpha\beta i} = \epsilon_{V_R}^{\alpha\beta i} + \epsilon_{V_L}^{\alpha\beta i}$$ $\epsilon_{S}^{\alpha\beta i} = \epsilon_{S_R}^{\alpha\beta i} + \epsilon_{S_L}^{\alpha\beta i}$ $\epsilon_{T}^{\alpha\beta i}$ - Semileptonic decays: $D \to \pi(K) \bar{\ell} \nu$ - QCD invariant under Lorentz symmetry and Parity => $$\langle P_i | \bar{q} \gamma^{\mu} \gamma^5 q | D \rangle = 0, \quad \langle P_i | \bar{q} \gamma^5 q | D \rangle = 0$$ Semileptonic decays sensitive to <u>vector</u>, <u>scalar and tensor</u> operators $$\epsilon_{V}^{\alpha\beta i} = \epsilon_{V_R}^{\alpha\beta i} + \epsilon_{V_L}^{\alpha\beta i}$$ $\epsilon_{S}^{\alpha\beta i} = \epsilon_{S_R}^{\alpha\beta i} + \epsilon_{S_L}^{\alpha\beta i}$ $\epsilon_{T}^{\alpha\beta i}$ $$\frac{\mathrm{BR}(D \to P_i \,\bar{\ell}^{\alpha} \nu^{\alpha})}{\mathrm{BR}_{\mathrm{SM}}} = \left| 1 + \epsilon_V^{\alpha i} \right|^2 + 2 \,\mathrm{Re} \left[(1 + \epsilon_V^{\alpha i}) (x_S \,\epsilon_S^{\alpha i*} + x_T \,\epsilon_T^{\alpha i*}) \right] + y_S \,|\epsilon_S^{\alpha i}|^2 + y_T \,|\epsilon_T^{\alpha i}|^2$$ - Semileptonic decays: $D o \pi(K) \bar{\ell} \nu$ - QCD invariant under Lorentz symmetry and Parity => $$\langle P_i | \bar{q} \gamma^{\mu} \gamma^5 q | D \rangle = 0, \quad \langle P_i | \bar{q} \gamma^5 q | D \rangle = 0$$ Semileptonic decays sensitive to <u>vector</u>, <u>scalar and tensor</u> operators $$\epsilon_{V}^{\alpha\beta i} = \epsilon_{V_R}^{\alpha\beta i} + \epsilon_{V_L}^{\alpha\beta i}$$ $\epsilon_{S}^{\alpha\beta i} = \epsilon_{S_R}^{\alpha\beta i} + \epsilon_{S_L}^{\alpha\beta i}$ $\epsilon_{T}^{\alpha\beta i}$ $$\frac{\mathrm{BR}(D \to P_i \, \bar{\ell}^{\alpha} \nu^{\alpha})}{\mathrm{BR}_{\mathrm{SM}}} = \left| 1 + \epsilon_V^{\alpha i} \right|^2 + 2 \, \mathrm{Re} \left[(1 + \epsilon_V^{\alpha i}) (\mathbf{x}_S \, \epsilon_S^{\alpha i*} + \mathbf{x}_T \, \epsilon_T^{\alpha i*}) \right] + \mathbf{y}_S \, |\epsilon_S^{\alpha i}|^2 + \mathbf{y}_T \, |\epsilon_T^{\alpha i}|^2$$ | P | $\mid \alpha$ | $ m \mid BR_{SM}$ | x_S | x_T | y_S | y_T | |---------|--|---|--------------------------------------|--------------------------------------|----------------------|-------| | π^- | $\left \begin{array}{c}e\\\mu\end{array}\right $ | $\begin{array}{ c c c c c c } 2.65(18) \cdot 10^{-3} \\ 2.61(17) \cdot 10^{-3} \end{array}$ | $1.12(10) \cdot 10^{-3}$ $0.228(19)$ | $1.21(15) \cdot 10^{-3}$ $0.23(3)$ | 2.74(22)
2.73(18) | \ / | | K^- | $\begin{array}{ c c } \hline e \\ \mu \end{array}$ | $\begin{array}{ c c c c c }\hline 3.48(26) \cdot 10^{-2} \\ 3.39(25) \cdot 10^{-2} \\ \hline \end{array}$ | $1.29(8) \cdot 10^{-3}$ $0.251(16)$ | $1.18(11) \cdot 10^{-3}$ $0.224(20)$ | 2.00(11)
2.00(11) | ` ' | - The largest available phase space $m_{D^+}-m_{\pi^0}\simeq 1.735~{ m GeV}$ - No limits on tauonic V, S,T operators [Caveat: Excited resonances or $D_{(s)} \to \tau \nu \gamma$] | $i \mid$ | $\alpha \mid \epsilon_{\mathbf{N}}^{\alpha}$ | $\epsilon_A^{lpha i}$ | $\epsilon_S^{lpha i}$ | $\epsilon_P^{lpha i}$ | $\epsilon_T^{lpha i}$ | |----------|--|-----------------------|-------------------------------|-----------------------|------------------------------------| | d | | , 0.11]
, 0.07] | [-0.29, 0.29] $[-0.33, 0.17]$ | _ | $[-0.5, 0.5] \\ [-0.6, 0.22] \\ -$ | | s | | [, 0.08]
[, 0.06] | [-0.29, 0.29] $[-0.4, 0.16]$ | | [-0.5, 0.5] $[-0.9, 0.22]$ $-$ | 95% CL ranges on WCs at 2 GeV (one parameter fit). - Limits on scalar and tensor operators are weak, dominated by the quadratic contribution. - Vector operators constrained at the few percent level. Form factor errors relevant. - Future improvements ~ 3x on the rates at BESIII. Challenge for LQCD to keep up. $$\begin{array}{c} c \to d^i \bar{e}^\alpha \nu^\beta \\ \hline & \text{Leptonic decays:} \qquad D_{(s)} \to \bar{e}^\alpha \nu \\ \hline & \text{Semileptonic decays:} \qquad D \to \pi(K) \bar{\ell} \nu \end{array}$$ | i | $\mid \alpha \mid$ | $\epsilon_V^{lpha i}$ | $\epsilon_A^{lpha i}$ | $\epsilon_S^{lpha i}$ | $\epsilon_P^{lpha i}$ | $\epsilon_T^{lpha i}$ | |---|--|--|--|-------------------------------|--|--------------------------------| | d | $\left egin{array}{c} e \ \mu \ au \end{array} ight $ | $ \begin{bmatrix} -0.02, \ 0.11 \\ -0.06, \ 0.07 \end{bmatrix} $ | [-32, 34] $[-0.013, 0.07]$ $[-0.27, 0.21]$ | [-0.29, 0.29] $[-0.33, 0.17]$ | [-0.005, 0.005] $[-0.0024, 0.0004]$ $[-0.11, 0.15]$ | [-0.5, 0.5] $[-0.6, 0.22]$ | | s | $\left egin{array}{c} e \ \mu \ au \end{array} ight $ | $ \begin{bmatrix} -0.07, 0.08 \\ -0.09, 0.06 \end{bmatrix} $ | [-27, 29] $[-0.07, 0.02]$ $[-0.07, 0.014]$ | [-0.29, 0.29] $[-0.4, 0.16]$ | [-0.005, 0.004] $[-0.0007, 0.0022]$ $[-0.008, 0.04]$ | [-0.5, 0.5] $[-0.9, 0.22]$ $-$ | 95% CL ranges on WCs at 2 GeV (one parameter fit). $$c \to d^i \bar{e}^\alpha \nu^\beta$$ $$D_{(s)} \to \bar{e}^{\alpha} \nu$$ Leptonic decays: $D_{(s)} \to \bar{e}^{\alpha} \nu$ Semileptonic decays: $D \to \pi(K) \bar{\ell} \nu$ - Not considered / future directions - D > V, no lattice QCD predictions - Baryonic Ac decays, data not precise - Kinematic distributions ### Charmed meson decays • In the UV, the relevant operator basis is the "chiral basis" not the "parity basis" ### Charmed meson decays • In the UV, the relevant operator basis is the "chiral basis" not the "parity basis" ## Vector $\epsilon_{V_L}^{lphaeta i}$ $$\mathcal{O}_{lq}^{(3)} = (\bar{l}_L \gamma_\mu \tau^I l_L)
(\bar{q}_L \gamma^\mu \tau^I q_L)$$ - Electron: Semileptonic - Muon: Semileptonic and leptonic comparable - Tau: Leptonic ### Charmed meson decays • In the UV, the relevant operator basis is the "chiral basis" not the "parity basis" ### Vector $\epsilon_{V_L}^{lphaeta i}$ $$\mathcal{O}_{lq}^{(3)} = (\bar{l}_L \gamma_\mu \tau^I l_L)(\bar{q}_L \gamma^\mu \tau^I q_L)$$ - Electron: Semileptonic - Muon: Semileptonic and leptonic comparable - Tau: Leptonic ### Scalar, Tensor $$\mathcal{O}_{ledq} = (\bar{l}_L e_R)(\bar{d}_R q_L),$$ $$\mathcal{O}_{lequ}^{(3)} = (\bar{l}_L^p \sigma_{\mu\nu} e_R) \epsilon_{pr} (\bar{q}_L^r \sigma^{\mu\nu} u_R),$$ $$\mathcal{O}_{lequ}^{(1)} = (\bar{l}_L^p e_R) \epsilon_{pr} (\bar{q}_L^r u_R),$$ $$i \mid \alpha \mid \epsilon_{S_L}^{\alpha i} (-\epsilon_{S_R}^{\alpha i}) \times \mathbf{10^3} \quad \epsilon_T^{\alpha i} \times \mathbf{10^2}$$ $$\mid e \mid [-2.5, 2.7] \quad [-1.6, 1.5]$$ $$d \mid \mu \mid [-0.2, 1.2] \quad [-0.7, 0.13]$$ $$\tau \mid [-70, 60] \quad [-33, 44]$$ $$s \mid \mu \mid [-1.1, 0.3] \quad [-0.2, 0.6]$$ $$\tau \mid [-19, 4.0] \quad [-2.0, 12]$$ 95% CL ranges on WCs at I TeV (one parameter fit). RGE flow to P operator at low energies ### **Crossing symmetry** High-pt lepton production at the LHC ### High-pt lepton production at the LHC In the high-energy limit $\sqrt{s} \gg m_W$ W-vertex Chirality preserving: $$\frac{1}{\Lambda^2} \psi^2 \phi D \phi$$ $$4F \quad \frac{1}{\Lambda^2} \psi^4$$ Chirality flipping: $$\frac{1}{\Lambda^2} \psi^2 \phi F$$ ### High-pt lepton production at the LHC In the high-energy limit $\sqrt{s} \gg m_W$ ### W-vertex Chirality preserving: $\frac{1}{\Lambda^2} \psi^2 \phi D \phi$ $$\mathscr{A} \sim \frac{m_W^2}{\Lambda^2}$$ $$(\mathcal{A}_{SM} \sim g^2)$$ Chirality flipping: $$\mathscr{A} \sim \frac{g\sqrt{s}}{\Lambda^2}$$ $$4F \frac{1}{\Lambda^2} \psi$$ ### High-pt lepton production at the LHC In the high-energy limit $\sqrt{s}\gg m_W$ ### W-vertex Chirality preserving: $\frac{1}{\Lambda^2} \psi^2 \phi D \phi$ $$\mathscr{A} \sim \frac{m_W^2}{\Lambda^2}$$ $$(\mathcal{A}_{SM} \sim g^2)$$ Chirality flipping: $\frac{1}{\Lambda^2} \psi^2 \phi F$ Scattering amplitudes induced by 4F contact interactions grow with energy before the completion kicks in to insure unitarity. Partonic level cross section $$\hat{\sigma}(s) = \frac{G_F^2 |V_{ij}|^2}{18\pi} s \left[\left| \delta^{\alpha\beta} \frac{m_W^2}{s} - \epsilon_{V_L}^{\alpha\beta ij} \right|^2 + \frac{3}{4} \left(|\epsilon_{S_L}^{\alpha\beta ij}|^2 + |\epsilon_{S_R}^{\alpha\beta ij}|^2 \right) + 4 |\epsilon_T^{\alpha\beta ij}|^2 \right]$$ Partonic level cross section $$\hat{\sigma}(s) = \frac{G_F^2 |V_{ij}|^2}{18\pi} s \left[\left| \delta^{\alpha\beta} \frac{m_W^2}{s} - \epsilon_{V_L}^{\alpha\beta ij} \right|^2 + \frac{3}{4} \left(|\epsilon_{S_L}^{\alpha\beta ij}|^2 + |\epsilon_{S_R}^{\alpha\beta ij}|^2 \right) + 4 |\epsilon_T^{\alpha\beta ij}|^2 \right]$$ - In the relativistic limit, chiral fermions act as independent particles with definite helicity. - Therefore, the interference among operators is achieved only when the operators match the same flavor and chirality for all four fermions. - The lack of interference tends to increase the cross section in the high-p $_{T}$ tails, and allows to set bounds on several NP operators simultaneously. - Different / complementary to charm decays. Most of the bounds from $D_{(S)}$ mesons decays depend on interference terms among different WCs, and it becomes difficult to break flat directions without additional observables. Five quark flavors accessible in the incoming proton PDFs $$\mathcal{L}_{q_i\bar{q}_j}(\tau,\mu_F) = \int_{\tau}^{1} \frac{dx}{x} f_{q_i}(x,\mu_F) f_{\bar{q}_j}(\tau/x,\mu_F)$$ Five quark flavors accessible in the incoming proton PDFs $$\mathcal{L}_{q_i\bar{q}_j}(\tau,\mu_F) = \int_{\tau}^{1} \frac{dx}{x} f_{q_i}(x,\mu_F) f_{\bar{q}_j}(\tau/x,\mu_F)$$ The relative correction to the x-section in the tail $$\frac{\Delta\sigma}{\sigma} \approx R_{ij} \times \frac{d_X \epsilon_X^2}{\left(m_W^2/s\right)^2}$$ $$d_X = 1, \frac{3}{4}, 4 \text{ for } X = V, S, T$$ $$R_{ij} \equiv \frac{(\mathcal{L}_{u_i \bar{d}_j} + \mathcal{L}_{d_j \bar{u}_i}) \times |V_{ij}|^2}{(\mathcal{L}_{u\bar{d}} + \mathcal{L}_{d\bar{u}}) \times |V_{ud}|^2}$$ Five quark flavors accessible in the incoming proton PDFs $$\mathcal{L}_{q_i\bar{q}_j}(\tau,\mu_F) = \int_{\tau}^{1} \frac{dx}{x} f_{q_i}(x,\mu_F) f_{\bar{q}_j}(\tau/x,\mu_F)$$ The relative correction to the x-section in the tail $$\frac{\Delta\sigma}{\sigma} \approx R_{ij} \times \frac{d_X \epsilon_X^2}{\left(m_W^2/s\right)^2}$$ $$d_X = 1, \frac{3}{4}, 4 \text{ for } X = V, S, T$$ Five quark flavors accessible in the incoming proton PDFs $$\mathcal{L}_{q_i\bar{q}_j}(\tau,\mu_F) = \int_{\tau}^{1} \frac{dx}{x} f_{q_i}(x,\mu_F) f_{\bar{q}_j}(\tau/x,\mu_F)$$ The relative correction to the x-section in the tail $$\frac{\Delta\sigma}{\sigma} \approx R_{ij} \times \frac{d_X \epsilon_X^2}{\left(m_W^2/s\right)^2}$$ $$d_X = 1, \frac{3}{4}, 4 \text{ for } X = V, S, T$$ ### Energy enhancement $$\left(s/m_W^2\right)^2 \sim \mathcal{O}(10^5)$$ # PDF and CKM suppression $(C_{-1} + C_{-1}) \times |V \cdot \cdot|^{2}$ Five quark flavors accessible in the incoming proton PDFs $$\mathcal{L}_{q_i\bar{q}_j}(\tau,\mu_F) = \int_{\tau}^{1} \frac{dx}{x} f_{q_i}(x,\mu_F) f_{\bar{q}_j}(\tau/x,\mu_F)$$ The relative correction to the x-section in the tail $$\frac{\Delta\sigma}{\sigma} \approx R_{ij} \times \frac{d_X \epsilon_X^2}{\left(m_W^2/s\right)^2}$$ $$d_X = 1, \frac{3}{4}, 4 \text{ for } X = V, S, T$$ $$\begin{split} \left| \Delta \sigma / \sigma \right|_{tails} &\lesssim \mathcal{O}(0.1) \\ \text{e.g.} &\rightarrow \epsilon_L^{cs} \lesssim \mathcal{O}(0.01) \end{split}$$ ### Energy enhancement $$\left(s/m_W^2\right)^2 \sim \mathcal{O}(10^5)$$ ### PDF and CKM suppression $$R_{ij} \equiv rac{(\mathcal{L}_{u_i ar{d}_j} + \mathcal{L}_{d_j ar{u}_i}) imes |V_{ij}|^2}{(\mathcal{L}_{u ar{d}} + \mathcal{L}_{d ar{u}}) imes |V_{u d}|^2}$$ $R_{ij} = rac{\mathcal{L}_{u_i ar{d}_j} + \mathcal{L}_{d_j ar{u}_i}}{\mathcal{L}_{u ar{d}} + \mathcal{L}_{d ar{u}}} imes rac{|V_{ij}|^2}{|V_{u d}|^2}$ $R_{ij} = rac{\mathcal{L}_{u_i ar{d}_j} + \mathcal{L}_{d_j ar{u}_i}}{\mathcal{L}_{u ar{d}} + \mathcal{L}_{d ar{u}}} imes rac{|V_{ij}|^2}{|V_{u d}|^2}$ $R_{ij} = rac{\mathcal{L}_{u_i ar{d}_j} + \mathcal{L}_{d_j ar{u}_i}}{\mathcal{L}_{u ar{d}} + \mathcal{L}_{d ar{u}}} imes rac{|V_{ij}|^2}{|V_{u d}|^2}$ $R_{ij} = rac{\mathcal{L}_{u_i ar{d}_j} + \mathcal{L}_{d_j ar{u}_i}}{\mathcal{L}_{u ar{d}} + \mathcal{L}_{d ar{u}}} imes rac{|V_{ij}|^2}{|V_{u d}|^2}$ $R_{ij} = rac{\mathcal{L}_{u_i ar{d}_j} + \mathcal{L}_{d_j ar{u}_i}}{\mathcal{L}_{u ar{d}} + \mathcal{L}_{d ar{u}}} imes rac{|V_{ij}|^2}{|V_{u ar{d}}|^2}$ $R_{ij} = rac{\mathcal{L}_{u_i ar{d}_j} + \mathcal{L}_{d_j ar{u}_i}}{\mathcal{L}_{u ar{d}} + \mathcal{L}_{d ar{u}}} imes rac{|V_{ij}|^2}{|V_{u ar{d}}|^2}$ $R_{ij} = rac{\mathcal{L}_{u_i ar{d}_j} + \mathcal{L}_{d_j ar{u}_i}}{\mathcal{L}_{u ar{d}} + \mathcal{L}_{d ar{u}}} imes rac{|V_{ij}|^2}{|V_{u ar{d}}|^2}$ $R_{ij} = rac{\mathcal{L}_{u_i ar{d}_j} + \mathcal{L}_{d_j ar{u}_i}}{\mathcal{L}_{u ar{d}} + \mathcal{L}_{d ar{u}}} imes rac{|V_{ij}|^2}{|V_{u ar{d}}|^2}$ #### Recast of the existing experimental searches - Charged (and neutral) Drell-Yan is extremely well measured at the LHC. - We recast the available searches fitting the transverse mass distribution at the reco level. | Channel | Statistics $[fb^{-1}]$ | Experiment | | |--|------------------------|------------|--| | $\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$ | 36 | CMS | | | | 36 | ATLAS | | | $e\nu, \mu\nu$ | 139 | ATLAS | | | | 36 | ATLAS | | | | 36 | CMS | | | $\tau\tau$ | 36 | ATLAS | | | $ au au, e\mu, e au, \mu au$ | 2.2 | CMS | | | $ee, \mu\mu$ | 139 | ATLAS | | | | 140 | CMS | | | | 36 | CMS | | | | 36 | ATLAS | | | $e\mu,e\tau,\mu\tau$ | 36 | ATLAS | | | | 36 | ATLAS | | | г | ٨٠ : ا ـ ا ـ ا ـ ـ ـ ١ | | | [Available data] Full-fledged simulations validated by reproducing the official SM prediction. The SM background systematics included conservatively. The modified frequentist CLs method used. ### Recast of the existing experimental searches | \overline{i} | $\mid \alpha \mid$ | $\epsilon_{V_L}^{lphalpha i} imes 10^2$ | $ \epsilon_{V_L}^{lphaeta i} imes 10^2$ | $ \epsilon_{S_{L,R}}^{lphaeta i}(\mu) imes 10^2$ | | $ \epsilon_T^{lphaeta i}(\mu) imes 10^3$ | | |----------------|--------------------|--|--|---|-------------------|---|---------------------| | | | | $(\alpha \neq \beta)$ | $\mu=1\mathrm{TeV}$ | $\mu=2~{\rm GeV}$ | $\mu=1~{\rm TeV}$ | $\mu = 2~{\rm GeV}$ | | | $\mid e \mid$ | | 0.67(0.42) | 0.72(0.46) | 1.5(0.96) | 4.3(2.7) | 3.4(2.2) | | d | $\mid \mu \mid$ | [-0.85, 1.2] | 1.0(0.38) | 1.1(0.42) | 2.3(0.86) | 6.6(2.4) | 5.2(1.9) | | | $\mid au$ | [-1.4, 1.8] | 1.6(0.68) | 1.5(0.55) | 3.1(1.1) | 8.7(3.1) | 6.9(2.5) | | s | $\mid e \mid$ | $ \begin{bmatrix} -0.28, 0.59 \\ -0.46, 0.78 \\ -0.65, 1.2 \end{bmatrix} $ | 0.42(0.26) | 0.43(0.28) | 0.91(0.57) | 2.8(1.5) | 2.2(1.2) | | | $\mid \mu \mid$ | [-0.46, 0.78] | 0.63(0.23) | 0.68(0.25) | 1.4(0.52) | 4.0(1.4) | 3.1(1.1) | | | $\mid au$ | -0.65, 1.2 | 0.93(0.40) | 0.87(0.31) | 1.8(0.65) | 5.2(1.8) | 4.1(1.5) | 95% CL ranges on WCs. Naive HL-LHC projection in (). #### 1.2 Recast of the existing experimental searches | i | $\mid \alpha \mid$ | $\epsilon_{V_L}^{lphalpha i} imes 10^2$ | $ \epsilon_{V_L}^{lphaeta i} imes 10^2$ | $ \epsilon_{S_{L,R}}^{lphaeta i}(\mu) imes 10^2$ | | $ \epsilon_T^{lphaeta i}(\mu) imes 10^3$ | | |---|--------------------|---|--
---|-------------------|---|-------------------| | | | | $(\alpha \neq \beta)$ | $\mu=1~{\rm TeV}$ | $\mu=2~{\rm GeV}$ | $\mu=1\mathrm{TeV}$ | $\mu=2~{\rm GeV}$ | | d | $\mid e \mid$ | | 0.67(0.42) | 0.72(0.46) | 1.5(0.96) | 4.3(2.7) | 3.4(2.2) | | | $\mid \mu \mid$ | [-0.85, 1.2] | 1.0(0.38) | 1.1(0.42) | 2.3(0.86) | 6.6(2.4) | 5.2(1.9) | | | $\mid au$ | [-1.4, 1.8] | 1.6(0.68) | 1.5(0.55) | 3.1(1.1) | 8.7(3.1) | 6.9(2.5) | | s | $\mid e \mid$ | | 0.42(0.26) | 0.43(0.28) | 0.91(0.57) | 2.8(1.5) | 2.2(1.2) | | | $\mid \mu \mid$ | [-0.46, 0.78] | 0.63(0.23) | 0.68(0.25) | 1.4(0.52) | 4.0(1.4) | 3.1(1.1) | | | $\mid au$ | $\left[-0.65, 1.2 \right]$ | 0.93(0.40) | 0.87(0.31) | 1.8(0.65) | 5.2(1.8) | 4.1(1.5) | 95% CL ranges on WCs. Naive HL-LHC projection in (). - Similar results for **d** and **s** strange PDF versus Cabibo squared. - Approx all limits O(0.01). $$\epsilon_{V_L}^{\alpha\beta i}:\epsilon_{S_{L,R}}^{\alpha\beta i}:\epsilon_T^{\alpha\beta i}\approx 1:\frac{2}{\sqrt{3}}:\frac{1}{2}$$ - Quadratic terms dominates the limits also for V_L. - The most sensitive bins fall in the range [I I.5] TeV - Dedicated future analysis: angular dependence, lepton charge asymmetry, etc. #### How well do we know the bckg? The SM prediction (NNLO QCD + NLO EW) suffices the experimental precision. ### How well do we know the signal? The uncertainty on the signal prediction from NLO QCD and PDF replicas estimated to be ~ 10 % on the rate in the most sensitive bin. Electroweak corrections at the similar level. $\Delta\epsilon_X/\epsilon_X\approx 0.5\,\Delta\sigma/\sigma$ #### How well do we know PDFs? ◆ The PDF determination assumes the SM.The impact of the Drell-Yan data in the global PDF fit is small at the moment.The issue is there in the future. Interplay between low and high energy **Figure 2**. Exclusion limits at 95% CL on $c \to d(s)\bar{e}^{\alpha}\nu^{\alpha}$ transitions in $(\epsilon_{V_L}^{\alpha\alpha d}, \epsilon_{V_L}^{\alpha\alpha s})$ plane were $\alpha = e$ (top left), $\alpha = \mu$ (top right), and $\alpha = \tau$ (bottom). The region colored in pink is excluded by $D_{(s)}$ meson decays, while the region colored in blue is excluded by high- p_T LHC. $$\mathcal{O}_{lq}^{(3)} = (\bar{l}_L \gamma_\mu \tau^I l_L)(\bar{q}_L \gamma^\mu \tau^I q_L)$$ High-p_T limits are almost an order of magnitude stronger for all transitions 0.02 0.04 Future projections from BESIII likely not competitive with future projections from the HL-LHC Figure 2. Exclusion limits at 95% CL on $c \to d(s)\bar{e}^{\alpha}\nu^{\alpha}$ transitions in $(\epsilon_{V_L}^{\alpha\alpha d}, \epsilon_{V_L}^{\alpha\alpha s})$ plane were $\alpha = e$ (top left), $\alpha = \mu$ (top right), and $\alpha = \tau$ (bottom). The region colored in pink is excluded by $D_{(s)}$ meson decays, while the region colored in blue is excluded by high- p_T LHC. $$\mathcal{O}_{lq}^{(3)} = (\bar{l}_L \gamma_\mu \tau^I l_L) (\bar{q}_L \gamma^\mu \tau^I q_L)$$ **Figure 3**. 95% CL regions for the combined fits of $\epsilon_{S_L}^{\alpha\beta i}$ and $\epsilon_T^{\alpha\beta i}$ to the charmed-meson decay data with $\beta=\alpha$ (red solid line) or $\beta\neq\alpha$ (light-red dash-dotted line) and to monolepton LHC data (blue solid line). Projections for the high-luminosity phase of the LHC (3 ab⁻¹), obtained by rescaling the expected limits with luminosity, are represented by dashed ellipses. $$\mathcal{O}_{lequ}^{(1)} = (\bar{l}_L^p e_R) \epsilon_{pr} (\bar{q}_L^r u_R) \mathcal{O}_{lequ}^{(3)} = (\bar{l}_L^p \sigma_{\mu\nu} e_R) \epsilon_{pr} (\bar{q}_L^r \sigma^{\mu\nu} u_R)$$ Tau: High-p_T more sensitive **Figure 3**. 95% CL regions for the combined fits of $\epsilon_{S_L}^{\alpha\beta i}$ and $\epsilon_T^{\alpha\beta i}$ to the charmed-meson decay data with $\beta=\alpha$ (red solid line) or $\beta\neq\alpha$ (light-red dash-dotted line) and to monolepton LHC data (blue solid line). Projections for the high-luminosity phase of the LHC (3 ab⁻¹), obtained by rescaling the expected limits with luminosity, are represented by dashed ellipses. $$\mathcal{O}_{lequ}^{(1)} = (\bar{l}_L^p e_R) \epsilon_{pr} (\bar{q}_L^r u_R)$$ $$\mathcal{O}_{lequ}^{(3)} = (\bar{l}_L^p \sigma_{\mu\nu} e_R) \epsilon_{pr} (\bar{q}_L^r \sigma^{\mu\nu} u_R)$$ **Figure 3**. 95% CL regions for the combined fits of $\epsilon_{SL}^{\alpha\beta i}$ and $\epsilon_{T}^{\alpha\beta i}$ to the charmed-meson decay data with $\beta=\alpha$ (red solid line) or $\beta\neq\alpha$ (light-red dash-dotted line) and to monolepton LHC data (blue solid line). Projections for the high-luminosity phase of the LHC (3 ab⁻¹), obtained by rescaling the expected limits with luminosity, are represented by dashed ellipses. $$\mathcal{O}_{lequ}^{(1)} = (\bar{l}_L^p e_R) \epsilon_{pr} (\bar{q}_L^r u_R) \mathcal{O}_{lequ}^{(3)} = (\bar{l}_L^p \sigma_{\mu\nu} e_R) \epsilon_{pr} (\bar{q}_L^r \sigma^{\mu\nu} u_R)$$ **Figure 3**. 95% CL regions for the combined fits of $\epsilon_{S_L}^{\alpha\beta i}$ and $\epsilon_T^{\alpha\beta i}$ to the charmed-meson decay data with $\beta=\alpha$ (red solid line) or $\beta\neq\alpha$ (light-red dash-dotted line) and to monolepton LHC data (blue solid line). Projections for the high-luminosity phase of the LHC (3 ab⁻¹), obtained by rescaling the expected limits with luminosity, are represented by dashed ellipses. $$\mathcal{O}_{lequ}^{(1)} = (\bar{l}_L^p e_R) \epsilon_{pr} (\bar{q}_L^r u_R) \mathcal{O}_{lequ}^{(3)} = (\bar{l}_L^p \sigma_{\mu\nu} e_R) \epsilon_{pr} (\bar{q}_L^r \sigma^{\mu\nu} u_R)$$ • Negative interference with the dominant SM Drell-Yan channel $u\bar{d}\to \bar{e}^\alpha\nu^\alpha$ Different scaling with s, only a partial cancellation possible. Negative interference with the dominant SM Drell-Yan channel $u \bar d o \bar e^{\alpha} u^{\alpha}$ Different scaling with s, only a partial cancellation possible. Higher dimensional operators $$\mathcal{L}_{\text{EFT}} \supset -\frac{4G_F}{\sqrt{2}} V_{ci} \left[\epsilon_{V_L}^{(6)} \left(\bar{e}_L^{\alpha} \gamma_{\mu} \nu_L^{\alpha} \right) \left(\bar{c}_L \gamma^{\mu} d_L^i \right) - \frac{1}{M_{\text{NP}}^2} \epsilon_{V_L}^{(8)} \left(\bar{e}_L^{\alpha} \gamma_{\mu} \nu_L^{\alpha} \right) \partial^2 (\bar{c}_L \gamma^{\mu} d_L^i) \right] + \text{h.c.}$$ $$\hat{\sigma}(s) = \frac{G_F^2 |V_{ci}|^2}{18\pi} s \left| \frac{m_W^2}{s} - \epsilon_{V_L}^{(6)} - \frac{s}{M_{\text{NP}}^2} \epsilon_{V_L}^{(8)} \right|^2$$ $$= \frac{G_F^2 |V_{ci}|^2}{18\pi} s \left[\frac{m_W^4}{s^2} - 2\frac{m_W^2}{s} \text{Re}(\epsilon_{V_L}^{(6)}) + |\epsilon_{V_L}^{(6)}|^2 - 2\frac{m_W^2}{M_{\text{NP}}^2} \text{Re}(\epsilon_{V_L}^{(8)}) \right] + \mathcal{O}\left(\frac{1}{M_{\text{NP}}^6}\right)$$ Negative interference with the dominant SM Drell-Yan channel $u\bar{d}\to \bar{e}^\alpha\nu^\alpha$ Different scaling with s, only a partial cancellation possible. Higher dimensional operators $$\mathcal{L}_{\text{EFT}} \supset -\frac{4G_F}{\sqrt{2}} V_{ci} \left[\epsilon_{V_L}^{(6)} \left(\bar{e}_L^{\alpha} \gamma_{\mu} \nu_L^{\alpha} \right) \left(\bar{c}_L \gamma^{\mu} d_L^i \right) - \frac{1}{M_{\text{NP}}^2} \epsilon_{V_L}^{(8)} \left(\bar{e}_L^{\alpha} \gamma_{\mu} \nu_L^{\alpha} \right) \partial^2 (\bar{c}_L \gamma^{\mu} d_L^i) \right] + \text{h.c.}$$ $$\hat{\sigma}(s) = \frac{G_F^2 |V_{ci}|^2}{18\pi} s \left| \frac{m_W^2}{s} - \epsilon_{V_L}^{(6)} - \frac{s}{M_{\text{NP}}^2} \epsilon_{V_L}^{(8)} \right|^2$$ $$= \frac{G_F^2 |V_{ci}|^2}{18\pi} s \left[\frac{m_W^4}{s^2} - 2 \frac{m_W^2}{s} \text{Re}(\epsilon_{V_L}^{(6)}) + |\epsilon_{V_L}^{(6)}|^2 - 2 \frac{m_W^2}{M_{\text{NP}}^2} \text{Re}(\epsilon_{V_L}^{(8)}) \right] + \mathcal{O}\left(\frac{1}{M_{\text{NP}}^6}\right)$$ Dominant term Negative interference with the dominant SM Drell-Yan channel $u\bar{d}\to \bar{e}^\alpha\nu^\alpha$ Different scaling with s, only a partial cancellation possible. Higher dimensional operators $$\mathcal{L}_{\text{EFT}} \supset -\frac{4G_F}{\sqrt{2}} V_{ci} \left[\epsilon_{V_L}^{(6)} \left(\bar{e}_L^{\alpha} \gamma_{\mu} \nu_L^{\alpha} \right) \left(\bar{c}_L \gamma^{\mu} d_L^i \right) - \frac{1}{M_{\text{NP}}^2} \epsilon_{V_L}^{(8)} \left(\bar{e}_L^{\alpha} \gamma_{\mu} \nu_L^{\alpha} \right) \partial^2 \left(\bar{c}_L \gamma^{\mu} d_L^i \right) \right] + \text{h.c.}$$ $$\hat{\sigma}(s) = \frac{G_F^2 |V_{ci}|^2}{18\pi} s \left| \frac{m_W^2}{s} - \epsilon_{V_L}^{(6)} - \frac{s}{M_{\text{NP}}^2} \epsilon_{V_L}^{(8)} \right|^2$$ $$= \frac{G_F^2 |V_{ci}|^2}{18\pi} s \left[\frac{m_W^4}{s^2} - 2 \frac{m_W^2}{s} \text{Re}(\epsilon_{V_L}^{(6)}) + |\epsilon_{V_L}^{(6)}|^2 - 2 \frac{m_W^2}{M_{\text{NP}}^2} \text{Re}(\epsilon_{V_L}^{(8)}) \right] + \mathcal{O}\left(\frac{1}{M_{\text{NP}}^6}\right)$$ cancelation? Negative interference with the dominant SM Drell-Yan channel $\,u ar d \, o \, ar e^{lpha} u^{lpha}$ Different scaling with s, only a partial cancellation possible. Higher dimensional operators $$\mathcal{L}_{\text{EFT}} \supset -\frac{4G_F}{\sqrt{2}} V_{ci} \left[\epsilon_{V_L}^{(6)} \left(\bar{e}_L^{\alpha} \gamma_{\mu} \nu_L^{\alpha} \right) \left(\bar{c}_L \gamma^{\mu} d_L^i \right) - \frac{1}{M_{\text{NP}}^2} \epsilon_{V_L}^{(8)} \left(\bar{e}_L^{\alpha} \gamma_{\mu} \nu_L^{\alpha} \right) \partial^2 \left(\bar{c}_L \gamma^{\mu} d_L^i \right) \right] + \text{h.c.}$$ $$\hat{\sigma}(s) = \frac{G_F^2 |V_{ci}|^2}{18\pi} s \left| \frac{m_W^2}{s} - \epsilon_{V_L}^{(6)} - \frac{s}{M_{\text{NP}}^2} \epsilon_{V_L}^{(8)} \right|^2$$ $$= \frac{G_F^2 |V_{ci}|^2}{18\pi} s \left[\frac{m_W^4}{s^2} - 2 \frac{m_W^2}{s} \text{Re}(\epsilon_{V_L}^{(6)}) + |\epsilon_{V_L}^{(6)}|^2 - 2 \frac{m_W^2}{M_{\text{NP}}^2} \text{Re}(\epsilon_{V_L}^{(8)}) \right] + \mathcal{O}\left(\frac{1}{M_{\text{NP}}^6}\right)$$ If $$|\mathrm{Re}(\epsilon_{V_L}^{(8)})| \leq |\mathrm{Re}(\epsilon_{V_L}^{(6)})|$$ then < since $M_{\mathrm{NP}}^2 > s$ Negative interference with the dominant SM
Drell-Yan channel $\,u ar d \, o \, ar e^{lpha} u^{lpha}$ Different scaling with s, only a partial cancellation possible. Higher dimensional operators $$\mathcal{L}_{\text{EFT}} \supset -\frac{4G_F}{\sqrt{2}} V_{ci} \left[\epsilon_{V_L}^{(6)} \left(\bar{e}_L^{\alpha} \gamma_{\mu} \nu_L^{\alpha} \right) \left(\bar{c}_L \gamma^{\mu} d_L^i \right) - \frac{1}{M_{\text{NP}}^2} \epsilon_{V_L}^{(8)} \left(\bar{e}_L^{\alpha} \gamma_{\mu} \nu_L^{\alpha} \right) \partial^2 \left(\bar{c}_L \gamma^{\mu} d_L^i \right) \right] + \text{h.c.}$$ $$\hat{\sigma}(s) = \frac{G_F^2 |V_{ci}|^2}{18\pi} s \left| \frac{m_W^2}{s} - \epsilon_{V_L}^{(6)} - \frac{s}{M_{\text{NP}}^2} \epsilon_{V_L}^{(8)} \right|^2$$ $$= \frac{G_F^2 |V_{ci}|^2}{18\pi} s \left[\frac{m_W^4}{s^2} - 2 \frac{m_W^2}{s} \text{Re}(\epsilon_{V_L}^{(6)}) + |\epsilon_{V_L}^{(6)}|^2 - 2 \frac{m_W^2}{M_{\text{NP}}^2} \text{Re}(\epsilon_{V_L}^{(8)}) \right] + \mathcal{O}\left(\frac{1}{M_{\text{NP}}^6}\right)$$ If $$|\mathrm{Re}(\epsilon_{V_L}^{(8)})| \leq |\mathrm{Re}(\epsilon_{V_L}^{(6)})|$$ then since $$M_{\mathrm{NP}}^2 > s$$ (*) A single tree-level schannel resonance exchange predicts $$\epsilon_{V_L}^{(6)} = \epsilon_{V_L}^{(8)}$$ Negative interference with the dominant SM Drell-Yan channel $u \bar d o \bar e^{lpha} u^{lpha}$ Different scaling with s, only a partial cancellation possible. Higher dimensional operators $$\mathcal{L}_{\text{EFT}} \supset -\frac{4G_F}{\sqrt{2}} V_{ci} \left[\epsilon_{V_L}^{(6)} \left(\bar{e}_L^{\alpha} \gamma_{\mu} \nu_L^{\alpha} \right) \left(\bar{c}_L \gamma^{\mu} d_L^i \right) - \frac{1}{M_{\text{NP}}^2} \epsilon_{V_L}^{(8)} \left(\bar{e}_L^{\alpha} \gamma_{\mu} \nu_L^{\alpha} \right) \partial^2 \left(\bar{c}_L \gamma^{\mu} d_L^i \right) \right] + \text{h.c.}$$ $$\hat{\sigma}(s) = \frac{G_F^2 |V_{ci}|^2}{18\pi} s \left| \frac{m_W^2}{s} - \epsilon_{V_L}^{(6)} - \frac{s}{M_{\text{NP}}^2} \epsilon_{V_L}^{(8)} \right|^2$$ $$= \frac{G_F^2 |V_{ci}|^2}{18\pi} s \left[\frac{m_W^4}{s^2} - 2\frac{m_W^2}{s} \text{Re}(\epsilon_{V_L}^{(6)}) + |\epsilon_{V_L}^{(6)}|^2 - 2\frac{m_W^2}{M_{\text{NP}}^2} \text{Re}(\epsilon_{V_L}^{(8)}) \right] + \mathcal{O}\left(\frac{1}{M_{\text{NP}}^6}\right)$$ If $$|\mathrm{Re}(\epsilon_{V_L}^{(8)})| \leq |\mathrm{Re}(\epsilon_{V_L}^{(6)})|$$ then since $$M_{\mathrm{NP}}^2 > s$$ (*) A single tree-level schannel resonance exchange predicts $$\epsilon_{V_L}^{(6)} = \epsilon_{V_L}^{(8)}$$ A significant cancellation would require a peculiar NP scenario. EFT expansion parameter s/M_{NP}^2 The EFT is no longer valid if a new mass threshold is at or below the typical energy of the process EFT expansion parameter s/M_{NP}^2 - The EFT is no longer valid if a new mass threshold is at or below the typical energy of the process - Inverting the obtained limits on the WCs from Drell-Yan tails $\frac{v_{EW}}{\sqrt{\epsilon_X}} \sim 3 \, \text{TeV}$ - The EFT is no longer valid if a new mass threshold is at or below the typical energy of the process - Inverting the obtained limits on the WCs from Drell-Yan tails $\frac{v_{EW}}{\sqrt{\epsilon_X}} \sim 3 \text{ TeV}$ - Perturbative unitarity suggests that the largest scales currently probed are at most few x 10 TeV for strongly coupled theories. Any suppression in the matching, such as loop, weak coupling, or flavor spurion, brings the actual NP mass scale down. EFT expansion parameter s/M_{NP}^2 - The EFT is no longer valid if a new mass threshold is at or below the typical energy of the process - Inverting the obtained limits on the WCs from Drell-Yan tails $\frac{v_{EW}}{\sqrt{\epsilon_X}} \sim 3 \text{ TeV}$ - Perturbative unitarity suggests that the largest scales currently probed are at most few \times 10 TeV for strongly coupled theories. Any suppression in the matching, such as loop, weak coupling, or flavor spurion, brings the actual NP mass scale down. EFT expansion parameter s/M_{NP}^2 - The EFT is no longer valid if a new mass threshold is at or below the typical energy of the process - Inverting the obtained limits on the WCs from Drell-Yan tails $\frac{v_{EW}}{\sqrt{\epsilon_X}} \sim 3$ **TeV** - Perturbative unitarity suggests that the largest scales currently probed are at most few \times 10 TeV for strongly coupled theories. Any suppression in the matching, such as loop, weak coupling, or flavor spurion, brings the actual NP mass scale down. EFT expansion parameter s/M_{NP}^2 - The EFT is no longer valid if a new mass threshold is at or below the typical energy of the process - Inverting the obtained limits on the WCs from Drell-Yan tails $\frac{v_{EW}}{\sqrt{\epsilon_X}} \sim 3$ **TeV** - Perturbative unitarity suggests that the largest scales currently probed are at most few x 10 TeV for strongly coupled theories. Any suppression in the matching, such as loop, weak coupling, or flavor spurion, brings the actual NP mass scale down. EFT expansion parameter s/M_{NP}^2 - The EFT is no longer valid if a new mass threshold is at or below the typical energy of the process - Inverting the obtained limits on the WCs from Drell-Yan tails $\frac{v_{EW}}{\sqrt{\epsilon_X}} \sim 3 \, \text{TeV}$ - Perturbative unitarity suggests that the largest scales currently probed are at most few x 10 TeV for strongly coupled theories. Any suppression in the matching, such as loop, weak coupling, or flavor spurion, brings the actual NP mass scale down. ### Tree-level UV completions EFT expansion parameter s/M_{NP}^2 - The EFT is no longer valid if a new mass threshold is at or below the typical energy of the process - Inverting the obtained limits on the WCs from Drell-Yan tails $\frac{v_{EW}}{\sqrt{\epsilon_X}} \sim 3 \, \text{TeV}$ - Perturbative unitarity suggests that the largest scales currently probed are at most few x 10 TeV for strongly coupled theories. Any suppression in the matching, such as loop, weak coupling, or flavor spurion, brings the actual NP mass scale down. ### Tree-level UV completions EFT bounds are overly conservative EFT expansion parameter s/M_{NP}^2 - The EFT is no longer valid if a new mass threshold is at or below the typical energy of the process - Inverting the obtained limits on the WCs from Drell-Yan tails $\frac{v_{EW}}{\sqrt{\epsilon_X}} \sim 3 \text{ TeV}$ - Perturbative unitarity suggests that the largest scales currently probed are at most few x 10 TeV for strongly coupled theories. Any suppression in the matching, such as loop, weak coupling, or flavor spurion, brings the actual NP mass scale down. ### Tree-level UV completions EFT expansion parameter s/M_{NP}^2 - The EFT is no longer valid if a new mass threshold is at or below the typical energy of the process - Inverting the obtained limits on the WCs from Drell-Yan tails $\frac{v_{EW}}{\sqrt{\epsilon_X}} \sim 3 \text{ TeV}$ - Perturbative unitarity suggests that the largest scales currently probed are at most few x 10 TeV for strongly coupled theories. Any suppression in the matching, such as loop, weak coupling, or flavor spurion, brings the actual NP mass scale down. - EFT expansion parameter s/M_{NP}^2 - **EFT** validity The EFT is no longer valid if a new mass threshold is at or below the typical - To conclude, the comparison of low- and high-p_T data within an EFT framework is a useful exercise even if the EFT validity is not guaranteed. - If high- p_T provides stronger limits relative to the ones derived from low- p_T , this will also hold in a generic NP model barring tuned cancellations. Explicit models EFT bounds are a good proxy ## **Neutral currents** $$c ightarrow u \, e^{lpha} ar{e}^{eta}$$ • Exercise repeated, see 2003.12421 # Constraints from SU(2) gauge invariance $$q_L^i = \begin{pmatrix} V_u^{ij} u_L^j \\ V_d^{ij} d_L^j \end{pmatrix}, \quad V = V_u^{\dagger} V_d \qquad \qquad l_L^{\alpha} = \begin{pmatrix} \nu_L^{\alpha} \\ e_L^{\alpha} \end{pmatrix},$$ • Imposing SU(2) gauge invariance yields strong constraints on the WCs entering in charm decays by relating them to other transitions, such as \mathbf{K} , $\mathbf{\pi}$ or $\mathbf{\tau}$ decays. # Constraints from SU(2) gauge invariance $$q_L^i = \begin{pmatrix} V_u^{ij} u_L^j \\ V_d^{ij} d_L^j \end{pmatrix}, \quad V = V_u^{\dagger} V_d \qquad \qquad l_L^{\alpha} = \begin{pmatrix} \nu_L^{\alpha} \\ e_L^{\alpha} \end{pmatrix},$$ • Imposing SU(2) gauge invariance yields strong constraints on the WCs entering in charm decays by relating them to other transitions, such as \mathbf{K} , $\mathbf{\pi}$ or $\mathbf{\tau}$ decays. #### **Example** $$\mathcal{O}_{lq}^{(3)} = (\bar{l}_L \gamma_\mu \tau^I l_L)(\bar{q}_L \gamma^\mu \tau^I q_L)$$ $$\begin{split} \left[\mathcal{O}_{lq}^{(3)}\right]^{\alpha\beta ij} &= 2\left(V_{u}^{*ik}\,V_{d}^{jl}\,[\mathcal{O}_{V_{L}}]^{\alpha\beta kl} + V_{d}^{*ik}\,V_{u}^{jl}\,[\mathcal{O}_{V_{L}}^{\dagger}]^{\beta\alpha lk}\right) \\ &+ V_{u}^{*ik}\,V_{u}^{jl}\,\left[\left(\bar{\nu}_{L}^{\alpha}\gamma^{\mu}\nu_{L}^{\beta}\right)\left(\bar{u}_{L}^{k}\gamma_{\mu}u_{L}^{l}\right) - \left(\bar{e}_{L}^{\alpha}\gamma^{\mu}e_{L}^{\beta}\right)\left(\bar{u}_{L}^{k}\gamma_{\mu}u_{L}^{l}\right)\right] \\ &- V_{d}^{*ik}\,V_{d}^{jl}\,\left[\left(\bar{\nu}_{L}^{\alpha}\gamma^{\mu}\nu_{L}^{\beta}\right)\left(\bar{d}_{L}^{k}\gamma_{\mu}d_{L}^{l}\right) - \left(\bar{e}_{L}^{\alpha}\gamma^{\mu}e_{L}^{\beta}\right)\left(\bar{d}_{L}^{k}\gamma_{\mu}d_{L}^{l}\right)\right]\,, \end{split}$$ - i) Charged-current $d_i \to u\ell\nu$ and $\tau \to d_i u\nu$ transitions (1st line), - ii) Neutral-current $c \to u\ell\ell^{(\prime)}$, $\tau \to \ell uu$ decays and $\mu u \to eu$ conversion (2nd line), - iii) Neutral-current $s \to d\ell\ell^{(\prime)}$, $s \to d\nu\nu$, $\tau \to \ell d_i d_j$ decays and $\mu d_i \to e d_i$ conversion (3rd line), # Constraints from SU(2) gauge invariance $$q_L^i = \begin{pmatrix} V_u^{ij} u_L^j \\ V_d^{ij} d_L^j \end{pmatrix}, \quad V = V_u^{\dagger} V_d \qquad \qquad l_L^{\alpha} = \begin{pmatrix} \nu_L^{\alpha} \\ e_L^{\alpha} \end{pmatrix},$$ •
Imposing SU(2) gauge invariance yields strong constraints on the WCs entering in charm decays by relating them to other transitions, such as K, π or τ decays. #### **Example** $$\mathcal{O}_{lq}^{(3)} = (\bar{l}_L \gamma_\mu \tau^I l_L) (\bar{q}_L \gamma^\mu \tau^I q_L)$$ $$\begin{split} \left[\mathcal{O}_{lq}^{(3)}\right]^{\alpha\beta ij} &= 2\left(V_{u}^{*ik}\,V_{d}^{jl}\left[\mathcal{O}_{V_{L}}\right]^{\alpha\beta kl} + V_{d}^{*ik}\,V_{u}^{jl}\left[\mathcal{O}_{V_{L}}^{\dagger}\right]^{\beta\alpha lk}\right) \\ &+ V_{u}^{*ik}\,V_{u}^{jl}\left[\left(\bar{\nu}_{L}^{\alpha}\gamma^{\mu}\nu_{L}^{\beta}\right)\left(\bar{u}_{L}^{k}\gamma_{\mu}u_{L}^{l}\right) - \left(\bar{e}_{L}^{\alpha}\gamma^{\mu}e_{L}^{\beta}\right)\left(\bar{u}_{L}^{k}\gamma_{\mu}u_{L}^{l}\right)\right] \\ &- V_{d}^{*ik}\,V_{d}^{jl}\left[\left(\bar{\nu}_{L}^{\alpha}\gamma^{\mu}\nu_{L}^{\beta}\right)\left(\bar{d}_{L}^{k}\gamma_{\mu}d_{L}^{l}\right) - \left(\bar{e}_{L}^{\alpha}\gamma^{\mu}e_{L}^{\beta}\right)\left(\bar{d}_{L}^{k}\gamma_{\mu}d_{L}^{l}\right)\right]\,, \end{split}$$ - i) Charged-current $d_i o u \ell \nu$ and $au o d_i u u$ transitions (1st line), - ii) Neutral-current $c \to u\ell\ell^{(\prime)}$, $\tau \to \ell uu$ decays and $\mu u \to eu$ conversion (2nd line), - iii) Neutral-current $s \to d\ell\ell^{(\prime)}$, $s \to d\nu\nu$, $\tau \to \ell d_i d_j$ decays and $\mu d_i \to e d_i$ conversion (3rd line), #### Counterexample $$\mathcal{O}_{eu} = (\bar{e}_R \gamma^\mu e_R)(\bar{u}_R \gamma^\mu u_R)$$ $SU(2)_L \ { m relations}$ $SU(2)_L$ relations $D_{(s)}$ physics 33 D(s) decays, high-p_T lepton tails and SU(2)_L relations chart the space of the SMEFT affecting semi(leptonic) charm flavor transitions. ## The end I apologise for missing citations, see the reference list of 2003.12421