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• ‘70 The GIM mechanism

• ‘74 November revolution J/ψ

• ‘19 CP violation 

• Charm is a cornerstone of the SM
• A unique arena for QCD and Flavor physics

Question: How unique is the charm sector as a probe of New Physics 
within the zoo of flavor and collider phenomenology? What is the role 
of charm in a broader quest for a microscopic theory beyond the SM?
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2.1 The high-energy effective theory 3
2.2 The low-energy effective theory 4

3 Decays of charmed mesons 5

4 High-pT lepton production at the LHC 8
4.1 Short-distance new physics in high-pT tails 8
4.2 Recast of the existing experimental searches 10
4.3 Possible caveats within and beyond the EFT 12

5 Interplay between low and high energy 14
5.1 Four-fermion interactions 15
5.2 W vertex corrections 16

6 Neutral currents 17
6.1 Theoretical framework: c ! u e

↵
ē
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↵ |✏↵↵
Vi

|
|✏↵↵

SLL,RR
(µ)| |✏↵↵

TL,R
(µ)|

µ = 1 TeV µ = 2 GeV µ = 1 TeV µ = 2 GeV

e 13 (3.9) 15 (4.5) 32 (9.5) 6.5 (2.0) 5.2 (1.6)

µ 7.0 (3.4) 8.1 (3.9) 17 (8.3) 3.5 (1.7) 2.8 (1.4)

⌧ 25 (12) 29 (13) 60 (28) 14 (6.6) 11 (5.2)

Table 6. 95% CL limits on the neutral-current WCs from pp ! e
↵
ē
↵ at the LHC, with i =

LL,RR,LR,RL. We also show in parenthesis the naive projections of the expected limits for the HL-
LHC (3 ab�1), assuming that the error will be statistically dominated.

Figure 4. Exclusion limits at 95% CL on c ! u`
+
`
� transitions in the (✏eeVi

, ✏
µµ
Vi

) plane, where i =
LL,RR,LR,RL. The region outside the red contour is excluded by D meson decays, while the region
outside the blue contour is excluded by high-pT LHC.

chiral enhancement in D ! `
+
`
� compared to the corresponding SM contribution. Furthermore,

the c ! u⌧
+
⌧
� transition is only accessible at high-pT , since the corresponding low-energy decays

are kinematically forbidden. Similar conclusions have been reached in the LFV channels [48].
Namely, the high-pT bounds on the µe channel are stronger than those from low-energy, with
the exception of the scalar operators, while for ⌧e and ⌧µ channels, high-pT tails offer the only
available limits.

Concerning the possible caveats to the high-pT limits, there are two major differences with
respect to the discussion for charge currents in Section 4.3. Firstly, the c ! u`

+
`
� SM amplitude

is extremely suppressed, as mentioned before. Thus, the dimension-8 interference with the SM
is negligible and unable to affect the leading dimension-6 squared contribution, even though the
two are formally of the same order in the EFT expansion. Nonetheless, semileptonic operators
with flavor-diagonal quark couplings which negatively interfere with the SM background can be
used to tune a (partial) cancellation between NP contributions in the tails. Secondly, most UV

– 20 –
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2.1 The high-energy effective theory 3
2.2 The low-energy effective theory 4

3 Decays of charmed mesons 5

4 High-pT lepton production at the LHC 8
4.1 Short-distance new physics in high-pT tails 8
4.2 Recast of the existing experimental searches 10
4.3 Possible caveats within and beyond the EFT 12

5 Interplay between low and high energy 14
5.1 Four-fermion interactions 15
5.2 W vertex corrections 16

6 Neutral currents 17
6.1 Theoretical framework: c ! u e

↵
ē
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Thus, the operators in Eqs. (2.2) and (2.3) capture all leading effects in the SMEFT in semilep-
tonic charm transitions. Unless stated otherwise, throughout this paper we work in the up-basis for
the SU(2)L multiplets, where

q
i
L =

 
u
i
L

Vij d
j
L

!
, l

↵
L =

 
⌫
↵
L

e
↵
L

!
, (2.4)

with V the CKM matrix, and use i, j = 1, 2, 3 and ↵,� = 1, 2, 3 to label quark and lepton flavor
indices, respectively. We also use ` to denote the light leptons e and µ, but not ⌧ . The matching of
the SMEFT to the low-energy effective theory is reported next, while we postpone the discussion
of SU(2)L relations to Section 7.

2.2 The low-energy effective theory

The low-energy effective Lagrangian involving c ! d
i
ē
↵
⌫
� transitions can be written as

LCC = �
4GF
p
2
Vci

h�
1 + ✏

↵�i
VL

�
O

↵�i
VL

+ ✏
↵�i
VR

O
↵�i
VR

+ ✏
↵�i
SL

O
↵�i
SL

+ ✏
↵�i
SR

O
↵�i
SR

+ ✏
↵�i
T O

↵�i
T

i
+ h.c.,

(2.5)

where the effective operators read

O
↵�i
VL

= (ē↵L�µ⌫
�
L)(c̄L�

µ
d
i
L) , O

↵�i
VR

= (ē↵L�µ⌫
�
L)(c̄R�

µ
d
i
R) ,

O
↵�i
SL

= (ē↵R ⌫
�
L)(c̄R d

i
L) , O

↵�i
SR

= (ē↵R ⌫
�
L)(c̄L d

i
R) ,

O
↵�i
T = (ē↵R�µ⌫⌫

�
L)(c̄R�

µ⌫
d
i
L) .

(2.6)

Note that mixed chirality tensor operators vanish by Lorentz invariance. The extraction of the CKM
matrix in the SMEFT is a delicate exercise [52]. For our purposes here, Vcd and Vcs can be safely
obtained by exploiting unitarity in the Wolfenstein parametrization,

Vcd = ��c +O(�5
c),

Vcs = 1� �
2
c/2 +O(�4

c),
(2.7)

where �c is the sine of the Cabibbo angle. We assume that any contribution of NP to the inputs of
these unitarity relations is small compared to the precision achieved with charm weak transitions.
For instance, �c obtained from kaon decays receives strong constraints from the unitarity of the first
row of the CKM matrix (see e.g. Ref. [40]). Similarly, we neglect the effects of NP modifications
to GF as determined from muon decays.

The tree-level matching conditions between the SMEFT in Eq. (2.1) and the low-energy La-
grangian in Eq. (2.5) are

✏
↵�i
VL

= �
Vji

Vci
[C(3)

lq ]↵�2j + �↵�
Vji

Vci
[C(3)

�q ]2j , ✏
↵�i
VR

=
1

2Vci
�↵� [C�ud]2i ,

✏
↵�i
SL

= �
Vji

2Vci
[C(1)

lequ]
⇤
�↵j2 , ✏

↵�i
SR

= �
1

2Vci
[Cledq]

⇤
�↵i2 ,

✏
↵�i
T = �

Vji

2Vci
[C(3)

lequ]
⇤
�↵j2 ,

(2.8)
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where a sum over j is implicitly assumed. Interestingly, the low-energy operator O↵�i
VR

is gener-
ated in the SMEFT from an operator that modifies a chirality preserving W vertex but not from a
new four-fermion interaction, unlike other operators in Eq. (2.6). On the contrary, O↵�i

VL
receives

contributions from both a modified W vertex and a new four-fermion interaction, which cannot be
disentangled at low energies.

The relations in Eq. (2.8) hold at the matching scale µ = mW . The renormalization group
equations (RGE) induced by QCD and EW (QED) radiative effects allow one to robustly correlate
low- and high-pT data [53, 54]. In particular, the RGE running from µ = 1 TeV down to µ = 2 GeV
yields sizable effects in scalar and tensor operators [55],

✏SL(2GeV) ⇡ 2.1 ✏SL(TeV)� 0.3 ✏T (TeV) , ✏SR(2GeV) ⇡ 2.0 ✏SR(TeV) ,

✏T (2GeV) ⇡ 0.8 ✏T (TeV) .
(2.9)

Here, ✏X(TeV) refers to the corresponding combination of SMEFT WCs in Eq. (2.8). Vector oper-
ators do not run under QCD, and the electromagnetic and EW running remains at the percent level.
Similarly, other RGE-induced contributions, including the mixing with other SMEFT operators, do
not receive large QCD enhancements and remain at the percent level. All these effects are below
the level of precision of our studies, so we neglect them in the following.

3 Decays of charmed mesons

Leptonic and semileptonic decays D(s) ! ē
↵
⌫ and D ! ⇡(K)¯̀⌫ follow from the Lagrangian

in Eq. (2.5). This captures the leading effects of any possible short-distance contribution to c !

d
i
ē
↵
⌫
� flavor transitions, with the SM being a particular limit, ✏↵�iX,SM = 0 for all X . Hadronic ma-

trix elements of the corresponding operators are constrained by Lorentz symmetry and invariance of
QCD under parity. As a result, pure leptonic decays are sensitive only to axial (✏↵�iA = ✏

↵�i
VR

� ✏
↵�i
VL

)
and pseudoscalar (✏↵�iP = ✏

↵�i
SR

� ✏
↵�i
SL

) combinations of WCs. On the other hand, the semileptonic
decays are sensitive to vectorial (✏↵�iV = ✏

↵�i
VR

+ ✏
↵�i
VL

) and scalar (✏↵�iS = ✏
↵�i
SR

+ ✏
↵�i
SL

) combinations
of WCs, and to the tensor WC (✏↵�iT ).

The largest available phase space that can be achieved for the semileptonic decays is given
by mD+ � m⇡0 ' 1.735 GeV. Note that this is smaller than the ⌧ lepton mass, which makes the
semitauonic D-meson decays kinematically forbidden. A similar conclusion follows for the decays
of charmed baryons. In other words, the tauonic vector, scalar and tensor operators (O⌧�

V,S,T ) are
not directly accessible and, as we will see below, high-pT tails provide a unique probe of these
operators. On the other hand, pure tauonic decays of D(s) are allowed.2

In the following, we derive bounds on the WCs of the operators in Eq. (2.6) from D(s)-meson
decays. First, we restrict ourselves to the lepton-flavor diagonal case (✏↵iX ⌘ ✏

↵↵i
X ), which interferes

with the SM and leads to the strongest bounds. The rate of the leptonic D decays is

BR(D+
! ē

↵
⌫
↵) = ⌧D+

mD+m
2
↵f

2
DG

2
F |Vcd|

2
�
4
↵

8⇡

����1� ✏
↵d
A +

m
2
D

m↵(mc +mu)
✏
↵d
P

����
2

, (3.1)

2The phase-space restriction is lifted for semitauonic decays of excited D⇤ mesons. However, these predominantly
decay electromagnetically or strongly and the branching fractions of weak decays are suppressed [56, 57]. Furthermore,
one could in principle access the tauonic tensor operator by measuring D(s) ! ⌧⌫� (see e.g. Ref. [40] for the equivalent
pion and kaon decays).

– 5 –
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due to its manifest SU(2)L gauge invariance, this framework allows to establish correlations with
kaon and tau physics.

The next four sections investigate, in steps, charged-current transitions. Namely, starting from
the effective field theory setup in Section 2, we study the set of constraints from charmed meson
decays in Section 3, the production of monoleptons at high-pT LHC in Section 4 and, finally, com-
pare the two in Section 5. The analysis is then repeated for neutral-current transitions in Section 6.
Complementary constraints implied by SU(2)L gauge symmetry are derived in Section 7. We
conclude in Section 8.

2 Theoretical framework: c ! diē↵⌫�

2.1 The high-energy effective theory
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– 3 –

• The full list of 4F operators

• W vertex correction

(*) Warsaw basis

due to its manifest SU(2)L gauge invariance, this framework allows to establish correlations with
kaon and tau physics.

The next four sections investigate, in steps, charged-current transitions. Namely, starting from
the effective field theory setup in Section 2, we study the set of constraints from charmed meson
decays in Section 3, the production of monoleptons at high-pT LHC in Section 4 and, finally, com-
pare the two in Section 5. The analysis is then repeated for neutral-current transitions in Section 6.
Complementary constraints implied by SU(2)L gauge symmetry are derived in Section 7. We
conclude in Section 8.

2 Theoretical framework: c ! diē↵⌫�
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Thus, the operators in Eqs. (2.2) and (2.3) capture all leading effects in the SMEFT in semilep-
tonic charm transitions. Unless stated otherwise, throughout this paper we work in the up-basis for
the SU(2)L multiplets, where

q
i
L =

 
u
i
L

Vij d
j
L

!
, l

↵
L =

 
⌫
↵
L

e
↵
L

!
, (2.4)

with V the CKM matrix, and use i, j = 1, 2, 3 and ↵,� = 1, 2, 3 to label quark and lepton flavor
indices, respectively. We also use ` to denote the light leptons e and µ, but not ⌧ . The matching of
the SMEFT to the low-energy effective theory is reported next, while we postpone the discussion
of SU(2)L relations to Section 7.

2.2 The low-energy effective theory

The low-energy effective Lagrangian involving c ! d
i
ē
↵
⌫
� transitions can be written as

LCC = �
4GF
p
2
Vci

h�
1 + ✏

↵�i
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�
O

↵�i
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+ ✏
↵�i
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O
↵�i
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+ ✏
↵�i
SL

O
↵�i
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+ ✏
↵�i
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O
↵�i
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+ ✏
↵�i
T O
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T

i
+ h.c.,

(2.5)

where the effective operators read
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�
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µ⌫
d
i
L) .

(2.6)

Note that mixed chirality tensor operators vanish by Lorentz invariance. The extraction of the CKM
matrix in the SMEFT is a delicate exercise [52]. For our purposes here, Vcd and Vcs can be safely
obtained by exploiting unitarity in the Wolfenstein parametrization,

Vcd = ��c +O(�5
c),

Vcs = 1� �
2
c/2 +O(�4

c),
(2.7)

where �c is the sine of the Cabibbo angle. We assume that any contribution of NP to the inputs of
these unitarity relations is small compared to the precision achieved with charm weak transitions.
For instance, �c obtained from kaon decays receives strong constraints from the unitarity of the first
row of the CKM matrix (see e.g. Ref. [40]). Similarly, we neglect the effects of NP modifications
to GF as determined from muon decays.

The tree-level matching conditions between the SMEFT in Eq. (2.1) and the low-energy La-
grangian in Eq. (2.5) are
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Matching

• SMEFT 4F operators match to VL, SR, SL, T but not to VR

• VL and VR receive chirality-preserving W vertex corrections
• Effects from chirality-flipping vertex corrections are beyond dim-6
• SMEFT effects in leptonic W couplings, GF, and CKM determination neglected

• RGEs allow to connect low and high pT 
• RGE effects sizeable for scalar and tensor operators
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where v ⇡ 246 GeV is the SM Higgs vacuum expectation value and the Wilson coefficients (WCs)
scale as Ck / v
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/⇤2, with ⇤ being the scale of NP. We employ the Warsaw basis [50] for operators

of canonical dimension six, which is particularly suited for flavor physics as covariant derivatives
and field strengths are reduced in favor of fermionic currents using the equations of motion. The
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⌫ ], ⌧ I the Pauli matrices, ✏pr the Levi-Civita symbol and {p, r} being SU(2)L
indices.1 The left-handed quark and lepton doublets are denoted by qL and lL, respectively, while
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the W couplings to quarks read
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where � is the Higgs field and Dµ its covariant derivative. We neglect the chirality-flipping W

vertices of the type  ̄�µ⌫ �Fµ⌫ . Their effects are subleading relative to the operators in Eq. (2.3)
at low-energies, since they are charm mass suppressed, and to the operators in Eq. (2.2) at high-pT ,
due to their different high-energy behavior discussed in Section 4.1. We also neglect all modifica-
tions to the leptonic W vertices, since they are better probed in purely leptonic transitions.

1The SM extended by a light right-handed neutrino (⌫R) potentially accessible in charm decays would require sup-
plementing the SMEFT with a new set of operators such as (l̄L⌫R)(ūRqL). For the full list see Eq. (2.1) in Ref. [51].
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Caveats beyond 
this setup will be 
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where a sum over j is implicitly assumed. Interestingly, the low-energy operator O↵�i
VR

is gener-
ated in the SMEFT from an operator that modifies a chirality preserving W vertex but not from a
new four-fermion interaction, unlike other operators in Eq. (2.6). On the contrary, O↵�i

VL
receives

contributions from both a modified W vertex and a new four-fermion interaction, which cannot be
disentangled at low energies.

The relations in Eq. (2.8) hold at the matching scale µ = mW . The renormalization group
equations (RGE) induced by QCD and EW (QED) radiative effects allow one to robustly correlate
low- and high-pT data [53, 54]. In particular, the RGE running from µ = 1 TeV down to µ = 2 GeV
yields sizable effects in scalar and tensor operators [55],

✏SL(2GeV) ⇡ 2.1 ✏SL(TeV)� 0.3 ✏T (TeV) , ✏SR(2GeV) ⇡ 2.0 ✏SR(TeV) ,

✏T (2GeV) ⇡ 0.8 ✏T (TeV) .
(2.9)

Here, ✏X(TeV) refers to the corresponding combination of SMEFT WCs in Eq. (2.8). Vector oper-
ators do not run under QCD, and the electromagnetic and EW running remains at the percent level.
Similarly, other RGE-induced contributions, including the mixing with other SMEFT operators, do
not receive large QCD enhancements and remain at the percent level. All these effects are below
the level of precision of our studies, so we neglect them in the following.

3 Decays of charmed mesons

Leptonic and semileptonic decays D(s) ! ē
↵
⌫ and D ! ⇡(K)¯̀⌫ follow from the Lagrangian

in Eq. (2.5). This captures the leading effects of any possible short-distance contribution to c !

d
i
ē
↵
⌫
� flavor transitions, with the SM being a particular limit, ✏↵�iX,SM = 0 for all X . Hadronic ma-

trix elements of the corresponding operators are constrained by Lorentz symmetry and invariance of
QCD under parity. As a result, pure leptonic decays are sensitive only to axial (✏↵�iA = ✏

↵�i
VR

� ✏
↵�i
VL

)
and pseudoscalar (✏↵�iP = ✏

↵�i
SR

� ✏
↵�i
SL

) combinations of WCs. On the other hand, the semileptonic
decays are sensitive to vectorial (✏↵�iV = ✏

↵�i
VR

+ ✏
↵�i
VL

) and scalar (✏↵�iS = ✏
↵�i
SR

+ ✏
↵�i
SL

) combinations
of WCs, and to the tensor WC (✏↵�iT ).

The largest available phase space that can be achieved for the semileptonic decays is given
by mD+ � m⇡0 ' 1.735 GeV. Note that this is smaller than the ⌧ lepton mass, which makes the
semitauonic D-meson decays kinematically forbidden. A similar conclusion follows for the decays
of charmed baryons. In other words, the tauonic vector, scalar and tensor operators (O⌧�

V,S,T ) are
not directly accessible and, as we will see below, high-pT tails provide a unique probe of these
operators. On the other hand, pure tauonic decays of D(s) are allowed.2

In the following, we derive bounds on the WCs of the operators in Eq. (2.6) from D(s)-meson
decays. First, we restrict ourselves to the lepton-flavor diagonal case (✏↵iX ⌘ ✏

↵↵i
X ), which interferes

with the SM and leads to the strongest bounds. The rate of the leptonic D decays is

BR(D+
! ē

↵
⌫
↵) = ⌧D+

mD+m
2
↵f

2
DG

2
F |Vcd|

2
�
4
↵

8⇡

����1� ✏
↵d
A +

m
2
D

m↵(mc +mu)
✏
↵d
P

����
2

, (3.1)

2The phase-space restriction is lifted for semitauonic decays of excited D⇤ mesons. However, these predominantly
decay electromagnetically or strongly and the branching fractions of weak decays are suppressed [56, 57]. Furthermore,
one could in principle access the tauonic tensor operator by measuring D(s) ! ⌧⌫� (see e.g. Ref. [40] for the equivalent
pion and kaon decays).
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Thus, the operators in Eqs. (2.2) and (2.3) capture all leading effects in the SMEFT in semilep-
tonic charm transitions. Unless stated otherwise, throughout this paper we work in the up-basis for
the SU(2)L multiplets, where

q
i
L =

 
u
i
L

Vij d
j
L

!
, l

↵
L =

 
⌫
↵
L

e
↵
L

!
, (2.4)

with V the CKM matrix, and use i, j = 1, 2, 3 and ↵,� = 1, 2, 3 to label quark and lepton flavor
indices, respectively. We also use ` to denote the light leptons e and µ, but not ⌧ . The matching of
the SMEFT to the low-energy effective theory is reported next, while we postpone the discussion
of SU(2)L relations to Section 7.

2.2 The low-energy effective theory

The low-energy effective Lagrangian involving c ! d
i
ē
↵
⌫
� transitions can be written as

LCC = �
4GF
p
2
Vci

h�
1 + ✏

↵�i
VL

�
O

↵�i
VL

+ ✏
↵�i
VR

O
↵�i
VR

+ ✏
↵�i
SL

O
↵�i
SL

+ ✏
↵�i
SR

O
↵�i
SR

+ ✏
↵�i
T O

↵�i
T

i
+ h.c.,

(2.5)

where the effective operators read

O
↵�i
VL

= (ē↵L�µ⌫
�
L)(c̄L�

µ
d
i
L) , O

↵�i
VR

= (ē↵L�µ⌫
�
L)(c̄R�

µ
d
i
R) ,

O
↵�i
SL

= (ē↵R ⌫
�
L)(c̄R d

i
L) , O

↵�i
SR

= (ē↵R ⌫
�
L)(c̄L d

i
R) ,

O
↵�i
T = (ē↵R�µ⌫⌫

�
L)(c̄R�

µ⌫
d
i
L) .

(2.6)

Note that mixed chirality tensor operators vanish by Lorentz invariance. The extraction of the CKM
matrix in the SMEFT is a delicate exercise [52]. For our purposes here, Vcd and Vcs can be safely
obtained by exploiting unitarity in the Wolfenstein parametrization,

Vcd = ��c +O(�5
c),

Vcs = 1� �
2
c/2 +O(�4

c),
(2.7)

where �c is the sine of the Cabibbo angle. We assume that any contribution of NP to the inputs of
these unitarity relations is small compared to the precision achieved with charm weak transitions.
For instance, �c obtained from kaon decays receives strong constraints from the unitarity of the first
row of the CKM matrix (see e.g. Ref. [40]). Similarly, we neglect the effects of NP modifications
to GF as determined from muon decays.

The tree-level matching conditions between the SMEFT in Eq. (2.1) and the low-energy La-
grangian in Eq. (2.5) are

✏
↵�i
VL

= �
Vji

Vci
[C(3)

lq ]↵�2j + �↵�
Vji

Vci
[C(3)

�q ]2j , ✏
↵�i
VR

=
1

2Vci
�↵� [C�ud]2i ,

✏
↵�i
SL

= �
Vji

2Vci
[C(1)

lequ]
⇤
�↵j2 , ✏

↵�i
SR

= �
1

2Vci
[Cledq]

⇤
�↵i2 ,

✏
↵�i
T = �

Vji

2Vci
[C(3)

lequ]
⇤
�↵j2 ,

(2.8)
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• Leptonic decays:
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ē
↵
⌫
� transitions can be written as

LCC = �
4GF
p
2
Vci

h�
1 + ✏

↵�i
VL

�
O

↵�i
VL

+ ✏
↵�i
VR

O
↵�i
VR

+ ✏
↵�i
SL

O
↵�i
SL

+ ✏
↵�i
SR

O
↵�i
SR

+ ✏
↵�i
T O

↵�i
T

i
+ h.c.,

(2.5)

where the effective operators read

O
↵�i
VL
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= (ē↵L�µ⌫
�
L)(c̄R�

µ
d
i
R) ,

O
↵�i
SL

= (ē↵R ⌫
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where �c is the sine of the Cabibbo angle. We assume that any contribution of NP to the inputs of
these unitarity relations is small compared to the precision achieved with charm weak transitions.
For instance, �c obtained from kaon decays receives strong constraints from the unitarity of the first
row of the CKM matrix (see e.g. Ref. [40]). Similarly, we neglect the effects of NP modifications
to GF as determined from muon decays.
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• Leptonic decays:
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where a sum over j is implicitly assumed. Interestingly, the low-energy operator O↵�i
VR

is gener-
ated in the SMEFT from an operator that modifies a chirality preserving W vertex but not from a
new four-fermion interaction, unlike other operators in Eq. (2.6). On the contrary, O↵�i

VL
receives

contributions from both a modified W vertex and a new four-fermion interaction, which cannot be
disentangled at low energies.

The relations in Eq. (2.8) hold at the matching scale µ = mW . The renormalization group
equations (RGE) induced by QCD and EW (QED) radiative effects allow one to robustly correlate
low- and high-pT data [53, 54]. In particular, the RGE running from µ = 1 TeV down to µ = 2 GeV
yields sizable effects in scalar and tensor operators [55],

✏SL(2GeV) ⇡ 2.1 ✏SL(TeV)� 0.3 ✏T (TeV) , ✏SR(2GeV) ⇡ 2.0 ✏SR(TeV) ,

✏T (2GeV) ⇡ 0.8 ✏T (TeV) .
(2.9)

Here, ✏X(TeV) refers to the corresponding combination of SMEFT WCs in Eq. (2.8). Vector oper-
ators do not run under QCD, and the electromagnetic and EW running remains at the percent level.
Similarly, other RGE-induced contributions, including the mixing with other SMEFT operators, do
not receive large QCD enhancements and remain at the percent level. All these effects are below
the level of precision of our studies, so we neglect them in the following.

3 Decays of charmed mesons

Leptonic and semileptonic decays D(s) ! ē
↵
⌫ and D ! ⇡(K)¯̀⌫ follow from the Lagrangian

in Eq. (2.5). This captures the leading effects of any possible short-distance contribution to c !

d
i
ē
↵
⌫
� flavor transitions, with the SM being a particular limit, ✏↵�iX,SM = 0 for all X . Hadronic ma-

trix elements of the corresponding operators are constrained by Lorentz symmetry and invariance of
QCD under parity. As a result, pure leptonic decays are sensitive only to axial (✏↵�iA = ✏

↵�i
VR

� ✏
↵�i
VL

)
and pseudoscalar (✏↵�iP = ✏

↵�i
SR

� ✏
↵�i
SL

) combinations of WCs. On the other hand, the semileptonic
decays are sensitive to vectorial (✏↵�iV = ✏

↵�i
VR

+ ✏
↵�i
VL

) and scalar (✏↵�iS = ✏
↵�i
SR

+ ✏
↵�i
SL

) combinations
of WCs, and to the tensor WC (✏↵�iT ).

The largest available phase space that can be achieved for the semileptonic decays is given
by mD+ � m⇡0 ' 1.735 GeV. Note that this is smaller than the ⌧ lepton mass, which makes the
semitauonic D-meson decays kinematically forbidden. A similar conclusion follows for the decays
of charmed baryons. In other words, the tauonic vector, scalar and tensor operators (O⌧�

V,S,T ) are
not directly accessible and, as we will see below, high-pT tails provide a unique probe of these
operators. On the other hand, pure tauonic decays of D(s) are allowed.2

In the following, we derive bounds on the WCs of the operators in Eq. (2.6) from D(s)-meson
decays. First, we restrict ourselves to the lepton-flavor diagonal case (✏↵iX ⌘ ✏

↵↵i
X ), which interferes

with the SM and leads to the strongest bounds. The rate of the leptonic D decays is

BR(D+
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↵
⌫
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mD+m
2
↵f

2
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↵d
A +

m
2
D

m↵(mc +mu)
✏
↵d
P

����
2

, (3.1)

2The phase-space restriction is lifted for semitauonic decays of excited D⇤ mesons. However, these predominantly
decay electromagnetically or strongly and the branching fractions of weak decays are suppressed [56, 57]. Furthermore,
one could in principle access the tauonic tensor operator by measuring D(s) ! ⌧⌫� (see e.g. Ref. [40] for the equivalent
pion and kaon decays).
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Thus, the operators in Eqs. (2.2) and (2.3) capture all leading effects in the SMEFT in semilep-
tonic charm transitions. Unless stated otherwise, throughout this paper we work in the up-basis for
the SU(2)L multiplets, where

q
i
L =

 
u
i
L

Vij d
j
L

!
, l

↵
L =

 
⌫
↵
L

e
↵
L

!
, (2.4)

with V the CKM matrix, and use i, j = 1, 2, 3 and ↵,� = 1, 2, 3 to label quark and lepton flavor
indices, respectively. We also use ` to denote the light leptons e and µ, but not ⌧ . The matching of
the SMEFT to the low-energy effective theory is reported next, while we postpone the discussion
of SU(2)L relations to Section 7.

2.2 The low-energy effective theory

The low-energy effective Lagrangian involving c ! d
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� transitions can be written as
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(2.5)

where the effective operators read
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= (ē↵L�µ⌫
�
L)(c̄R�

µ
d
i
R) ,

O
↵�i
SL

= (ē↵R ⌫
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(2.6)

Note that mixed chirality tensor operators vanish by Lorentz invariance. The extraction of the CKM
matrix in the SMEFT is a delicate exercise [52]. For our purposes here, Vcd and Vcs can be safely
obtained by exploiting unitarity in the Wolfenstein parametrization,

Vcd = ��c +O(�5
c),

Vcs = 1� �
2
c/2 +O(�4

c),
(2.7)

where �c is the sine of the Cabibbo angle. We assume that any contribution of NP to the inputs of
these unitarity relations is small compared to the precision achieved with charm weak transitions.
For instance, �c obtained from kaon decays receives strong constraints from the unitarity of the first
row of the CKM matrix (see e.g. Ref. [40]). Similarly, we neglect the effects of NP modifications
to GF as determined from muon decays.

The tree-level matching conditions between the SMEFT in Eq. (2.1) and the low-energy La-
grangian in Eq. (2.5) are
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where a sum over j is implicitly assumed. Interestingly, the low-energy operator O↵�i
VR

is gener-
ated in the SMEFT from an operator that modifies a chirality preserving W vertex but not from a
new four-fermion interaction, unlike other operators in Eq. (2.6). On the contrary, O↵�i

VL
receives

contributions from both a modified W vertex and a new four-fermion interaction, which cannot be
disentangled at low energies.

The relations in Eq. (2.8) hold at the matching scale µ = mW . The renormalization group
equations (RGE) induced by QCD and EW (QED) radiative effects allow one to robustly correlate
low- and high-pT data [53, 54]. In particular, the RGE running from µ = 1 TeV down to µ = 2 GeV
yields sizable effects in scalar and tensor operators [55],

✏SL(2GeV) ⇡ 2.1 ✏SL(TeV)� 0.3 ✏T (TeV) , ✏SR(2GeV) ⇡ 2.0 ✏SR(TeV) ,

✏T (2GeV) ⇡ 0.8 ✏T (TeV) .
(2.9)

Here, ✏X(TeV) refers to the corresponding combination of SMEFT WCs in Eq. (2.8). Vector oper-
ators do not run under QCD, and the electromagnetic and EW running remains at the percent level.
Similarly, other RGE-induced contributions, including the mixing with other SMEFT operators, do
not receive large QCD enhancements and remain at the percent level. All these effects are below
the level of precision of our studies, so we neglect them in the following.

3 Decays of charmed mesons

Leptonic and semileptonic decays D(s) ! ē
↵
⌫ and D ! ⇡(K)¯̀⌫ follow from the Lagrangian

in Eq. (2.5). This captures the leading effects of any possible short-distance contribution to c !
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� flavor transitions, with the SM being a particular limit, ✏↵�iX,SM = 0 for all X . Hadronic ma-
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QCD under parity. As a result, pure leptonic decays are sensitive only to axial (✏↵�iA = ✏
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) combinations
of WCs, and to the tensor WC (✏↵�iT ).

The largest available phase space that can be achieved for the semileptonic decays is given
by mD+ � m⇡0 ' 1.735 GeV. Note that this is smaller than the ⌧ lepton mass, which makes the
semitauonic D-meson decays kinematically forbidden. A similar conclusion follows for the decays
of charmed baryons. In other words, the tauonic vector, scalar and tensor operators (O⌧�

V,S,T ) are
not directly accessible and, as we will see below, high-pT tails provide a unique probe of these
operators. On the other hand, pure tauonic decays of D(s) are allowed.2

In the following, we derive bounds on the WCs of the operators in Eq. (2.6) from D(s)-meson
decays. First, we restrict ourselves to the lepton-flavor diagonal case (✏↵iX ⌘ ✏

↵↵i
X ), which interferes

with the SM and leads to the strongest bounds. The rate of the leptonic D decays is
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2The phase-space restriction is lifted for semitauonic decays of excited D⇤ mesons. However, these predominantly
decay electromagnetically or strongly and the branching fractions of weak decays are suppressed [56, 57]. Furthermore,
one could in principle access the tauonic tensor operator by measuring D(s) ! ⌧⌫� (see e.g. Ref. [40] for the equivalent
pion and kaon decays).
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ē
↵
⌫
� flavor transitions, with the SM being a particular limit, ✏↵�iX,SM = 0 for all X . Hadronic ma-

trix elements of the corresponding operators are constrained by Lorentz symmetry and invariance of
QCD under parity. As a result, pure leptonic decays are sensitive only to axial (✏↵�iA = ✏

↵�i
VR

� ✏
↵�i
VL

)
and pseudoscalar (✏↵�iP = ✏

↵�i
SR

� ✏
↵�i
SL

) combinations of WCs. On the other hand, the semileptonic
decays are sensitive to vectorial (✏↵�iV = ✏

↵�i
VR

+ ✏
↵�i
VL

) and scalar (✏↵�iS = ✏
↵�i
SR

+ ✏
↵�i
SL

) combinations
of WCs, and to the tensor WC (✏↵�iT ).

The largest available phase space that can be achieved for the semileptonic decays is given
by mD+ � m⇡0 ' 1.735 GeV. Note that this is smaller than the ⌧ lepton mass, which makes the
semitauonic D-meson decays kinematically forbidden. A similar conclusion follows for the decays
of charmed baryons. In other words, the tauonic vector, scalar and tensor operators (O⌧�

V,S,T ) are
not directly accessible and, as we will see below, high-pT tails provide a unique probe of these
operators. On the other hand, pure tauonic decays of D(s) are allowed.2

In the following, we derive bounds on the WCs of the operators in Eq. (2.6) from D(s)-meson
decays. First, we restrict ourselves to the lepton-flavor diagonal case (✏↵iX ⌘ ✏

↵↵i
X ), which interferes

with the SM and leads to the strongest bounds. The rate of the leptonic D decays is

BR(D+
! ē
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↵
⌫
↵) = ⌧D+

mD+m
2
↵f

2
DG

2
F |Vcd|

2
�
4
↵

8⇡

����1� ✏
↵d
A +

m
2
D

m↵(mc +mu)
✏
↵d
P

����
2

, (3.1)

2The phase-space restriction is lifted for semitauonic decays of excited D⇤ mesons. However, these predominantly
decay electromagnetically or strongly and the branching fractions of weak decays are suppressed [56, 57]. Furthermore,
one could in principle access the tauonic tensor operator by measuring D(s) ! ⌧⌫� (see e.g. Ref. [40] for the equivalent
pion and kaon decays).

– 5 –

Thus, the operators in Eqs. (2.2) and (2.3) capture all leading effects in the SMEFT in semilep-
tonic charm transitions. Unless stated otherwise, throughout this paper we work in the up-basis for
the SU(2)L multiplets, where
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!
, (2.4)

with V the CKM matrix, and use i, j = 1, 2, 3 and ↵,� = 1, 2, 3 to label quark and lepton flavor
indices, respectively. We also use ` to denote the light leptons e and µ, but not ⌧ . The matching of
the SMEFT to the low-energy effective theory is reported next, while we postpone the discussion
of SU(2)L relations to Section 7.
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= (ē↵R ⌫
�
L)(c̄L d

i
R) ,

O
↵�i
T = (ē↵R�µ⌫⌫
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Note that mixed chirality tensor operators vanish by Lorentz invariance. The extraction of the CKM
matrix in the SMEFT is a delicate exercise [52]. For our purposes here, Vcd and Vcs can be safely
obtained by exploiting unitarity in the Wolfenstein parametrization,

Vcd = ��c +O(�5
c),

Vcs = 1� �
2
c/2 +O(�4

c),
(2.7)

where �c is the sine of the Cabibbo angle. We assume that any contribution of NP to the inputs of
these unitarity relations is small compared to the precision achieved with charm weak transitions.
For instance, �c obtained from kaon decays receives strong constraints from the unitarity of the first
row of the CKM matrix (see e.g. Ref. [40]). Similarly, we neglect the effects of NP modifications
to GF as determined from muon decays.

The tree-level matching conditions between the SMEFT in Eq. (2.1) and the low-energy La-
grangian in Eq. (2.5) are
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• Leptonic decays:

• Leptonic decays sensitive only to axial vector and pseudo scalar operators

⟨0 | q̄σμνq |D⟩ = 0 , ⟨0 | q̄γμq |D⟩ = 0 , ⟨0 | q̄q |D⟩ = 0

JP(D(s)) = 0−• Pseudoscalar meson

• QCD invariant under Lorentz symmetry and Parity =>

where a sum over j is implicitly assumed. Interestingly, the low-energy operator O↵�i
VR

is gener-
ated in the SMEFT from an operator that modifies a chirality preserving W vertex but not from a
new four-fermion interaction, unlike other operators in Eq. (2.6). On the contrary, O↵�i

VL
receives

contributions from both a modified W vertex and a new four-fermion interaction, which cannot be
disentangled at low energies.

The relations in Eq. (2.8) hold at the matching scale µ = mW . The renormalization group
equations (RGE) induced by QCD and EW (QED) radiative effects allow one to robustly correlate
low- and high-pT data [53, 54]. In particular, the RGE running from µ = 1 TeV down to µ = 2 GeV
yields sizable effects in scalar and tensor operators [55],

✏SL(2GeV) ⇡ 2.1 ✏SL(TeV)� 0.3 ✏T (TeV) , ✏SR(2GeV) ⇡ 2.0 ✏SR(TeV) ,

✏T (2GeV) ⇡ 0.8 ✏T (TeV) .
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Here, ✏X(TeV) refers to the corresponding combination of SMEFT WCs in Eq. (2.8). Vector oper-
ators do not run under QCD, and the electromagnetic and EW running remains at the percent level.
Similarly, other RGE-induced contributions, including the mixing with other SMEFT operators, do
not receive large QCD enhancements and remain at the percent level. All these effects are below
the level of precision of our studies, so we neglect them in the following.
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The largest available phase space that can be achieved for the semileptonic decays is given
by mD+ � m⇡0 ' 1.735 GeV. Note that this is smaller than the ⌧ lepton mass, which makes the
semitauonic D-meson decays kinematically forbidden. A similar conclusion follows for the decays
of charmed baryons. In other words, the tauonic vector, scalar and tensor operators (O⌧�

V,S,T ) are
not directly accessible and, as we will see below, high-pT tails provide a unique probe of these
operators. On the other hand, pure tauonic decays of D(s) are allowed.2

In the following, we derive bounds on the WCs of the operators in Eq. (2.6) from D(s)-meson
decays. First, we restrict ourselves to the lepton-flavor diagonal case (✏↵iX ⌘ ✏

↵↵i
X ), which interferes

with the SM and leads to the strongest bounds. The rate of the leptonic D decays is
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2The phase-space restriction is lifted for semitauonic decays of excited D⇤ mesons. However, these predominantly
decay electromagnetically or strongly and the branching fractions of weak decays are suppressed [56, 57]. Furthermore,
one could in principle access the tauonic tensor operator by measuring D(s) ! ⌧⌫� (see e.g. Ref. [40] for the equivalent
pion and kaon decays).
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P ↵ BRSM xS xT yS yT

⇡
� e 2.65(18) · 10�3 1.12(10) · 10�3 1.21(15) · 10�3 2.74(22) 1.14(21)

µ 2.61(17) · 10�3 0.228(19) 0.23(3) 2.73(18) 1.15(22)

K
� e 3.48(26) · 10�2 1.29(8) · 10�3 1.18(11) · 10�3 2.00(11) 0.69(8)
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fDs = 249.9(5) MeV, obtained from an average of lattice QCD simulations with two degenerate
light quarks and dynamical strange and charm quarks in pure QCD [6, 10, 11]. An important fea-
ture of the leptonic decays is that the axial contribution, such as the one predicted in the SM, is
suppressed by m
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↵ due to the conservation of angular momentum. On the contrary, pseudoscalar

NP contributions are unsuppressed, and they receive strong constraints from searches and measure-
ments of these decays.

In the case of semileptonic D decays, the expressions for total rates are more involved as
they contain kinematic integrals with form factors, which are functions of the invariant mass of the
dilepton pair. The decay rate of the neutral D meson can be parametrized as a function of the WCs,
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where xS,T and yS,T describe the interference between NP and SM and the quadratic NP effects,
respectively, and Pi = ⇡, K for i = d, s. The numerical values of these parameters can be
obtained using lattice QCD calculations of the form factors and performing the kinematic integrals.
In Table 1 we show the values of these parameters for the D

0
! ⇡

�(K�)`+⌫ decays using the
lattice results from [15, 16]. The errors in the parametrization employed in these references have
been propagated consistently.

The limits on the WCs are determined by comparing these predictions to the PDG aver-
ages [58] of the experimental data on the branching fractions [59–72]. The results are shown
in Table 2 where one WC is fitted at a time setting the rest to zero. The sensitivity to vectorial cur-
rents is at the few percent level, reflecting the precision achieved in the experimental measurements
and in the calculation of the respective semileptonic form factors. Bounds on axial currents depend
strongly on the lepton flavor due to the chiral suppression of their contributions to the leptonic-
decay rates. Thus, the electronic axial operators are poorly constrained while muonic ones are
constrained down to a few percent. The difference between cs and cd transitions in the bounds on
the tauonic axial contributions is a result of the different experimental precision achieved in the
measurement of the corresponding decays.

Direct bounds on scalar and tensor operators stemming from semileptonic decays are rather
weak, with almost O(1) contributions still allowed by the data. As shown in Table 1, this is due
to the fact that the interference of these operators with the SM is chirally suppressed (see e.g.
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where a sum over j is implicitly assumed. Interestingly, the low-energy operator O↵�i
VR

is gener-
ated in the SMEFT from an operator that modifies a chirality preserving W vertex but not from a
new four-fermion interaction, unlike other operators in Eq. (2.6). On the contrary, O↵�i

VL
receives

contributions from both a modified W vertex and a new four-fermion interaction, which cannot be
disentangled at low energies.

The relations in Eq. (2.8) hold at the matching scale µ = mW . The renormalization group
equations (RGE) induced by QCD and EW (QED) radiative effects allow one to robustly correlate
low- and high-pT data [53, 54]. In particular, the RGE running from µ = 1 TeV down to µ = 2 GeV
yields sizable effects in scalar and tensor operators [55],

✏SL(2GeV) ⇡ 2.1 ✏SL(TeV)� 0.3 ✏T (TeV) , ✏SR(2GeV) ⇡ 2.0 ✏SR(TeV) ,

✏T (2GeV) ⇡ 0.8 ✏T (TeV) .
(2.9)

Here, ✏X(TeV) refers to the corresponding combination of SMEFT WCs in Eq. (2.8). Vector oper-
ators do not run under QCD, and the electromagnetic and EW running remains at the percent level.
Similarly, other RGE-induced contributions, including the mixing with other SMEFT operators, do
not receive large QCD enhancements and remain at the percent level. All these effects are below
the level of precision of our studies, so we neglect them in the following.

3 Decays of charmed mesons

Leptonic and semileptonic decays D(s) ! ē
↵
⌫ and D ! ⇡(K)¯̀⌫ follow from the Lagrangian

in Eq. (2.5). This captures the leading effects of any possible short-distance contribution to c !

d
i
ē
↵
⌫
� flavor transitions, with the SM being a particular limit, ✏↵�iX,SM = 0 for all X . Hadronic ma-

trix elements of the corresponding operators are constrained by Lorentz symmetry and invariance of
QCD under parity. As a result, pure leptonic decays are sensitive only to axial (✏↵�iA = ✏

↵�i
VR

� ✏
↵�i
VL

)
and pseudoscalar (✏↵�iP = ✏

↵�i
SR

� ✏
↵�i
SL

) combinations of WCs. On the other hand, the semileptonic
decays are sensitive to vectorial (✏↵�iV = ✏

↵�i
VR

+ ✏
↵�i
VL

) and scalar (✏↵�iS = ✏
↵�i
SR

+ ✏
↵�i
SL

) combinations
of WCs, and to the tensor WC (✏↵�iT ).

The largest available phase space that can be achieved for the semileptonic decays is given
by mD+ � m⇡0 ' 1.735 GeV. Note that this is smaller than the ⌧ lepton mass, which makes the
semitauonic D-meson decays kinematically forbidden. A similar conclusion follows for the decays
of charmed baryons. In other words, the tauonic vector, scalar and tensor operators (O⌧�

V,S,T ) are
not directly accessible and, as we will see below, high-pT tails provide a unique probe of these
operators. On the other hand, pure tauonic decays of D(s) are allowed.2

In the following, we derive bounds on the WCs of the operators in Eq. (2.6) from D(s)-meson
decays. First, we restrict ourselves to the lepton-flavor diagonal case (✏↵iX ⌘ ✏

↵↵i
X ), which interferes

with the SM and leads to the strongest bounds. The rate of the leptonic D decays is

BR(D+
! ē

↵
⌫
↵) = ⌧D+

mD+m
2
↵f

2
DG

2
F |Vcd|

2
�
4
↵

8⇡

����1� ✏
↵d
A +

m
2
D

m↵(mc +mu)
✏
↵d
P

����
2

, (3.1)

2The phase-space restriction is lifted for semitauonic decays of excited D⇤ mesons. However, these predominantly
decay electromagnetically or strongly and the branching fractions of weak decays are suppressed [56, 57]. Furthermore,
one could in principle access the tauonic tensor operator by measuring D(s) ! ⌧⌫� (see e.g. Ref. [40] for the equivalent
pion and kaon decays).
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Thus, the operators in Eqs. (2.2) and (2.3) capture all leading effects in the SMEFT in semilep-
tonic charm transitions. Unless stated otherwise, throughout this paper we work in the up-basis for
the SU(2)L multiplets, where

q
i
L =

 
u
i
L

Vij d
j
L

!
, l

↵
L =

 
⌫
↵
L

e
↵
L

!
, (2.4)

with V the CKM matrix, and use i, j = 1, 2, 3 and ↵,� = 1, 2, 3 to label quark and lepton flavor
indices, respectively. We also use ` to denote the light leptons e and µ, but not ⌧ . The matching of
the SMEFT to the low-energy effective theory is reported next, while we postpone the discussion
of SU(2)L relations to Section 7.

2.2 The low-energy effective theory

The low-energy effective Lagrangian involving c ! d
i
ē
↵
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� transitions can be written as

LCC = �
4GF
p
2
Vci

h�
1 + ✏

↵�i
VL

�
O

↵�i
VL

+ ✏
↵�i
VR

O
↵�i
VR

+ ✏
↵�i
SL

O
↵�i
SL

+ ✏
↵�i
SR

O
↵�i
SR

+ ✏
↵�i
T O

↵�i
T

i
+ h.c.,

(2.5)

where the effective operators read
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d
i
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(2.6)

Note that mixed chirality tensor operators vanish by Lorentz invariance. The extraction of the CKM
matrix in the SMEFT is a delicate exercise [52]. For our purposes here, Vcd and Vcs can be safely
obtained by exploiting unitarity in the Wolfenstein parametrization,

Vcd = ��c +O(�5
c),

Vcs = 1� �
2
c/2 +O(�4

c),
(2.7)

where �c is the sine of the Cabibbo angle. We assume that any contribution of NP to the inputs of
these unitarity relations is small compared to the precision achieved with charm weak transitions.
For instance, �c obtained from kaon decays receives strong constraints from the unitarity of the first
row of the CKM matrix (see e.g. Ref. [40]). Similarly, we neglect the effects of NP modifications
to GF as determined from muon decays.

The tree-level matching conditions between the SMEFT in Eq. (2.1) and the low-energy La-
grangian in Eq. (2.5) are
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�↵j2 ,

(2.8)
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• Leptonic decays:

• Leptonic decays sensitive only to axial vector and pseudo scalar operators

⟨0 | q̄σμνq |D⟩ = 0 , ⟨0 | q̄γμq |D⟩ = 0 , ⟨0 | q̄q |D⟩ = 0

JP(D(s)) = 0−• Pseudoscalar meson

• QCD invariant under Lorentz symmetry and Parity =>
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by mD+ � m⇡0 ' 1.735 GeV. Note that this is smaller than the ⌧ lepton mass, which makes the
semitauonic D-meson decays kinematically forbidden. A similar conclusion follows for the decays
of charmed baryons. In other words, the tauonic vector, scalar and tensor operators (O⌧�

V,S,T ) are
not directly accessible and, as we will see below, high-pT tails provide a unique probe of these
operators. On the other hand, pure tauonic decays of D(s) are allowed.2

In the following, we derive bounds on the WCs of the operators in Eq. (2.6) from D(s)-meson
decays. First, we restrict ourselves to the lepton-flavor diagonal case (✏↵iX ⌘ ✏
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X ), which interferes

with the SM and leads to the strongest bounds. The rate of the leptonic D decays is
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2The phase-space restriction is lifted for semitauonic decays of excited D⇤ mesons. However, these predominantly
decay electromagnetically or strongly and the branching fractions of weak decays are suppressed [56, 57]. Furthermore,
one could in principle access the tauonic tensor operator by measuring D(s) ! ⌧⌫� (see e.g. Ref. [40] for the equivalent
pion and kaon decays).
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operators. On the other hand, pure tauonic decays of D(s) are allowed.2

In the following, we derive bounds on the WCs of the operators in Eq. (2.6) from D(s)-meson
decays. First, we restrict ourselves to the lepton-flavor diagonal case (✏↵iX ⌘ ✏

↵↵i
X ), which interferes

with the SM and leads to the strongest bounds. The rate of the leptonic D decays is

BR(D+
! ē

↵
⌫
↵) = ⌧D+

mD+m
2
↵f

2
DG

2
F |Vcd|

2
�
4
↵

8⇡

����1� ✏
↵d
A +

m
2
D

m↵(mc +mu)
✏
↵d
P

����
2

, (3.1)

2The phase-space restriction is lifted for semitauonic decays of excited D⇤ mesons. However, these predominantly
decay electromagnetically or strongly and the branching fractions of weak decays are suppressed [56, 57]. Furthermore,
one could in principle access the tauonic tensor operator by measuring D(s) ! ⌧⌫� (see e.g. Ref. [40] for the equivalent
pion and kaon decays).
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P ↵ BRSM xS xT yS yT

⇡
� e 2.65(18) · 10�3 1.12(10) · 10�3 1.21(15) · 10�3 2.74(22) 1.14(21)

µ 2.61(17) · 10�3 0.228(19) 0.23(3) 2.73(18) 1.15(22)

K
� e 3.48(26) · 10�2 1.29(8) · 10�3 1.18(11) · 10�3 2.00(11) 0.69(8)

µ 3.39(25) · 10�2 0.251(16) 0.224(20) 2.00(11) 0.71(8)

Table 1. Coefficients of the parametrization in Eq. (3.2) obtained using lattice QCD results [15, 16] for the
form factors.

where �
2
↵ = 1 �m

2
↵/m

2
D and ⌧D+ (fD+) is the D

+ lifetime (decay constant). This formula with
obvious replacements also describes the leptonic Ds decays. We use fD = 212.0(7) MeV and
fDs = 249.9(5) MeV, obtained from an average of lattice QCD simulations with two degenerate
light quarks and dynamical strange and charm quarks in pure QCD [6, 10, 11]. An important fea-
ture of the leptonic decays is that the axial contribution, such as the one predicted in the SM, is
suppressed by m

2
↵ due to the conservation of angular momentum. On the contrary, pseudoscalar

NP contributions are unsuppressed, and they receive strong constraints from searches and measure-
ments of these decays.

In the case of semileptonic D decays, the expressions for total rates are more involved as
they contain kinematic integrals with form factors, which are functions of the invariant mass of the
dilepton pair. The decay rate of the neutral D meson can be parametrized as a function of the WCs,

BR(D ! Pi
¯̀↵⌫↵)

BRSM
=

��1 + ✏
↵i
V

��2 + 2Re
⇥
(1 + ✏

↵i
V )(xS ✏

↵i⇤
S + xT ✏

↵i⇤
T )

⇤
+ yS |✏

↵i
S |

2 + yT |✏
↵i
T |

2
,

(3.2)
where xS,T and yS,T describe the interference between NP and SM and the quadratic NP effects,
respectively, and Pi = ⇡, K for i = d, s. The numerical values of these parameters can be
obtained using lattice QCD calculations of the form factors and performing the kinematic integrals.
In Table 1 we show the values of these parameters for the D

0
! ⇡

�(K�)`+⌫ decays using the
lattice results from [15, 16]. The errors in the parametrization employed in these references have
been propagated consistently.

The limits on the WCs are determined by comparing these predictions to the PDG aver-
ages [58] of the experimental data on the branching fractions [59–72]. The results are shown
in Table 2 where one WC is fitted at a time setting the rest to zero. The sensitivity to vectorial cur-
rents is at the few percent level, reflecting the precision achieved in the experimental measurements
and in the calculation of the respective semileptonic form factors. Bounds on axial currents depend
strongly on the lepton flavor due to the chiral suppression of their contributions to the leptonic-
decay rates. Thus, the electronic axial operators are poorly constrained while muonic ones are
constrained down to a few percent. The difference between cs and cd transitions in the bounds on
the tauonic axial contributions is a result of the different experimental precision achieved in the
measurement of the corresponding decays.

Direct bounds on scalar and tensor operators stemming from semileptonic decays are rather
weak, with almost O(1) contributions still allowed by the data. As shown in Table 1, this is due
to the fact that the interference of these operators with the SM is chirally suppressed (see e.g.
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must be proportional to pµ
π. Therefore we can write

⟨0|
ˆ
d̄γµ(1 − γ5)u

˜
(0)|π+⟩ = − fπpµ

π , (8.74)

where fπ is a proportionality constant, and the minus sign is a convention
in the definition of fπ. In general fπ will be a function of all the Lorentz
invariant quantities on which the matrix element depends. But again, the
only four-vector on which the matrix element depends is pµ

π, and having only
pµ

π at our disposal the only Lorentz invariant quantity that we can construct
is p2

π. However p2
π = m2

π is a constant and therefore also fπ is a constant. It
is called the pion decay constant, and all our ignorance on the inner structure
of the pion is hidden in it.8 8The definition of fπ in the literature

can sometime differ by a factor of 2 or of√
2 from the one that we have adopted.

It is also instructive to look separately at the contributions of the vector and
axial current in eq. (8.74). The pion is a pseudoscalar, i.e. it has intrinsic par-
ity − 1. Consider first the matrix element of the vector current, ⟨0|d̄γµu|π+⟩.
Under a parity transformation d̄γµu transforms as a true four-vector, but the
matrix element picks an extra minus sign due to the intrinsic parity of the
pion. Therefore, overall, the matrix element of the vector current between a
pion state and the vacuum is a pseudo-four-vector, and conversely the matrix
element of the axial current is a true four-vector. The value of the matrix
element is determined by the strong interaction, which conserves parity. This
means that the parametrization of the matrix element must hold also in the
parity-transformed frame, and therefore a true vector must be equated to a
true vector and a pseudovector to a pseudovector. Since pµ

π is a true four-
vector, and there is no pseudovector at our disposal, in eq. (8.74) the two
separate contributions are

⟨0|
`
d̄γµu

´
(0)|π+⟩ = 0 , ⟨0|

`
d̄γµγ5u

´
(0)|π+⟩ = fπpµ

π , (8.75)

and therefore all the contribution comes from the axial current.
The rest of the computation is straightforward. Plugging eqs. (8.73) and

(8.74) into eq. (8.72) we find

Mfi =
GF fπ cos θC√

2
ū(νl) ̸pπ(1 − γ5)v(l) . (8.76)

We write pπ = pl + pν , where pl and pν are the four-momenta of the lepton
and of the neutrino, respectively. Then

ū(νl) ̸pπ(1 − γ5)v(l) = ū(νl) ̸pν(1 − γ5)v(l) + ū(νl)(1 + γ5) ̸plv(l) (8.77)

and we use fact that ū, v satisfy the Dirac equations (3.114) and (3.101).
Therefore

Mfi = − GF fπ cos θC√
2

ml ū(νl)(1 + γ5)v(l) . (8.78) π+

+ νl l

Fig. 8.3 The decay π+ → l+νl. The
momenta of the particles are de-
noted by dashed lines and the spin
by the large arrows.

Observe that the amplitude vanishes if ml = 0. This can be understood
observing that the charged weak currents depend only on the left-handed
spinors, as in ν̄l,LγµlL. As discussed in Section 4.2.2, in the massless limit a
left-handed operator describes a particle with h = − 1/2 and its antiparticle
with h = +1/2. Therefore the neutrino νl in the final state of the π+ decay
is left-handed, h = − 1/2. Since the pion has spin zero, conservation of mo-
mentum and of angular momentum requires that also the antilepton l+ has
negative helicity h = − 1/2, see Fig. 8.3. However, the antilepton l+ is created
by the left-handed Weyl field that appears in the weak charged current and
therefore, according to the discussion in Section 4.2.2, in the massless limit

A : ēLγμνL , P : ēRνL
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where a sum over j is implicitly assumed. Interestingly, the low-energy operator O↵�i
VR

is gener-
ated in the SMEFT from an operator that modifies a chirality preserving W vertex but not from a
new four-fermion interaction, unlike other operators in Eq. (2.6). On the contrary, O↵�i

VL
receives

contributions from both a modified W vertex and a new four-fermion interaction, which cannot be
disentangled at low energies.

The relations in Eq. (2.8) hold at the matching scale µ = mW . The renormalization group
equations (RGE) induced by QCD and EW (QED) radiative effects allow one to robustly correlate
low- and high-pT data [53, 54]. In particular, the RGE running from µ = 1 TeV down to µ = 2 GeV
yields sizable effects in scalar and tensor operators [55],

✏SL(2GeV) ⇡ 2.1 ✏SL(TeV)� 0.3 ✏T (TeV) , ✏SR(2GeV) ⇡ 2.0 ✏SR(TeV) ,

✏T (2GeV) ⇡ 0.8 ✏T (TeV) .
(2.9)

Here, ✏X(TeV) refers to the corresponding combination of SMEFT WCs in Eq. (2.8). Vector oper-
ators do not run under QCD, and the electromagnetic and EW running remains at the percent level.
Similarly, other RGE-induced contributions, including the mixing with other SMEFT operators, do
not receive large QCD enhancements and remain at the percent level. All these effects are below
the level of precision of our studies, so we neglect them in the following.

3 Decays of charmed mesons

Leptonic and semileptonic decays D(s) ! ē
↵
⌫ and D ! ⇡(K)¯̀⌫ follow from the Lagrangian

in Eq. (2.5). This captures the leading effects of any possible short-distance contribution to c !

d
i
ē
↵
⌫
� flavor transitions, with the SM being a particular limit, ✏↵�iX,SM = 0 for all X . Hadronic ma-

trix elements of the corresponding operators are constrained by Lorentz symmetry and invariance of
QCD under parity. As a result, pure leptonic decays are sensitive only to axial (✏↵�iA = ✏

↵�i
VR

� ✏
↵�i
VL

)
and pseudoscalar (✏↵�iP = ✏

↵�i
SR

� ✏
↵�i
SL

) combinations of WCs. On the other hand, the semileptonic
decays are sensitive to vectorial (✏↵�iV = ✏

↵�i
VR

+ ✏
↵�i
VL

) and scalar (✏↵�iS = ✏
↵�i
SR

+ ✏
↵�i
SL

) combinations
of WCs, and to the tensor WC (✏↵�iT ).

The largest available phase space that can be achieved for the semileptonic decays is given
by mD+ � m⇡0 ' 1.735 GeV. Note that this is smaller than the ⌧ lepton mass, which makes the
semitauonic D-meson decays kinematically forbidden. A similar conclusion follows for the decays
of charmed baryons. In other words, the tauonic vector, scalar and tensor operators (O⌧�

V,S,T ) are
not directly accessible and, as we will see below, high-pT tails provide a unique probe of these
operators. On the other hand, pure tauonic decays of D(s) are allowed.2

In the following, we derive bounds on the WCs of the operators in Eq. (2.6) from D(s)-meson
decays. First, we restrict ourselves to the lepton-flavor diagonal case (✏↵iX ⌘ ✏

↵↵i
X ), which interferes

with the SM and leads to the strongest bounds. The rate of the leptonic D decays is

BR(D+
! ē

↵
⌫
↵) = ⌧D+

mD+m
2
↵f

2
DG

2
F |Vcd|

2
�
4
↵

8⇡

����1� ✏
↵d
A +

m
2
D

m↵(mc +mu)
✏
↵d
P

����
2

, (3.1)

2The phase-space restriction is lifted for semitauonic decays of excited D⇤ mesons. However, these predominantly
decay electromagnetically or strongly and the branching fractions of weak decays are suppressed [56, 57]. Furthermore,
one could in principle access the tauonic tensor operator by measuring D(s) ! ⌧⌫� (see e.g. Ref. [40] for the equivalent
pion and kaon decays).
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Thus, the operators in Eqs. (2.2) and (2.3) capture all leading effects in the SMEFT in semilep-
tonic charm transitions. Unless stated otherwise, throughout this paper we work in the up-basis for
the SU(2)L multiplets, where

q
i
L =

 
u
i
L

Vij d
j
L

!
, l

↵
L =

 
⌫
↵
L

e
↵
L

!
, (2.4)

with V the CKM matrix, and use i, j = 1, 2, 3 and ↵,� = 1, 2, 3 to label quark and lepton flavor
indices, respectively. We also use ` to denote the light leptons e and µ, but not ⌧ . The matching of
the SMEFT to the low-energy effective theory is reported next, while we postpone the discussion
of SU(2)L relations to Section 7.

2.2 The low-energy effective theory

The low-energy effective Lagrangian involving c ! d
i
ē
↵
⌫
� transitions can be written as

LCC = �
4GF
p
2
Vci

h�
1 + ✏

↵�i
VL

�
O

↵�i
VL

+ ✏
↵�i
VR

O
↵�i
VR

+ ✏
↵�i
SL

O
↵�i
SL

+ ✏
↵�i
SR

O
↵�i
SR

+ ✏
↵�i
T O

↵�i
T

i
+ h.c.,

(2.5)

where the effective operators read

O
↵�i
VL

= (ē↵L�µ⌫
�
L)(c̄L�

µ
d
i
L) , O

↵�i
VR

= (ē↵L�µ⌫
�
L)(c̄R�

µ
d
i
R) ,

O
↵�i
SL

= (ē↵R ⌫
�
L)(c̄R d

i
L) , O

↵�i
SR

= (ē↵R ⌫
�
L)(c̄L d

i
R) ,

O
↵�i
T = (ē↵R�µ⌫⌫

�
L)(c̄R�

µ⌫
d
i
L) .

(2.6)

Note that mixed chirality tensor operators vanish by Lorentz invariance. The extraction of the CKM
matrix in the SMEFT is a delicate exercise [52]. For our purposes here, Vcd and Vcs can be safely
obtained by exploiting unitarity in the Wolfenstein parametrization,

Vcd = ��c +O(�5
c),

Vcs = 1� �
2
c/2 +O(�4

c),
(2.7)

where �c is the sine of the Cabibbo angle. We assume that any contribution of NP to the inputs of
these unitarity relations is small compared to the precision achieved with charm weak transitions.
For instance, �c obtained from kaon decays receives strong constraints from the unitarity of the first
row of the CKM matrix (see e.g. Ref. [40]). Similarly, we neglect the effects of NP modifications
to GF as determined from muon decays.

The tree-level matching conditions between the SMEFT in Eq. (2.1) and the low-energy La-
grangian in Eq. (2.5) are

✏
↵�i
VL

= �
Vji

Vci
[C(3)

lq ]↵�2j + �↵�
Vji

Vci
[C(3)

�q ]2j , ✏
↵�i
VR

=
1

2Vci
�↵� [C�ud]2i ,

✏
↵�i
SL

= �
Vji

2Vci
[C(1)

lequ]
⇤
�↵j2 , ✏

↵�i
SR

= �
1

2Vci
[Cledq]

⇤
�↵i2 ,

✏
↵�i
T = �

Vji

2Vci
[C(3)

lequ]
⇤
�↵j2 ,

(2.8)
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• Leptonic decays:

i ↵ ✏↵i
V ✏↵i

A ✏↵i
S ✏↵i

P ✏↵i
T

d

e [�0.02, 0.11] [�32, 34] [�0.29, 0.29] [�0.005, 0.005] [�0.5, 0.5]

µ [�0.06, 0.07] [�0.013, 0.07] [�0.33, 0.17] [�0.0024, 0.0004] [�0.6, 0.22]

⌧ � [�0.27, 0.21] � [�0.11, 0.15] �

s

e [�0.07, 0.08] [�27, 29] [�0.29, 0.29] [�0.005, 0.004] [�0.5, 0.5]

µ [�0.09, 0.06] [�0.07, 0.02] [�0.4, 0.16] [�0.0007, 0.0022] [�0.9, 0.22]

⌧ � [�0.07, 0.014] � [�0.008, 0.04] �

Table 2. 95% CL ranges of the WCs of the charged-current operators obtained at the scale µ = 2 GeV from
current experimental data on (semi)leptonic D(s)-meson decays, assuming them to be real.

Ref. [40]) and the bound is on their quadratic contribution to the rates. Pseudoscalar contributions
to the leptonic-decay rates are, on the other hand, chirally enhanced with respect to the SM contri-
bution and, as a result, constrained down to the per-mille level for electronic and muonic channels.
For the tauonic ones, the lepton-mass enhancement is absent, and the bounds are ⇠ 1% (cs) or
⇠ 10% (cd), depending again on the experimental uncertainties.

From the model building perspective, at a scale ⇤ > v, the NP effects are naturally realized in
terms of operators in the chiral basis. Models for which the dominant contribution is through scalar
operators receive the strongest constraint from leptonic decays, unless some tuning between OSL

and OSR is enforced. In addition, scalar and tensor operators receive radiative contributions that
rescale and mix them significantly when connecting the direct bounds in Table 2 to the matching
scale, cf. Eq. (2.9). Or, inversely, a model producing a tensor contribution at the matching scale
will produce a scalar contribution at low energies that is then constrained by leptonic decays. This
is illustrated in Table 3 where we have expressed the low-energy bounds in terms of the WCs in the
chiral basis at µ = 1 TeV. As expected, bounds on single scalar and tensor operators are dominated
by the measurements of pure leptonic decays.

Except for operators whose dominant contribution to the observables is already quadratic
(Oei

A,P and O
`i
S,T ), the limits in Table 2 are weakened if NP does not interfere with the SM. This

is the case when the neutrino flavor is � 6= ↵, or when the WCs are imaginary. The bounds are
relaxed typically by a factor ⇠ 3 � 6 over the symmetrized ranges shown in that table. However,
for a few operators, namely O

µs
A,P , O⌧s

A,P and O
ed
V , the worsening is by an order of magnitude.

Therefore, in the absence of SM interference, the bounds from D(s) meson decays are weak except
for the pseudoscalar operators, which can still be competitive with other constraints.

Improvements on purely muonic and tauonic branching fractions by a factor ⇠ 2 � 3 are
expected from future measurements at BES III [2] and Belle II [4] (see detailed projections in
Ref. [2]), while no projections for electronic decays have been provided. For semileptonic de-
cays, the data samples are expected to increase by two orders of magnitude after the full 50 ab�1

of integrated luminosity planned at Belle II [4], thus the precision will most likely be limited by
systematic uncertainties. Moreover, going beyond ⇠ 1% accuracy in the SM prediction of these
decay modes will be challenging because of the precision required in the computation of the cor-
responding hadronic matrix elements, including radiative (QED) effects (see LQCD projections in
Ref. [3]). In summary, improvements of the bounds reported in Tables 2 and 3 from the modes
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(*) upper limit, CLEO

BES3

BES3

Branching ratios, see PDG

BES3

BES3

(*) upper limit, BELLE
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where a sum over j is implicitly assumed. Interestingly, the low-energy operator O↵�i
VR

is gener-
ated in the SMEFT from an operator that modifies a chirality preserving W vertex but not from a
new four-fermion interaction, unlike other operators in Eq. (2.6). On the contrary, O↵�i

VL
receives

contributions from both a modified W vertex and a new four-fermion interaction, which cannot be
disentangled at low energies.

The relations in Eq. (2.8) hold at the matching scale µ = mW . The renormalization group
equations (RGE) induced by QCD and EW (QED) radiative effects allow one to robustly correlate
low- and high-pT data [53, 54]. In particular, the RGE running from µ = 1 TeV down to µ = 2 GeV
yields sizable effects in scalar and tensor operators [55],

✏SL(2GeV) ⇡ 2.1 ✏SL(TeV)� 0.3 ✏T (TeV) , ✏SR(2GeV) ⇡ 2.0 ✏SR(TeV) ,

✏T (2GeV) ⇡ 0.8 ✏T (TeV) .
(2.9)

Here, ✏X(TeV) refers to the corresponding combination of SMEFT WCs in Eq. (2.8). Vector oper-
ators do not run under QCD, and the electromagnetic and EW running remains at the percent level.
Similarly, other RGE-induced contributions, including the mixing with other SMEFT operators, do
not receive large QCD enhancements and remain at the percent level. All these effects are below
the level of precision of our studies, so we neglect them in the following.

3 Decays of charmed mesons

Leptonic and semileptonic decays D(s) ! ē
↵
⌫ and D ! ⇡(K)¯̀⌫ follow from the Lagrangian

in Eq. (2.5). This captures the leading effects of any possible short-distance contribution to c !

d
i
ē
↵
⌫
� flavor transitions, with the SM being a particular limit, ✏↵�iX,SM = 0 for all X . Hadronic ma-

trix elements of the corresponding operators are constrained by Lorentz symmetry and invariance of
QCD under parity. As a result, pure leptonic decays are sensitive only to axial (✏↵�iA = ✏

↵�i
VR

� ✏
↵�i
VL

)
and pseudoscalar (✏↵�iP = ✏

↵�i
SR

� ✏
↵�i
SL

) combinations of WCs. On the other hand, the semileptonic
decays are sensitive to vectorial (✏↵�iV = ✏

↵�i
VR

+ ✏
↵�i
VL

) and scalar (✏↵�iS = ✏
↵�i
SR

+ ✏
↵�i
SL

) combinations
of WCs, and to the tensor WC (✏↵�iT ).

The largest available phase space that can be achieved for the semileptonic decays is given
by mD+ � m⇡0 ' 1.735 GeV. Note that this is smaller than the ⌧ lepton mass, which makes the
semitauonic D-meson decays kinematically forbidden. A similar conclusion follows for the decays
of charmed baryons. In other words, the tauonic vector, scalar and tensor operators (O⌧�

V,S,T ) are
not directly accessible and, as we will see below, high-pT tails provide a unique probe of these
operators. On the other hand, pure tauonic decays of D(s) are allowed.2

In the following, we derive bounds on the WCs of the operators in Eq. (2.6) from D(s)-meson
decays. First, we restrict ourselves to the lepton-flavor diagonal case (✏↵iX ⌘ ✏

↵↵i
X ), which interferes

with the SM and leads to the strongest bounds. The rate of the leptonic D decays is

BR(D+
! ē

↵
⌫
↵) = ⌧D+

mD+m
2
↵f

2
DG

2
F |Vcd|

2
�
4
↵

8⇡

����1� ✏
↵d
A +

m
2
D

m↵(mc +mu)
✏
↵d
P

����
2

, (3.1)

2The phase-space restriction is lifted for semitauonic decays of excited D⇤ mesons. However, these predominantly
decay electromagnetically or strongly and the branching fractions of weak decays are suppressed [56, 57]. Furthermore,
one could in principle access the tauonic tensor operator by measuring D(s) ! ⌧⌫� (see e.g. Ref. [40] for the equivalent
pion and kaon decays).
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Thus, the operators in Eqs. (2.2) and (2.3) capture all leading effects in the SMEFT in semilep-
tonic charm transitions. Unless stated otherwise, throughout this paper we work in the up-basis for
the SU(2)L multiplets, where

q
i
L =

 
u
i
L

Vij d
j
L

!
, l

↵
L =

 
⌫
↵
L

e
↵
L

!
, (2.4)

with V the CKM matrix, and use i, j = 1, 2, 3 and ↵,� = 1, 2, 3 to label quark and lepton flavor
indices, respectively. We also use ` to denote the light leptons e and µ, but not ⌧ . The matching of
the SMEFT to the low-energy effective theory is reported next, while we postpone the discussion
of SU(2)L relations to Section 7.

2.2 The low-energy effective theory

The low-energy effective Lagrangian involving c ! d
i
ē
↵
⌫
� transitions can be written as

LCC = �
4GF
p
2
Vci

h�
1 + ✏

↵�i
VL

�
O

↵�i
VL

+ ✏
↵�i
VR

O
↵�i
VR

+ ✏
↵�i
SL

O
↵�i
SL

+ ✏
↵�i
SR

O
↵�i
SR

+ ✏
↵�i
T O

↵�i
T

i
+ h.c.,

(2.5)

where the effective operators read

O
↵�i
VL

= (ē↵L�µ⌫
�
L)(c̄L�

µ
d
i
L) , O

↵�i
VR

= (ē↵L�µ⌫
�
L)(c̄R�

µ
d
i
R) ,

O
↵�i
SL

= (ē↵R ⌫
�
L)(c̄R d

i
L) , O

↵�i
SR

= (ē↵R ⌫
�
L)(c̄L d

i
R) ,

O
↵�i
T = (ē↵R�µ⌫⌫

�
L)(c̄R�

µ⌫
d
i
L) .

(2.6)

Note that mixed chirality tensor operators vanish by Lorentz invariance. The extraction of the CKM
matrix in the SMEFT is a delicate exercise [52]. For our purposes here, Vcd and Vcs can be safely
obtained by exploiting unitarity in the Wolfenstein parametrization,

Vcd = ��c +O(�5
c),

Vcs = 1� �
2
c/2 +O(�4

c),
(2.7)

where �c is the sine of the Cabibbo angle. We assume that any contribution of NP to the inputs of
these unitarity relations is small compared to the precision achieved with charm weak transitions.
For instance, �c obtained from kaon decays receives strong constraints from the unitarity of the first
row of the CKM matrix (see e.g. Ref. [40]). Similarly, we neglect the effects of NP modifications
to GF as determined from muon decays.

The tree-level matching conditions between the SMEFT in Eq. (2.1) and the low-energy La-
grangian in Eq. (2.5) are

✏
↵�i
VL

= �
Vji

Vci
[C(3)

lq ]↵�2j + �↵�
Vji

Vci
[C(3)

�q ]2j , ✏
↵�i
VR

=
1

2Vci
�↵� [C�ud]2i ,

✏
↵�i
SL

= �
Vji

2Vci
[C(1)

lequ]
⇤
�↵j2 , ✏

↵�i
SR

= �
1

2Vci
[Cledq]

⇤
�↵i2 ,

✏
↵�i
T = �

Vji

2Vci
[C(3)

lequ]
⇤
�↵j2 ,

(2.8)
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• Leptonic decays:

i ↵ ✏↵i
V ✏↵i

A ✏↵i
S ✏↵i

P ✏↵i
T

d

e [�0.02, 0.11] [�32, 34] [�0.29, 0.29] [�0.005, 0.005] [�0.5, 0.5]

µ [�0.06, 0.07] [�0.013, 0.07] [�0.33, 0.17] [�0.0024, 0.0004] [�0.6, 0.22]

⌧ � [�0.27, 0.21] � [�0.11, 0.15] �

s

e [�0.07, 0.08] [�27, 29] [�0.29, 0.29] [�0.005, 0.004] [�0.5, 0.5]

µ [�0.09, 0.06] [�0.07, 0.02] [�0.4, 0.16] [�0.0007, 0.0022] [�0.9, 0.22]

⌧ � [�0.07, 0.014] � [�0.008, 0.04] �

Table 2. 95% CL ranges of the WCs of the charged-current operators obtained at the scale µ = 2 GeV from
current experimental data on (semi)leptonic D(s)-meson decays, assuming them to be real.

Ref. [40]) and the bound is on their quadratic contribution to the rates. Pseudoscalar contributions
to the leptonic-decay rates are, on the other hand, chirally enhanced with respect to the SM contri-
bution and, as a result, constrained down to the per-mille level for electronic and muonic channels.
For the tauonic ones, the lepton-mass enhancement is absent, and the bounds are ⇠ 1% (cs) or
⇠ 10% (cd), depending again on the experimental uncertainties.

From the model building perspective, at a scale ⇤ > v, the NP effects are naturally realized in
terms of operators in the chiral basis. Models for which the dominant contribution is through scalar
operators receive the strongest constraint from leptonic decays, unless some tuning between OSL

and OSR is enforced. In addition, scalar and tensor operators receive radiative contributions that
rescale and mix them significantly when connecting the direct bounds in Table 2 to the matching
scale, cf. Eq. (2.9). Or, inversely, a model producing a tensor contribution at the matching scale
will produce a scalar contribution at low energies that is then constrained by leptonic decays. This
is illustrated in Table 3 where we have expressed the low-energy bounds in terms of the WCs in the
chiral basis at µ = 1 TeV. As expected, bounds on single scalar and tensor operators are dominated
by the measurements of pure leptonic decays.

Except for operators whose dominant contribution to the observables is already quadratic
(Oei

A,P and O
`i
S,T ), the limits in Table 2 are weakened if NP does not interfere with the SM. This

is the case when the neutrino flavor is � 6= ↵, or when the WCs are imaginary. The bounds are
relaxed typically by a factor ⇠ 3 � 6 over the symmetrized ranges shown in that table. However,
for a few operators, namely O

µs
A,P , O⌧s

A,P and O
ed
V , the worsening is by an order of magnitude.

Therefore, in the absence of SM interference, the bounds from D(s) meson decays are weak except
for the pseudoscalar operators, which can still be competitive with other constraints.

Improvements on purely muonic and tauonic branching fractions by a factor ⇠ 2 � 3 are
expected from future measurements at BES III [2] and Belle II [4] (see detailed projections in
Ref. [2]), while no projections for electronic decays have been provided. For semileptonic de-
cays, the data samples are expected to increase by two orders of magnitude after the full 50 ab�1

of integrated luminosity planned at Belle II [4], thus the precision will most likely be limited by
systematic uncertainties. Moreover, going beyond ⇠ 1% accuracy in the SM prediction of these
decay modes will be challenging because of the precision required in the computation of the cor-
responding hadronic matrix elements, including radiative (QED) effects (see LQCD projections in
Ref. [3]). In summary, improvements of the bounds reported in Tables 2 and 3 from the modes

– 7 –

(*) upper limit, CLEO

BES3

BES3

Branching ratios, see PDG

BES3

BES3

(*) upper limit, BELLE



11

Charmed meson decays

Admir Greljo | Charm Physics Confronts High-pT Lepton Tails

where a sum over j is implicitly assumed. Interestingly, the low-energy operator O↵�i
VR

is gener-
ated in the SMEFT from an operator that modifies a chirality preserving W vertex but not from a
new four-fermion interaction, unlike other operators in Eq. (2.6). On the contrary, O↵�i

VL
receives

contributions from both a modified W vertex and a new four-fermion interaction, which cannot be
disentangled at low energies.

The relations in Eq. (2.8) hold at the matching scale µ = mW . The renormalization group
equations (RGE) induced by QCD and EW (QED) radiative effects allow one to robustly correlate
low- and high-pT data [53, 54]. In particular, the RGE running from µ = 1 TeV down to µ = 2 GeV
yields sizable effects in scalar and tensor operators [55],

✏SL(2GeV) ⇡ 2.1 ✏SL(TeV)� 0.3 ✏T (TeV) , ✏SR(2GeV) ⇡ 2.0 ✏SR(TeV) ,

✏T (2GeV) ⇡ 0.8 ✏T (TeV) .
(2.9)

Here, ✏X(TeV) refers to the corresponding combination of SMEFT WCs in Eq. (2.8). Vector oper-
ators do not run under QCD, and the electromagnetic and EW running remains at the percent level.
Similarly, other RGE-induced contributions, including the mixing with other SMEFT operators, do
not receive large QCD enhancements and remain at the percent level. All these effects are below
the level of precision of our studies, so we neglect them in the following.

3 Decays of charmed mesons

Leptonic and semileptonic decays D(s) ! ē
↵
⌫ and D ! ⇡(K)¯̀⌫ follow from the Lagrangian

in Eq. (2.5). This captures the leading effects of any possible short-distance contribution to c !

d
i
ē
↵
⌫
� flavor transitions, with the SM being a particular limit, ✏↵�iX,SM = 0 for all X . Hadronic ma-

trix elements of the corresponding operators are constrained by Lorentz symmetry and invariance of
QCD under parity. As a result, pure leptonic decays are sensitive only to axial (✏↵�iA = ✏

↵�i
VR

� ✏
↵�i
VL

)
and pseudoscalar (✏↵�iP = ✏

↵�i
SR

� ✏
↵�i
SL

) combinations of WCs. On the other hand, the semileptonic
decays are sensitive to vectorial (✏↵�iV = ✏

↵�i
VR

+ ✏
↵�i
VL

) and scalar (✏↵�iS = ✏
↵�i
SR

+ ✏
↵�i
SL

) combinations
of WCs, and to the tensor WC (✏↵�iT ).

The largest available phase space that can be achieved for the semileptonic decays is given
by mD+ � m⇡0 ' 1.735 GeV. Note that this is smaller than the ⌧ lepton mass, which makes the
semitauonic D-meson decays kinematically forbidden. A similar conclusion follows for the decays
of charmed baryons. In other words, the tauonic vector, scalar and tensor operators (O⌧�

V,S,T ) are
not directly accessible and, as we will see below, high-pT tails provide a unique probe of these
operators. On the other hand, pure tauonic decays of D(s) are allowed.2

In the following, we derive bounds on the WCs of the operators in Eq. (2.6) from D(s)-meson
decays. First, we restrict ourselves to the lepton-flavor diagonal case (✏↵iX ⌘ ✏

↵↵i
X ), which interferes

with the SM and leads to the strongest bounds. The rate of the leptonic D decays is

BR(D+
! ē

↵
⌫
↵) = ⌧D+

mD+m
2
↵f

2
DG

2
F |Vcd|

2
�
4
↵

8⇡

����1� ✏
↵d
A +

m
2
D

m↵(mc +mu)
✏
↵d
P

����
2

, (3.1)

2The phase-space restriction is lifted for semitauonic decays of excited D⇤ mesons. However, these predominantly
decay electromagnetically or strongly and the branching fractions of weak decays are suppressed [56, 57]. Furthermore,
one could in principle access the tauonic tensor operator by measuring D(s) ! ⌧⌫� (see e.g. Ref. [40] for the equivalent
pion and kaon decays).
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Thus, the operators in Eqs. (2.2) and (2.3) capture all leading effects in the SMEFT in semilep-
tonic charm transitions. Unless stated otherwise, throughout this paper we work in the up-basis for
the SU(2)L multiplets, where

q
i
L =

 
u
i
L

Vij d
j
L

!
, l

↵
L =

 
⌫
↵
L

e
↵
L

!
, (2.4)

with V the CKM matrix, and use i, j = 1, 2, 3 and ↵,� = 1, 2, 3 to label quark and lepton flavor
indices, respectively. We also use ` to denote the light leptons e and µ, but not ⌧ . The matching of
the SMEFT to the low-energy effective theory is reported next, while we postpone the discussion
of SU(2)L relations to Section 7.

2.2 The low-energy effective theory

The low-energy effective Lagrangian involving c ! d
i
ē
↵
⌫
� transitions can be written as

LCC = �
4GF
p
2
Vci

h�
1 + ✏

↵�i
VL

�
O

↵�i
VL

+ ✏
↵�i
VR

O
↵�i
VR

+ ✏
↵�i
SL

O
↵�i
SL

+ ✏
↵�i
SR

O
↵�i
SR

+ ✏
↵�i
T O

↵�i
T

i
+ h.c.,

(2.5)

where the effective operators read

O
↵�i
VL

= (ē↵L�µ⌫
�
L)(c̄L�

µ
d
i
L) , O

↵�i
VR

= (ē↵L�µ⌫
�
L)(c̄R�

µ
d
i
R) ,

O
↵�i
SL

= (ē↵R ⌫
�
L)(c̄R d

i
L) , O

↵�i
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= (ē↵R ⌫
�
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i
R) ,

O
↵�i
T = (ē↵R�µ⌫⌫

�
L)(c̄R�

µ⌫
d
i
L) .

(2.6)

Note that mixed chirality tensor operators vanish by Lorentz invariance. The extraction of the CKM
matrix in the SMEFT is a delicate exercise [52]. For our purposes here, Vcd and Vcs can be safely
obtained by exploiting unitarity in the Wolfenstein parametrization,

Vcd = ��c +O(�5
c),

Vcs = 1� �
2
c/2 +O(�4

c),
(2.7)

where �c is the sine of the Cabibbo angle. We assume that any contribution of NP to the inputs of
these unitarity relations is small compared to the precision achieved with charm weak transitions.
For instance, �c obtained from kaon decays receives strong constraints from the unitarity of the first
row of the CKM matrix (see e.g. Ref. [40]). Similarly, we neglect the effects of NP modifications
to GF as determined from muon decays.

The tree-level matching conditions between the SMEFT in Eq. (2.1) and the low-energy La-
grangian in Eq. (2.5) are

✏
↵�i
VL

= �
Vji

Vci
[C(3)

lq ]↵�2j + �↵�
Vji
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1
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�↵� [C�ud]2i ,

✏
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= �
Vji

2Vci
[C(1)

lequ]
⇤
�↵j2 , ✏
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= �
1

2Vci
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�↵i2 ,

✏
↵�i
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Vji
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lequ]
⇤
�↵j2 ,

(2.8)
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• Leptonic decays:

i ↵ ✏↵i
V ✏↵i

A ✏↵i
S ✏↵i

P ✏↵i
T

d

e [�0.02, 0.11] [�32, 34] [�0.29, 0.29] [�0.005, 0.005] [�0.5, 0.5]

µ [�0.06, 0.07] [�0.013, 0.07] [�0.33, 0.17] [�0.0024, 0.0004] [�0.6, 0.22]

⌧ � [�0.27, 0.21] � [�0.11, 0.15] �

s

e [�0.07, 0.08] [�27, 29] [�0.29, 0.29] [�0.005, 0.004] [�0.5, 0.5]

µ [�0.09, 0.06] [�0.07, 0.02] [�0.4, 0.16] [�0.0007, 0.0022] [�0.9, 0.22]

⌧ � [�0.07, 0.014] � [�0.008, 0.04] �

Table 2. 95% CL ranges of the WCs of the charged-current operators obtained at the scale µ = 2 GeV from
current experimental data on (semi)leptonic D(s)-meson decays, assuming them to be real.

Ref. [40]) and the bound is on their quadratic contribution to the rates. Pseudoscalar contributions
to the leptonic-decay rates are, on the other hand, chirally enhanced with respect to the SM contri-
bution and, as a result, constrained down to the per-mille level for electronic and muonic channels.
For the tauonic ones, the lepton-mass enhancement is absent, and the bounds are ⇠ 1% (cs) or
⇠ 10% (cd), depending again on the experimental uncertainties.

From the model building perspective, at a scale ⇤ > v, the NP effects are naturally realized in
terms of operators in the chiral basis. Models for which the dominant contribution is through scalar
operators receive the strongest constraint from leptonic decays, unless some tuning between OSL

and OSR is enforced. In addition, scalar and tensor operators receive radiative contributions that
rescale and mix them significantly when connecting the direct bounds in Table 2 to the matching
scale, cf. Eq. (2.9). Or, inversely, a model producing a tensor contribution at the matching scale
will produce a scalar contribution at low energies that is then constrained by leptonic decays. This
is illustrated in Table 3 where we have expressed the low-energy bounds in terms of the WCs in the
chiral basis at µ = 1 TeV. As expected, bounds on single scalar and tensor operators are dominated
by the measurements of pure leptonic decays.

Except for operators whose dominant contribution to the observables is already quadratic
(Oei

A,P and O
`i
S,T ), the limits in Table 2 are weakened if NP does not interfere with the SM. This

is the case when the neutrino flavor is � 6= ↵, or when the WCs are imaginary. The bounds are
relaxed typically by a factor ⇠ 3 � 6 over the symmetrized ranges shown in that table. However,
for a few operators, namely O

µs
A,P , O⌧s

A,P and O
ed
V , the worsening is by an order of magnitude.

Therefore, in the absence of SM interference, the bounds from D(s) meson decays are weak except
for the pseudoscalar operators, which can still be competitive with other constraints.

Improvements on purely muonic and tauonic branching fractions by a factor ⇠ 2 � 3 are
expected from future measurements at BES III [2] and Belle II [4] (see detailed projections in
Ref. [2]), while no projections for electronic decays have been provided. For semileptonic de-
cays, the data samples are expected to increase by two orders of magnitude after the full 50 ab�1

of integrated luminosity planned at Belle II [4], thus the precision will most likely be limited by
systematic uncertainties. Moreover, going beyond ⇠ 1% accuracy in the SM prediction of these
decay modes will be challenging because of the precision required in the computation of the cor-
responding hadronic matrix elements, including radiative (QED) effects (see LQCD projections in
Ref. [3]). In summary, improvements of the bounds reported in Tables 2 and 3 from the modes
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95% CL ranges on WCs at 2 GeV (one parameter fit).

• Stringent limits on P operators
• Limits on A depend strongly on the lepton flavour  
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Thus, the operators in Eqs. (2.2) and (2.3) capture all leading effects in the SMEFT in semilep-
tonic charm transitions. Unless stated otherwise, throughout this paper we work in the up-basis for
the SU(2)L multiplets, where

q
i
L =

 
u
i
L

Vij d
j
L

!
, l

↵
L =

 
⌫
↵
L

e
↵
L

!
, (2.4)

with V the CKM matrix, and use i, j = 1, 2, 3 and ↵,� = 1, 2, 3 to label quark and lepton flavor
indices, respectively. We also use ` to denote the light leptons e and µ, but not ⌧ . The matching of
the SMEFT to the low-energy effective theory is reported next, while we postpone the discussion
of SU(2)L relations to Section 7.

2.2 The low-energy effective theory

The low-energy effective Lagrangian involving c ! d
i
ē
↵
⌫
� transitions can be written as

LCC = �
4GF
p
2
Vci

h�
1 + ✏

↵�i
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�
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↵�i
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+ ✏
↵�i
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O
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O
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SL

+ ✏
↵�i
SR

O
↵�i
SR

+ ✏
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T O
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T

i
+ h.c.,

(2.5)

where the effective operators read

O
↵�i
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L)(c̄L�

µ
d
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L) , O
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(2.6)

Note that mixed chirality tensor operators vanish by Lorentz invariance. The extraction of the CKM
matrix in the SMEFT is a delicate exercise [52]. For our purposes here, Vcd and Vcs can be safely
obtained by exploiting unitarity in the Wolfenstein parametrization,

Vcd = ��c +O(�5
c),

Vcs = 1� �
2
c/2 +O(�4

c),
(2.7)

where �c is the sine of the Cabibbo angle. We assume that any contribution of NP to the inputs of
these unitarity relations is small compared to the precision achieved with charm weak transitions.
For instance, �c obtained from kaon decays receives strong constraints from the unitarity of the first
row of the CKM matrix (see e.g. Ref. [40]). Similarly, we neglect the effects of NP modifications
to GF as determined from muon decays.

The tree-level matching conditions between the SMEFT in Eq. (2.1) and the low-energy La-
grangian in Eq. (2.5) are

✏
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where a sum over j is implicitly assumed. Interestingly, the low-energy operator O↵�i
VR

is gener-
ated in the SMEFT from an operator that modifies a chirality preserving W vertex but not from a
new four-fermion interaction, unlike other operators in Eq. (2.6). On the contrary, O↵�i

VL
receives

contributions from both a modified W vertex and a new four-fermion interaction, which cannot be
disentangled at low energies.

The relations in Eq. (2.8) hold at the matching scale µ = mW . The renormalization group
equations (RGE) induced by QCD and EW (QED) radiative effects allow one to robustly correlate
low- and high-pT data [53, 54]. In particular, the RGE running from µ = 1 TeV down to µ = 2 GeV
yields sizable effects in scalar and tensor operators [55],

✏SL(2GeV) ⇡ 2.1 ✏SL(TeV)� 0.3 ✏T (TeV) , ✏SR(2GeV) ⇡ 2.0 ✏SR(TeV) ,

✏T (2GeV) ⇡ 0.8 ✏T (TeV) .
(2.9)

Here, ✏X(TeV) refers to the corresponding combination of SMEFT WCs in Eq. (2.8). Vector oper-
ators do not run under QCD, and the electromagnetic and EW running remains at the percent level.
Similarly, other RGE-induced contributions, including the mixing with other SMEFT operators, do
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Thus, the operators in Eqs. (2.2) and (2.3) capture all leading effects in the SMEFT in semilep-
tonic charm transitions. Unless stated otherwise, throughout this paper we work in the up-basis for
the SU(2)L multiplets, where
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!
, (2.4)

with V the CKM matrix, and use i, j = 1, 2, 3 and ↵,� = 1, 2, 3 to label quark and lepton flavor
indices, respectively. We also use ` to denote the light leptons e and µ, but not ⌧ . The matching of
the SMEFT to the low-energy effective theory is reported next, while we postpone the discussion
of SU(2)L relations to Section 7.

2.2 The low-energy effective theory
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where the effective operators read
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Note that mixed chirality tensor operators vanish by Lorentz invariance. The extraction of the CKM
matrix in the SMEFT is a delicate exercise [52]. For our purposes here, Vcd and Vcs can be safely
obtained by exploiting unitarity in the Wolfenstein parametrization,

Vcd = ��c +O(�5
c),

Vcs = 1� �
2
c/2 +O(�4

c),
(2.7)

where �c is the sine of the Cabibbo angle. We assume that any contribution of NP to the inputs of
these unitarity relations is small compared to the precision achieved with charm weak transitions.
For instance, �c obtained from kaon decays receives strong constraints from the unitarity of the first
row of the CKM matrix (see e.g. Ref. [40]). Similarly, we neglect the effects of NP modifications
to GF as determined from muon decays.

The tree-level matching conditions between the SMEFT in Eq. (2.1) and the low-energy La-
grangian in Eq. (2.5) are
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where a sum over j is implicitly assumed. Interestingly, the low-energy operator O↵�i
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new four-fermion interaction, unlike other operators in Eq. (2.6). On the contrary, O↵�i
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contributions from both a modified W vertex and a new four-fermion interaction, which cannot be
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In the following, we derive bounds on the WCs of the operators in Eq. (2.6) from D(s)-meson
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P ↵ BRSM xS xT yS yT

⇡
� e 2.65(18) · 10�3 1.12(10) · 10�3 1.21(15) · 10�3 2.74(22) 1.14(21)

µ 2.61(17) · 10�3 0.228(19) 0.23(3) 2.73(18) 1.15(22)

K
� e 3.48(26) · 10�2 1.29(8) · 10�3 1.18(11) · 10�3 2.00(11) 0.69(8)

µ 3.39(25) · 10�2 0.251(16) 0.224(20) 2.00(11) 0.71(8)

Table 1. Coefficients of the parametrization in Eq. (3.2) obtained using lattice QCD results [15, 16] for the
form factors.

where �
2
↵ = 1 �m

2
↵/m

2
D and ⌧D+ (fD+) is the D

+ lifetime (decay constant). This formula with
obvious replacements also describes the leptonic Ds decays. We use fD = 212.0(7) MeV and
fDs = 249.9(5) MeV, obtained from an average of lattice QCD simulations with two degenerate
light quarks and dynamical strange and charm quarks in pure QCD [6, 10, 11]. An important fea-
ture of the leptonic decays is that the axial contribution, such as the one predicted in the SM, is
suppressed by m

2
↵ due to the conservation of angular momentum. On the contrary, pseudoscalar

NP contributions are unsuppressed, and they receive strong constraints from searches and measure-
ments of these decays.

In the case of semileptonic D decays, the expressions for total rates are more involved as
they contain kinematic integrals with form factors, which are functions of the invariant mass of the
dilepton pair. The decay rate of the neutral D meson can be parametrized as a function of the WCs,

BR(D ! Pi
¯̀↵⌫↵)

BRSM
=

��1 + ✏
↵i
V

��2 + 2Re
⇥
(1 + ✏

↵i
V )(xS ✏

↵i⇤
S + xT ✏

↵i⇤
T )

⇤
+ yS |✏

↵i
S |

2 + yT |✏
↵i
T |

2
,

(3.2)
where xS,T and yS,T describe the interference between NP and SM and the quadratic NP effects,
respectively, and Pi = ⇡, K for i = d, s. The numerical values of these parameters can be
obtained using lattice QCD calculations of the form factors and performing the kinematic integrals.
In Table 1 we show the values of these parameters for the D

0
! ⇡

�(K�)`+⌫ decays using the
lattice results from [15, 16]. The errors in the parametrization employed in these references have
been propagated consistently.

The limits on the WCs are determined by comparing these predictions to the PDG aver-
ages [58] of the experimental data on the branching fractions [59–72]. The results are shown
in Table 2 where one WC is fitted at a time setting the rest to zero. The sensitivity to vectorial cur-
rents is at the few percent level, reflecting the precision achieved in the experimental measurements
and in the calculation of the respective semileptonic form factors. Bounds on axial currents depend
strongly on the lepton flavor due to the chiral suppression of their contributions to the leptonic-
decay rates. Thus, the electronic axial operators are poorly constrained while muonic ones are
constrained down to a few percent. The difference between cs and cd transitions in the bounds on
the tauonic axial contributions is a result of the different experimental precision achieved in the
measurement of the corresponding decays.

Direct bounds on scalar and tensor operators stemming from semileptonic decays are rather
weak, with almost O(1) contributions still allowed by the data. As shown in Table 1, this is due
to the fact that the interference of these operators with the SM is chirally suppressed (see e.g.
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Thus, the operators in Eqs. (2.2) and (2.3) capture all leading effects in the SMEFT in semilep-
tonic charm transitions. Unless stated otherwise, throughout this paper we work in the up-basis for
the SU(2)L multiplets, where

q
i
L =

 
u
i
L

Vij d
j
L

!
, l

↵
L =

 
⌫
↵
L

e
↵
L

!
, (2.4)

with V the CKM matrix, and use i, j = 1, 2, 3 and ↵,� = 1, 2, 3 to label quark and lepton flavor
indices, respectively. We also use ` to denote the light leptons e and µ, but not ⌧ . The matching of
the SMEFT to the low-energy effective theory is reported next, while we postpone the discussion
of SU(2)L relations to Section 7.

2.2 The low-energy effective theory

The low-energy effective Lagrangian involving c ! d
i
ē
↵
⌫
� transitions can be written as

LCC = �
4GF
p
2
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h�
1 + ✏

↵�i
VL

�
O

↵�i
VL

+ ✏
↵�i
VR

O
↵�i
VR

+ ✏
↵�i
SL

O
↵�i
SL

+ ✏
↵�i
SR

O
↵�i
SR

+ ✏
↵�i
T O

↵�i
T

i
+ h.c.,

(2.5)

where the effective operators read

O
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µ
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= (ē↵R ⌫
�
L)(c̄L d

i
R) ,

O
↵�i
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L)(c̄R�

µ⌫
d
i
L) .

(2.6)

Note that mixed chirality tensor operators vanish by Lorentz invariance. The extraction of the CKM
matrix in the SMEFT is a delicate exercise [52]. For our purposes here, Vcd and Vcs can be safely
obtained by exploiting unitarity in the Wolfenstein parametrization,

Vcd = ��c +O(�5
c),

Vcs = 1� �
2
c/2 +O(�4

c),
(2.7)

where �c is the sine of the Cabibbo angle. We assume that any contribution of NP to the inputs of
these unitarity relations is small compared to the precision achieved with charm weak transitions.
For instance, �c obtained from kaon decays receives strong constraints from the unitarity of the first
row of the CKM matrix (see e.g. Ref. [40]). Similarly, we neglect the effects of NP modifications
to GF as determined from muon decays.

The tree-level matching conditions between the SMEFT in Eq. (2.1) and the low-energy La-
grangian in Eq. (2.5) are

✏
↵�i
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[Cledq]

⇤
�↵i2 ,

✏
↵�i
T = �

Vji

2Vci
[C(3)

lequ]
⇤
�↵j2 ,

(2.8)
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where a sum over j is implicitly assumed. Interestingly, the low-energy operator O↵�i
VR

is gener-
ated in the SMEFT from an operator that modifies a chirality preserving W vertex but not from a
new four-fermion interaction, unlike other operators in Eq. (2.6). On the contrary, O↵�i

VL
receives

contributions from both a modified W vertex and a new four-fermion interaction, which cannot be
disentangled at low energies.

The relations in Eq. (2.8) hold at the matching scale µ = mW . The renormalization group
equations (RGE) induced by QCD and EW (QED) radiative effects allow one to robustly correlate
low- and high-pT data [53, 54]. In particular, the RGE running from µ = 1 TeV down to µ = 2 GeV
yields sizable effects in scalar and tensor operators [55],

✏SL(2GeV) ⇡ 2.1 ✏SL(TeV)� 0.3 ✏T (TeV) , ✏SR(2GeV) ⇡ 2.0 ✏SR(TeV) ,

✏T (2GeV) ⇡ 0.8 ✏T (TeV) .
(2.9)

Here, ✏X(TeV) refers to the corresponding combination of SMEFT WCs in Eq. (2.8). Vector oper-
ators do not run under QCD, and the electromagnetic and EW running remains at the percent level.
Similarly, other RGE-induced contributions, including the mixing with other SMEFT operators, do
not receive large QCD enhancements and remain at the percent level. All these effects are below
the level of precision of our studies, so we neglect them in the following.

3 Decays of charmed mesons

Leptonic and semileptonic decays D(s) ! ē
↵
⌫ and D ! ⇡(K)¯̀⌫ follow from the Lagrangian

in Eq. (2.5). This captures the leading effects of any possible short-distance contribution to c !
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ē
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⌫
� flavor transitions, with the SM being a particular limit, ✏↵�iX,SM = 0 for all X . Hadronic ma-

trix elements of the corresponding operators are constrained by Lorentz symmetry and invariance of
QCD under parity. As a result, pure leptonic decays are sensitive only to axial (✏↵�iA = ✏
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) and scalar (✏↵�iS = ✏
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) combinations
of WCs, and to the tensor WC (✏↵�iT ).

The largest available phase space that can be achieved for the semileptonic decays is given
by mD+ � m⇡0 ' 1.735 GeV. Note that this is smaller than the ⌧ lepton mass, which makes the
semitauonic D-meson decays kinematically forbidden. A similar conclusion follows for the decays
of charmed baryons. In other words, the tauonic vector, scalar and tensor operators (O⌧�

V,S,T ) are
not directly accessible and, as we will see below, high-pT tails provide a unique probe of these
operators. On the other hand, pure tauonic decays of D(s) are allowed.2

In the following, we derive bounds on the WCs of the operators in Eq. (2.6) from D(s)-meson
decays. First, we restrict ourselves to the lepton-flavor diagonal case (✏↵iX ⌘ ✏

↵↵i
X ), which interferes

with the SM and leads to the strongest bounds. The rate of the leptonic D decays is
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2The phase-space restriction is lifted for semitauonic decays of excited D⇤ mesons. However, these predominantly
decay electromagnetically or strongly and the branching fractions of weak decays are suppressed [56, 57]. Furthermore,
one could in principle access the tauonic tensor operator by measuring D(s) ! ⌧⌫� (see e.g. Ref. [40] for the equivalent
pion and kaon decays).
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where a sum over j is implicitly assumed. Interestingly, the low-energy operator O↵�i
VR

is gener-
ated in the SMEFT from an operator that modifies a chirality preserving W vertex but not from a
new four-fermion interaction, unlike other operators in Eq. (2.6). On the contrary, O↵�i

VL
receives

contributions from both a modified W vertex and a new four-fermion interaction, which cannot be
disentangled at low energies.

The relations in Eq. (2.8) hold at the matching scale µ = mW . The renormalization group
equations (RGE) induced by QCD and EW (QED) radiative effects allow one to robustly correlate
low- and high-pT data [53, 54]. In particular, the RGE running from µ = 1 TeV down to µ = 2 GeV
yields sizable effects in scalar and tensor operators [55],

✏SL(2GeV) ⇡ 2.1 ✏SL(TeV)� 0.3 ✏T (TeV) , ✏SR(2GeV) ⇡ 2.0 ✏SR(TeV) ,

✏T (2GeV) ⇡ 0.8 ✏T (TeV) .
(2.9)

Here, ✏X(TeV) refers to the corresponding combination of SMEFT WCs in Eq. (2.8). Vector oper-
ators do not run under QCD, and the electromagnetic and EW running remains at the percent level.
Similarly, other RGE-induced contributions, including the mixing with other SMEFT operators, do
not receive large QCD enhancements and remain at the percent level. All these effects are below
the level of precision of our studies, so we neglect them in the following.

3 Decays of charmed mesons

Leptonic and semileptonic decays D(s) ! ē
↵
⌫ and D ! ⇡(K)¯̀⌫ follow from the Lagrangian

in Eq. (2.5). This captures the leading effects of any possible short-distance contribution to c !

d
i
ē
↵
⌫
� flavor transitions, with the SM being a particular limit, ✏↵�iX,SM = 0 for all X . Hadronic ma-

trix elements of the corresponding operators are constrained by Lorentz symmetry and invariance of
QCD under parity. As a result, pure leptonic decays are sensitive only to axial (✏↵�iA = ✏
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and pseudoscalar (✏↵�iP = ✏
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) combinations of WCs. On the other hand, the semileptonic
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) and scalar (✏↵�iS = ✏
↵�i
SR
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↵�i
SL

) combinations
of WCs, and to the tensor WC (✏↵�iT ).

The largest available phase space that can be achieved for the semileptonic decays is given
by mD+ � m⇡0 ' 1.735 GeV. Note that this is smaller than the ⌧ lepton mass, which makes the
semitauonic D-meson decays kinematically forbidden. A similar conclusion follows for the decays
of charmed baryons. In other words, the tauonic vector, scalar and tensor operators (O⌧�

V,S,T ) are
not directly accessible and, as we will see below, high-pT tails provide a unique probe of these
operators. On the other hand, pure tauonic decays of D(s) are allowed.2

In the following, we derive bounds on the WCs of the operators in Eq. (2.6) from D(s)-meson
decays. First, we restrict ourselves to the lepton-flavor diagonal case (✏↵iX ⌘ ✏

↵↵i
X ), which interferes

with the SM and leads to the strongest bounds. The rate of the leptonic D decays is

BR(D+
! ē
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2The phase-space restriction is lifted for semitauonic decays of excited D⇤ mesons. However, these predominantly
decay electromagnetically or strongly and the branching fractions of weak decays are suppressed [56, 57]. Furthermore,
one could in principle access the tauonic tensor operator by measuring D(s) ! ⌧⌫� (see e.g. Ref. [40] for the equivalent
pion and kaon decays).
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P ↵ BRSM xS xT yS yT

⇡
� e 2.65(18) · 10�3 1.12(10) · 10�3 1.21(15) · 10�3 2.74(22) 1.14(21)

µ 2.61(17) · 10�3 0.228(19) 0.23(3) 2.73(18) 1.15(22)

K
� e 3.48(26) · 10�2 1.29(8) · 10�3 1.18(11) · 10�3 2.00(11) 0.69(8)

µ 3.39(25) · 10�2 0.251(16) 0.224(20) 2.00(11) 0.71(8)

Table 1. Coefficients of the parametrization in Eq. (3.2) obtained using lattice QCD results [15, 16] for the
form factors.

where �
2
↵ = 1 �m

2
↵/m

2
D and ⌧D+ (fD+) is the D

+ lifetime (decay constant). This formula with
obvious replacements also describes the leptonic Ds decays. We use fD = 212.0(7) MeV and
fDs = 249.9(5) MeV, obtained from an average of lattice QCD simulations with two degenerate
light quarks and dynamical strange and charm quarks in pure QCD [6, 10, 11]. An important fea-
ture of the leptonic decays is that the axial contribution, such as the one predicted in the SM, is
suppressed by m

2
↵ due to the conservation of angular momentum. On the contrary, pseudoscalar

NP contributions are unsuppressed, and they receive strong constraints from searches and measure-
ments of these decays.

In the case of semileptonic D decays, the expressions for total rates are more involved as
they contain kinematic integrals with form factors, which are functions of the invariant mass of the
dilepton pair. The decay rate of the neutral D meson can be parametrized as a function of the WCs,

BR(D ! Pi
¯̀↵⌫↵)

BRSM
=

��1 + ✏
↵i
V

��2 + 2Re
⇥
(1 + ✏

↵i
V )(xS ✏

↵i⇤
S + xT ✏

↵i⇤
T )

⇤
+ yS |✏

↵i
S |

2 + yT |✏
↵i
T |

2
,

(3.2)
where xS,T and yS,T describe the interference between NP and SM and the quadratic NP effects,
respectively, and Pi = ⇡, K for i = d, s. The numerical values of these parameters can be
obtained using lattice QCD calculations of the form factors and performing the kinematic integrals.
In Table 1 we show the values of these parameters for the D

0
! ⇡

�(K�)`+⌫ decays using the
lattice results from [15, 16]. The errors in the parametrization employed in these references have
been propagated consistently.

The limits on the WCs are determined by comparing these predictions to the PDG aver-
ages [58] of the experimental data on the branching fractions [59–72]. The results are shown
in Table 2 where one WC is fitted at a time setting the rest to zero. The sensitivity to vectorial cur-
rents is at the few percent level, reflecting the precision achieved in the experimental measurements
and in the calculation of the respective semileptonic form factors. Bounds on axial currents depend
strongly on the lepton flavor due to the chiral suppression of their contributions to the leptonic-
decay rates. Thus, the electronic axial operators are poorly constrained while muonic ones are
constrained down to a few percent. The difference between cs and cd transitions in the bounds on
the tauonic axial contributions is a result of the different experimental precision achieved in the
measurement of the corresponding decays.

Direct bounds on scalar and tensor operators stemming from semileptonic decays are rather
weak, with almost O(1) contributions still allowed by the data. As shown in Table 1, this is due
to the fact that the interference of these operators with the SM is chirally suppressed (see e.g.
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Thus, the operators in Eqs. (2.2) and (2.3) capture all leading effects in the SMEFT in semilep-
tonic charm transitions. Unless stated otherwise, throughout this paper we work in the up-basis for
the SU(2)L multiplets, where

q
i
L =

 
u
i
L

Vij d
j
L

!
, l

↵
L =

 
⌫
↵
L

e
↵
L

!
, (2.4)

with V the CKM matrix, and use i, j = 1, 2, 3 and ↵,� = 1, 2, 3 to label quark and lepton flavor
indices, respectively. We also use ` to denote the light leptons e and µ, but not ⌧ . The matching of
the SMEFT to the low-energy effective theory is reported next, while we postpone the discussion
of SU(2)L relations to Section 7.

2.2 The low-energy effective theory

The low-energy effective Lagrangian involving c ! d
i
ē
↵
⌫
� transitions can be written as

LCC = �
4GF
p
2
Vci

h�
1 + ✏

↵�i
VL

�
O

↵�i
VL

+ ✏
↵�i
VR

O
↵�i
VR

+ ✏
↵�i
SL

O
↵�i
SL

+ ✏
↵�i
SR

O
↵�i
SR

+ ✏
↵�i
T O

↵�i
T

i
+ h.c.,

(2.5)

where the effective operators read

O
↵�i
VL

= (ē↵L�µ⌫
�
L)(c̄L�

µ
d
i
L) , O

↵�i
VR

= (ē↵L�µ⌫
�
L)(c̄R�

µ
d
i
R) ,

O
↵�i
SL

= (ē↵R ⌫
�
L)(c̄R d

i
L) , O

↵�i
SR

= (ē↵R ⌫
�
L)(c̄L d

i
R) ,

O
↵�i
T = (ē↵R�µ⌫⌫

�
L)(c̄R�

µ⌫
d
i
L) .

(2.6)

Note that mixed chirality tensor operators vanish by Lorentz invariance. The extraction of the CKM
matrix in the SMEFT is a delicate exercise [52]. For our purposes here, Vcd and Vcs can be safely
obtained by exploiting unitarity in the Wolfenstein parametrization,

Vcd = ��c +O(�5
c),

Vcs = 1� �
2
c/2 +O(�4

c),
(2.7)

where �c is the sine of the Cabibbo angle. We assume that any contribution of NP to the inputs of
these unitarity relations is small compared to the precision achieved with charm weak transitions.
For instance, �c obtained from kaon decays receives strong constraints from the unitarity of the first
row of the CKM matrix (see e.g. Ref. [40]). Similarly, we neglect the effects of NP modifications
to GF as determined from muon decays.

The tree-level matching conditions between the SMEFT in Eq. (2.1) and the low-energy La-
grangian in Eq. (2.5) are

✏
↵�i
VL

= �
Vji

Vci
[C(3)

lq ]↵�2j + �↵�
Vji

Vci
[C(3)

�q ]2j , ✏
↵�i
VR

=
1

2Vci
�↵� [C�ud]2i ,

✏
↵�i
SL

= �
Vji

2Vci
[C(1)

lequ]
⇤
�↵j2 , ✏

↵�i
SR

= �
1

2Vci
[Cledq]

⇤
�↵i2 ,

✏
↵�i
T = �

Vji

2Vci
[C(3)

lequ]
⇤
�↵j2 ,

(2.8)
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where a sum over j is implicitly assumed. Interestingly, the low-energy operator O↵�i
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is gener-
ated in the SMEFT from an operator that modifies a chirality preserving W vertex but not from a
new four-fermion interaction, unlike other operators in Eq. (2.6). On the contrary, O↵�i
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contributions from both a modified W vertex and a new four-fermion interaction, which cannot be
disentangled at low energies.

The relations in Eq. (2.8) hold at the matching scale µ = mW . The renormalization group
equations (RGE) induced by QCD and EW (QED) radiative effects allow one to robustly correlate
low- and high-pT data [53, 54]. In particular, the RGE running from µ = 1 TeV down to µ = 2 GeV
yields sizable effects in scalar and tensor operators [55],
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not directly accessible and, as we will see below, high-pT tails provide a unique probe of these
operators. On the other hand, pure tauonic decays of D(s) are allowed.2
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2The phase-space restriction is lifted for semitauonic decays of excited D⇤ mesons. However, these predominantly
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one could in principle access the tauonic tensor operator by measuring D(s) ! ⌧⌫� (see e.g. Ref. [40] for the equivalent
pion and kaon decays).
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• Semileptonic decays:

i ↵ ✏↵i
V ✏↵i

A ✏↵i
S ✏↵i

P ✏↵i
T

d

e [�0.02, 0.11] [�32, 34] [�0.29, 0.29] [�0.005, 0.005] [�0.5, 0.5]

µ [�0.06, 0.07] [�0.013, 0.07] [�0.33, 0.17] [�0.0024, 0.0004] [�0.6, 0.22]

⌧ � [�0.27, 0.21] � [�0.11, 0.15] �

s

e [�0.07, 0.08] [�27, 29] [�0.29, 0.29] [�0.005, 0.004] [�0.5, 0.5]

µ [�0.09, 0.06] [�0.07, 0.02] [�0.4, 0.16] [�0.0007, 0.0022] [�0.9, 0.22]

⌧ � [�0.07, 0.014] � [�0.008, 0.04] �

Table 2. 95% CL ranges of the WCs of the charged-current operators obtained at the scale µ = 2 GeV from
current experimental data on (semi)leptonic D(s)-meson decays, assuming them to be real.

Ref. [40]) and the bound is on their quadratic contribution to the rates. Pseudoscalar contributions
to the leptonic-decay rates are, on the other hand, chirally enhanced with respect to the SM contri-
bution and, as a result, constrained down to the per-mille level for electronic and muonic channels.
For the tauonic ones, the lepton-mass enhancement is absent, and the bounds are ⇠ 1% (cs) or
⇠ 10% (cd), depending again on the experimental uncertainties.

From the model building perspective, at a scale ⇤ > v, the NP effects are naturally realized in
terms of operators in the chiral basis. Models for which the dominant contribution is through scalar
operators receive the strongest constraint from leptonic decays, unless some tuning between OSL

and OSR is enforced. In addition, scalar and tensor operators receive radiative contributions that
rescale and mix them significantly when connecting the direct bounds in Table 2 to the matching
scale, cf. Eq. (2.9). Or, inversely, a model producing a tensor contribution at the matching scale
will produce a scalar contribution at low energies that is then constrained by leptonic decays. This
is illustrated in Table 3 where we have expressed the low-energy bounds in terms of the WCs in the
chiral basis at µ = 1 TeV. As expected, bounds on single scalar and tensor operators are dominated
by the measurements of pure leptonic decays.

Except for operators whose dominant contribution to the observables is already quadratic
(Oei

A,P and O
`i
S,T ), the limits in Table 2 are weakened if NP does not interfere with the SM. This

is the case when the neutrino flavor is � 6= ↵, or when the WCs are imaginary. The bounds are
relaxed typically by a factor ⇠ 3 � 6 over the symmetrized ranges shown in that table. However,
for a few operators, namely O

µs
A,P , O⌧s

A,P and O
ed
V , the worsening is by an order of magnitude.

Therefore, in the absence of SM interference, the bounds from D(s) meson decays are weak except
for the pseudoscalar operators, which can still be competitive with other constraints.

Improvements on purely muonic and tauonic branching fractions by a factor ⇠ 2 � 3 are
expected from future measurements at BES III [2] and Belle II [4] (see detailed projections in
Ref. [2]), while no projections for electronic decays have been provided. For semileptonic de-
cays, the data samples are expected to increase by two orders of magnitude after the full 50 ab�1

of integrated luminosity planned at Belle II [4], thus the precision will most likely be limited by
systematic uncertainties. Moreover, going beyond ⇠ 1% accuracy in the SM prediction of these
decay modes will be challenging because of the precision required in the computation of the cor-
responding hadronic matrix elements, including radiative (QED) effects (see LQCD projections in
Ref. [3]). In summary, improvements of the bounds reported in Tables 2 and 3 from the modes
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BES3 BR(D0 → K−μ+ν) = 3.41 ± 0.04 %e.g.

BES3 & CLEO

BES3

BR(D0 → π−e+ν) = 2.91 ± 0.04 %e.g.
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Thus, the operators in Eqs. (2.2) and (2.3) capture all leading effects in the SMEFT in semilep-
tonic charm transitions. Unless stated otherwise, throughout this paper we work in the up-basis for
the SU(2)L multiplets, where

q
i
L =

 
u
i
L

Vij d
j
L

!
, l

↵
L =

 
⌫
↵
L

e
↵
L

!
, (2.4)

with V the CKM matrix, and use i, j = 1, 2, 3 and ↵,� = 1, 2, 3 to label quark and lepton flavor
indices, respectively. We also use ` to denote the light leptons e and µ, but not ⌧ . The matching of
the SMEFT to the low-energy effective theory is reported next, while we postpone the discussion
of SU(2)L relations to Section 7.

2.2 The low-energy effective theory

The low-energy effective Lagrangian involving c ! d
i
ē
↵
⌫
� transitions can be written as

LCC = �
4GF
p
2
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�
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+ ✏
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+ ✏
↵�i
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↵�i
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+ ✏
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↵�i
SR

+ ✏
↵�i
T O

↵�i
T

i
+ h.c.,

(2.5)

where the effective operators read
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d
i
L) .

(2.6)

Note that mixed chirality tensor operators vanish by Lorentz invariance. The extraction of the CKM
matrix in the SMEFT is a delicate exercise [52]. For our purposes here, Vcd and Vcs can be safely
obtained by exploiting unitarity in the Wolfenstein parametrization,

Vcd = ��c +O(�5
c),

Vcs = 1� �
2
c/2 +O(�4

c),
(2.7)

where �c is the sine of the Cabibbo angle. We assume that any contribution of NP to the inputs of
these unitarity relations is small compared to the precision achieved with charm weak transitions.
For instance, �c obtained from kaon decays receives strong constraints from the unitarity of the first
row of the CKM matrix (see e.g. Ref. [40]). Similarly, we neglect the effects of NP modifications
to GF as determined from muon decays.

The tree-level matching conditions between the SMEFT in Eq. (2.1) and the low-energy La-
grangian in Eq. (2.5) are
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(2.8)
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where a sum over j is implicitly assumed. Interestingly, the low-energy operator O↵�i
VR

is gener-
ated in the SMEFT from an operator that modifies a chirality preserving W vertex but not from a
new four-fermion interaction, unlike other operators in Eq. (2.6). On the contrary, O↵�i

VL
receives

contributions from both a modified W vertex and a new four-fermion interaction, which cannot be
disentangled at low energies.

The relations in Eq. (2.8) hold at the matching scale µ = mW . The renormalization group
equations (RGE) induced by QCD and EW (QED) radiative effects allow one to robustly correlate
low- and high-pT data [53, 54]. In particular, the RGE running from µ = 1 TeV down to µ = 2 GeV
yields sizable effects in scalar and tensor operators [55],

✏SL(2GeV) ⇡ 2.1 ✏SL(TeV)� 0.3 ✏T (TeV) , ✏SR(2GeV) ⇡ 2.0 ✏SR(TeV) ,

✏T (2GeV) ⇡ 0.8 ✏T (TeV) .
(2.9)

Here, ✏X(TeV) refers to the corresponding combination of SMEFT WCs in Eq. (2.8). Vector oper-
ators do not run under QCD, and the electromagnetic and EW running remains at the percent level.
Similarly, other RGE-induced contributions, including the mixing with other SMEFT operators, do
not receive large QCD enhancements and remain at the percent level. All these effects are below
the level of precision of our studies, so we neglect them in the following.

3 Decays of charmed mesons

Leptonic and semileptonic decays D(s) ! ē
↵
⌫ and D ! ⇡(K)¯̀⌫ follow from the Lagrangian

in Eq. (2.5). This captures the leading effects of any possible short-distance contribution to c !

d
i
ē
↵
⌫
� flavor transitions, with the SM being a particular limit, ✏↵�iX,SM = 0 for all X . Hadronic ma-

trix elements of the corresponding operators are constrained by Lorentz symmetry and invariance of
QCD under parity. As a result, pure leptonic decays are sensitive only to axial (✏↵�iA = ✏

↵�i
VR

� ✏
↵�i
VL

)
and pseudoscalar (✏↵�iP = ✏

↵�i
SR

� ✏
↵�i
SL

) combinations of WCs. On the other hand, the semileptonic
decays are sensitive to vectorial (✏↵�iV = ✏

↵�i
VR

+ ✏
↵�i
VL

) and scalar (✏↵�iS = ✏
↵�i
SR

+ ✏
↵�i
SL

) combinations
of WCs, and to the tensor WC (✏↵�iT ).

The largest available phase space that can be achieved for the semileptonic decays is given
by mD+ � m⇡0 ' 1.735 GeV. Note that this is smaller than the ⌧ lepton mass, which makes the
semitauonic D-meson decays kinematically forbidden. A similar conclusion follows for the decays
of charmed baryons. In other words, the tauonic vector, scalar and tensor operators (O⌧�

V,S,T ) are
not directly accessible and, as we will see below, high-pT tails provide a unique probe of these
operators. On the other hand, pure tauonic decays of D(s) are allowed.2

In the following, we derive bounds on the WCs of the operators in Eq. (2.6) from D(s)-meson
decays. First, we restrict ourselves to the lepton-flavor diagonal case (✏↵iX ⌘ ✏

↵↵i
X ), which interferes

with the SM and leads to the strongest bounds. The rate of the leptonic D decays is

BR(D+
! ē

↵
⌫
↵) = ⌧D+

mD+m
2
↵f

2
DG

2
F |Vcd|

2
�
4
↵

8⇡

����1� ✏
↵d
A +

m
2
D

m↵(mc +mu)
✏
↵d
P

����
2

, (3.1)

2The phase-space restriction is lifted for semitauonic decays of excited D⇤ mesons. However, these predominantly
decay electromagnetically or strongly and the branching fractions of weak decays are suppressed [56, 57]. Furthermore,
one could in principle access the tauonic tensor operator by measuring D(s) ! ⌧⌫� (see e.g. Ref. [40] for the equivalent
pion and kaon decays).
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• Semileptonic decays:

i ↵ ✏↵i
V ✏↵i

A ✏↵i
S ✏↵i

P ✏↵i
T

d

e [�0.02, 0.11] [�32, 34] [�0.29, 0.29] [�0.005, 0.005] [�0.5, 0.5]

µ [�0.06, 0.07] [�0.013, 0.07] [�0.33, 0.17] [�0.0024, 0.0004] [�0.6, 0.22]

⌧ � [�0.27, 0.21] � [�0.11, 0.15] �

s

e [�0.07, 0.08] [�27, 29] [�0.29, 0.29] [�0.005, 0.004] [�0.5, 0.5]

µ [�0.09, 0.06] [�0.07, 0.02] [�0.4, 0.16] [�0.0007, 0.0022] [�0.9, 0.22]

⌧ � [�0.07, 0.014] � [�0.008, 0.04] �

Table 2. 95% CL ranges of the WCs of the charged-current operators obtained at the scale µ = 2 GeV from
current experimental data on (semi)leptonic D(s)-meson decays, assuming them to be real.

Ref. [40]) and the bound is on their quadratic contribution to the rates. Pseudoscalar contributions
to the leptonic-decay rates are, on the other hand, chirally enhanced with respect to the SM contri-
bution and, as a result, constrained down to the per-mille level for electronic and muonic channels.
For the tauonic ones, the lepton-mass enhancement is absent, and the bounds are ⇠ 1% (cs) or
⇠ 10% (cd), depending again on the experimental uncertainties.

From the model building perspective, at a scale ⇤ > v, the NP effects are naturally realized in
terms of operators in the chiral basis. Models for which the dominant contribution is through scalar
operators receive the strongest constraint from leptonic decays, unless some tuning between OSL

and OSR is enforced. In addition, scalar and tensor operators receive radiative contributions that
rescale and mix them significantly when connecting the direct bounds in Table 2 to the matching
scale, cf. Eq. (2.9). Or, inversely, a model producing a tensor contribution at the matching scale
will produce a scalar contribution at low energies that is then constrained by leptonic decays. This
is illustrated in Table 3 where we have expressed the low-energy bounds in terms of the WCs in the
chiral basis at µ = 1 TeV. As expected, bounds on single scalar and tensor operators are dominated
by the measurements of pure leptonic decays.

Except for operators whose dominant contribution to the observables is already quadratic
(Oei

A,P and O
`i
S,T ), the limits in Table 2 are weakened if NP does not interfere with the SM. This

is the case when the neutrino flavor is � 6= ↵, or when the WCs are imaginary. The bounds are
relaxed typically by a factor ⇠ 3 � 6 over the symmetrized ranges shown in that table. However,
for a few operators, namely O

µs
A,P , O⌧s

A,P and O
ed
V , the worsening is by an order of magnitude.

Therefore, in the absence of SM interference, the bounds from D(s) meson decays are weak except
for the pseudoscalar operators, which can still be competitive with other constraints.

Improvements on purely muonic and tauonic branching fractions by a factor ⇠ 2 � 3 are
expected from future measurements at BES III [2] and Belle II [4] (see detailed projections in
Ref. [2]), while no projections for electronic decays have been provided. For semileptonic de-
cays, the data samples are expected to increase by two orders of magnitude after the full 50 ab�1

of integrated luminosity planned at Belle II [4], thus the precision will most likely be limited by
systematic uncertainties. Moreover, going beyond ⇠ 1% accuracy in the SM prediction of these
decay modes will be challenging because of the precision required in the computation of the cor-
responding hadronic matrix elements, including radiative (QED) effects (see LQCD projections in
Ref. [3]). In summary, improvements of the bounds reported in Tables 2 and 3 from the modes
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(*) kinematically forbidden

where a sum over j is implicitly assumed. Interestingly, the low-energy operator O↵�i
VR

is gener-
ated in the SMEFT from an operator that modifies a chirality preserving W vertex but not from a
new four-fermion interaction, unlike other operators in Eq. (2.6). On the contrary, O↵�i

VL
receives

contributions from both a modified W vertex and a new four-fermion interaction, which cannot be
disentangled at low energies.

The relations in Eq. (2.8) hold at the matching scale µ = mW . The renormalization group
equations (RGE) induced by QCD and EW (QED) radiative effects allow one to robustly correlate
low- and high-pT data [53, 54]. In particular, the RGE running from µ = 1 TeV down to µ = 2 GeV
yields sizable effects in scalar and tensor operators [55],

✏SL(2GeV) ⇡ 2.1 ✏SL(TeV)� 0.3 ✏T (TeV) , ✏SR(2GeV) ⇡ 2.0 ✏SR(TeV) ,

✏T (2GeV) ⇡ 0.8 ✏T (TeV) .
(2.9)

Here, ✏X(TeV) refers to the corresponding combination of SMEFT WCs in Eq. (2.8). Vector oper-
ators do not run under QCD, and the electromagnetic and EW running remains at the percent level.
Similarly, other RGE-induced contributions, including the mixing with other SMEFT operators, do
not receive large QCD enhancements and remain at the percent level. All these effects are below
the level of precision of our studies, so we neglect them in the following.

3 Decays of charmed mesons

Leptonic and semileptonic decays D(s) ! ē
↵
⌫ and D ! ⇡(K)¯̀⌫ follow from the Lagrangian

in Eq. (2.5). This captures the leading effects of any possible short-distance contribution to c !

d
i
ē
↵
⌫
� flavor transitions, with the SM being a particular limit, ✏↵�iX,SM = 0 for all X . Hadronic ma-

trix elements of the corresponding operators are constrained by Lorentz symmetry and invariance of
QCD under parity. As a result, pure leptonic decays are sensitive only to axial (✏↵�iA = ✏

↵�i
VR

� ✏
↵�i
VL

)
and pseudoscalar (✏↵�iP = ✏

↵�i
SR

� ✏
↵�i
SL

) combinations of WCs. On the other hand, the semileptonic
decays are sensitive to vectorial (✏↵�iV = ✏

↵�i
VR

+ ✏
↵�i
VL

) and scalar (✏↵�iS = ✏
↵�i
SR

+ ✏
↵�i
SL

) combinations
of WCs, and to the tensor WC (✏↵�iT ).

The largest available phase space that can be achieved for the semileptonic decays is given
by mD+ � m⇡0 ' 1.735 GeV. Note that this is smaller than the ⌧ lepton mass, which makes the
semitauonic D-meson decays kinematically forbidden. A similar conclusion follows for the decays
of charmed baryons. In other words, the tauonic vector, scalar and tensor operators (O⌧�

V,S,T ) are
not directly accessible and, as we will see below, high-pT tails provide a unique probe of these
operators. On the other hand, pure tauonic decays of D(s) are allowed.2

In the following, we derive bounds on the WCs of the operators in Eq. (2.6) from D(s)-meson
decays. First, we restrict ourselves to the lepton-flavor diagonal case (✏↵iX ⌘ ✏

↵↵i
X ), which interferes

with the SM and leads to the strongest bounds. The rate of the leptonic D decays is

BR(D+
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↵
⌫
↵) = ⌧D+
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2
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2
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, (3.1)

2The phase-space restriction is lifted for semitauonic decays of excited D⇤ mesons. However, these predominantly
decay electromagnetically or strongly and the branching fractions of weak decays are suppressed [56, 57]. Furthermore,
one could in principle access the tauonic tensor operator by measuring D(s) ! ⌧⌫� (see e.g. Ref. [40] for the equivalent
pion and kaon decays).
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(*) kinematically forbidden

BES3 BR(D0 → K−μ+ν) = 3.41 ± 0.04 %e.g.

BES3 & CLEO

BES3

BR(D0 → π−e+ν) = 2.91 ± 0.04 %e.g.

BES3 & CLEO

where a sum over j is implicitly assumed. Interestingly, the low-energy operator O↵�i
VR

is gener-
ated in the SMEFT from an operator that modifies a chirality preserving W vertex but not from a
new four-fermion interaction, unlike other operators in Eq. (2.6). On the contrary, O↵�i

VL
receives

contributions from both a modified W vertex and a new four-fermion interaction, which cannot be
disentangled at low energies.

The relations in Eq. (2.8) hold at the matching scale µ = mW . The renormalization group
equations (RGE) induced by QCD and EW (QED) radiative effects allow one to robustly correlate
low- and high-pT data [53, 54]. In particular, the RGE running from µ = 1 TeV down to µ = 2 GeV
yields sizable effects in scalar and tensor operators [55],

✏SL(2GeV) ⇡ 2.1 ✏SL(TeV)� 0.3 ✏T (TeV) , ✏SR(2GeV) ⇡ 2.0 ✏SR(TeV) ,

✏T (2GeV) ⇡ 0.8 ✏T (TeV) .
(2.9)

Here, ✏X(TeV) refers to the corresponding combination of SMEFT WCs in Eq. (2.8). Vector oper-
ators do not run under QCD, and the electromagnetic and EW running remains at the percent level.
Similarly, other RGE-induced contributions, including the mixing with other SMEFT operators, do
not receive large QCD enhancements and remain at the percent level. All these effects are below
the level of precision of our studies, so we neglect them in the following.

3 Decays of charmed mesons

Leptonic and semileptonic decays D(s) ! ē
↵
⌫ and D ! ⇡(K)¯̀⌫ follow from the Lagrangian

in Eq. (2.5). This captures the leading effects of any possible short-distance contribution to c !
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ē
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⌫
� flavor transitions, with the SM being a particular limit, ✏↵�iX,SM = 0 for all X . Hadronic ma-

trix elements of the corresponding operators are constrained by Lorentz symmetry and invariance of
QCD under parity. As a result, pure leptonic decays are sensitive only to axial (✏↵�iA = ✏
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and pseudoscalar (✏↵�iP = ✏
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+ ✏
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SL

) combinations
of WCs, and to the tensor WC (✏↵�iT ).

The largest available phase space that can be achieved for the semileptonic decays is given
by mD+ � m⇡0 ' 1.735 GeV. Note that this is smaller than the ⌧ lepton mass, which makes the
semitauonic D-meson decays kinematically forbidden. A similar conclusion follows for the decays
of charmed baryons. In other words, the tauonic vector, scalar and tensor operators (O⌧�

V,S,T ) are
not directly accessible and, as we will see below, high-pT tails provide a unique probe of these
operators. On the other hand, pure tauonic decays of D(s) are allowed.2

In the following, we derive bounds on the WCs of the operators in Eq. (2.6) from D(s)-meson
decays. First, we restrict ourselves to the lepton-flavor diagonal case (✏↵iX ⌘ ✏

↵↵i
X ), which interferes

with the SM and leads to the strongest bounds. The rate of the leptonic D decays is
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2The phase-space restriction is lifted for semitauonic decays of excited D⇤ mesons. However, these predominantly
decay electromagnetically or strongly and the branching fractions of weak decays are suppressed [56, 57]. Furthermore,
one could in principle access the tauonic tensor operator by measuring D(s) ! ⌧⌫� (see e.g. Ref. [40] for the equivalent
pion and kaon decays).
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Thus, the operators in Eqs. (2.2) and (2.3) capture all leading effects in the SMEFT in semilep-
tonic charm transitions. Unless stated otherwise, throughout this paper we work in the up-basis for
the SU(2)L multiplets, where

q
i
L =

 
u
i
L

Vij d
j
L

!
, l

↵
L =

 
⌫
↵
L

e
↵
L

!
, (2.4)

with V the CKM matrix, and use i, j = 1, 2, 3 and ↵,� = 1, 2, 3 to label quark and lepton flavor
indices, respectively. We also use ` to denote the light leptons e and µ, but not ⌧ . The matching of
the SMEFT to the low-energy effective theory is reported next, while we postpone the discussion
of SU(2)L relations to Section 7.

2.2 The low-energy effective theory

The low-energy effective Lagrangian involving c ! d
i
ē
↵
⌫
� transitions can be written as

LCC = �
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(2.5)

where the effective operators read
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= (ē↵L�µ⌫
�
L)(c̄L�

µ
d
i
L) , O

↵�i
VR
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= (ē↵R ⌫
�
L)(c̄L d

i
R) ,

O
↵�i
T = (ē↵R�µ⌫⌫
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(2.6)

Note that mixed chirality tensor operators vanish by Lorentz invariance. The extraction of the CKM
matrix in the SMEFT is a delicate exercise [52]. For our purposes here, Vcd and Vcs can be safely
obtained by exploiting unitarity in the Wolfenstein parametrization,

Vcd = ��c +O(�5
c),

Vcs = 1� �
2
c/2 +O(�4

c),
(2.7)

where �c is the sine of the Cabibbo angle. We assume that any contribution of NP to the inputs of
these unitarity relations is small compared to the precision achieved with charm weak transitions.
For instance, �c obtained from kaon decays receives strong constraints from the unitarity of the first
row of the CKM matrix (see e.g. Ref. [40]). Similarly, we neglect the effects of NP modifications
to GF as determined from muon decays.

The tree-level matching conditions between the SMEFT in Eq. (2.1) and the low-energy La-
grangian in Eq. (2.5) are
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where a sum over j is implicitly assumed. Interestingly, the low-energy operator O↵�i
VR

is gener-
ated in the SMEFT from an operator that modifies a chirality preserving W vertex but not from a
new four-fermion interaction, unlike other operators in Eq. (2.6). On the contrary, O↵�i

VL
receives

contributions from both a modified W vertex and a new four-fermion interaction, which cannot be
disentangled at low energies.

The relations in Eq. (2.8) hold at the matching scale µ = mW . The renormalization group
equations (RGE) induced by QCD and EW (QED) radiative effects allow one to robustly correlate
low- and high-pT data [53, 54]. In particular, the RGE running from µ = 1 TeV down to µ = 2 GeV
yields sizable effects in scalar and tensor operators [55],

✏SL(2GeV) ⇡ 2.1 ✏SL(TeV)� 0.3 ✏T (TeV) , ✏SR(2GeV) ⇡ 2.0 ✏SR(TeV) ,

✏T (2GeV) ⇡ 0.8 ✏T (TeV) .
(2.9)

Here, ✏X(TeV) refers to the corresponding combination of SMEFT WCs in Eq. (2.8). Vector oper-
ators do not run under QCD, and the electromagnetic and EW running remains at the percent level.
Similarly, other RGE-induced contributions, including the mixing with other SMEFT operators, do
not receive large QCD enhancements and remain at the percent level. All these effects are below
the level of precision of our studies, so we neglect them in the following.

3 Decays of charmed mesons

Leptonic and semileptonic decays D(s) ! ē
↵
⌫ and D ! ⇡(K)¯̀⌫ follow from the Lagrangian

in Eq. (2.5). This captures the leading effects of any possible short-distance contribution to c !

d
i
ē
↵
⌫
� flavor transitions, with the SM being a particular limit, ✏↵�iX,SM = 0 for all X . Hadronic ma-

trix elements of the corresponding operators are constrained by Lorentz symmetry and invariance of
QCD under parity. As a result, pure leptonic decays are sensitive only to axial (✏↵�iA = ✏

↵�i
VR

� ✏
↵�i
VL

)
and pseudoscalar (✏↵�iP = ✏

↵�i
SR

� ✏
↵�i
SL

) combinations of WCs. On the other hand, the semileptonic
decays are sensitive to vectorial (✏↵�iV = ✏

↵�i
VR

+ ✏
↵�i
VL

) and scalar (✏↵�iS = ✏
↵�i
SR

+ ✏
↵�i
SL

) combinations
of WCs, and to the tensor WC (✏↵�iT ).

The largest available phase space that can be achieved for the semileptonic decays is given
by mD+ � m⇡0 ' 1.735 GeV. Note that this is smaller than the ⌧ lepton mass, which makes the
semitauonic D-meson decays kinematically forbidden. A similar conclusion follows for the decays
of charmed baryons. In other words, the tauonic vector, scalar and tensor operators (O⌧�

V,S,T ) are
not directly accessible and, as we will see below, high-pT tails provide a unique probe of these
operators. On the other hand, pure tauonic decays of D(s) are allowed.2

In the following, we derive bounds on the WCs of the operators in Eq. (2.6) from D(s)-meson
decays. First, we restrict ourselves to the lepton-flavor diagonal case (✏↵iX ⌘ ✏

↵↵i
X ), which interferes

with the SM and leads to the strongest bounds. The rate of the leptonic D decays is

BR(D+
! ē

↵
⌫
↵) = ⌧D+

mD+m
2
↵f

2
DG

2
F |Vcd|

2
�
4
↵

8⇡

����1� ✏
↵d
A +

m
2
D

m↵(mc +mu)
✏
↵d
P

����
2

, (3.1)

2The phase-space restriction is lifted for semitauonic decays of excited D⇤ mesons. However, these predominantly
decay electromagnetically or strongly and the branching fractions of weak decays are suppressed [56, 57]. Furthermore,
one could in principle access the tauonic tensor operator by measuring D(s) ! ⌧⌫� (see e.g. Ref. [40] for the equivalent
pion and kaon decays).

– 5 –

• Semileptonic decays:

i ↵ ✏↵i
V ✏↵i

A ✏↵i
S ✏↵i

P ✏↵i
T

d

e [�0.02, 0.11] [�32, 34] [�0.29, 0.29] [�0.005, 0.005] [�0.5, 0.5]

µ [�0.06, 0.07] [�0.013, 0.07] [�0.33, 0.17] [�0.0024, 0.0004] [�0.6, 0.22]

⌧ � [�0.27, 0.21] � [�0.11, 0.15] �

s

e [�0.07, 0.08] [�27, 29] [�0.29, 0.29] [�0.005, 0.004] [�0.5, 0.5]

µ [�0.09, 0.06] [�0.07, 0.02] [�0.4, 0.16] [�0.0007, 0.0022] [�0.9, 0.22]

⌧ � [�0.07, 0.014] � [�0.008, 0.04] �

Table 2. 95% CL ranges of the WCs of the charged-current operators obtained at the scale µ = 2 GeV from
current experimental data on (semi)leptonic D(s)-meson decays, assuming them to be real.

Ref. [40]) and the bound is on their quadratic contribution to the rates. Pseudoscalar contributions
to the leptonic-decay rates are, on the other hand, chirally enhanced with respect to the SM contri-
bution and, as a result, constrained down to the per-mille level for electronic and muonic channels.
For the tauonic ones, the lepton-mass enhancement is absent, and the bounds are ⇠ 1% (cs) or
⇠ 10% (cd), depending again on the experimental uncertainties.

From the model building perspective, at a scale ⇤ > v, the NP effects are naturally realized in
terms of operators in the chiral basis. Models for which the dominant contribution is through scalar
operators receive the strongest constraint from leptonic decays, unless some tuning between OSL

and OSR is enforced. In addition, scalar and tensor operators receive radiative contributions that
rescale and mix them significantly when connecting the direct bounds in Table 2 to the matching
scale, cf. Eq. (2.9). Or, inversely, a model producing a tensor contribution at the matching scale
will produce a scalar contribution at low energies that is then constrained by leptonic decays. This
is illustrated in Table 3 where we have expressed the low-energy bounds in terms of the WCs in the
chiral basis at µ = 1 TeV. As expected, bounds on single scalar and tensor operators are dominated
by the measurements of pure leptonic decays.

Except for operators whose dominant contribution to the observables is already quadratic
(Oei

A,P and O
`i
S,T ), the limits in Table 2 are weakened if NP does not interfere with the SM. This

is the case when the neutrino flavor is � 6= ↵, or when the WCs are imaginary. The bounds are
relaxed typically by a factor ⇠ 3 � 6 over the symmetrized ranges shown in that table. However,
for a few operators, namely O

µs
A,P , O⌧s

A,P and O
ed
V , the worsening is by an order of magnitude.

Therefore, in the absence of SM interference, the bounds from D(s) meson decays are weak except
for the pseudoscalar operators, which can still be competitive with other constraints.

Improvements on purely muonic and tauonic branching fractions by a factor ⇠ 2 � 3 are
expected from future measurements at BES III [2] and Belle II [4] (see detailed projections in
Ref. [2]), while no projections for electronic decays have been provided. For semileptonic de-
cays, the data samples are expected to increase by two orders of magnitude after the full 50 ab�1

of integrated luminosity planned at Belle II [4], thus the precision will most likely be limited by
systematic uncertainties. Moreover, going beyond ⇠ 1% accuracy in the SM prediction of these
decay modes will be challenging because of the precision required in the computation of the cor-
responding hadronic matrix elements, including radiative (QED) effects (see LQCD projections in
Ref. [3]). In summary, improvements of the bounds reported in Tables 2 and 3 from the modes
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95% CL ranges on WCs at 2 GeV (one parameter fit).

• Vector operators constrained at the few percent level. Form factor errors relevant.
• Limits on scalar and tensor operators are weak, dominated by the quadratic contribution.

• Future improvements ~ 3x on the rates at BESIII. Challenge for LQCD to keep up.
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where a sum over j is implicitly assumed. Interestingly, the low-energy operator O↵�i
VR

is gener-
ated in the SMEFT from an operator that modifies a chirality preserving W vertex but not from a
new four-fermion interaction, unlike other operators in Eq. (2.6). On the contrary, O↵�i

VL
receives

contributions from both a modified W vertex and a new four-fermion interaction, which cannot be
disentangled at low energies.

The relations in Eq. (2.8) hold at the matching scale µ = mW . The renormalization group
equations (RGE) induced by QCD and EW (QED) radiative effects allow one to robustly correlate
low- and high-pT data [53, 54]. In particular, the RGE running from µ = 1 TeV down to µ = 2 GeV
yields sizable effects in scalar and tensor operators [55],

✏SL(2GeV) ⇡ 2.1 ✏SL(TeV)� 0.3 ✏T (TeV) , ✏SR(2GeV) ⇡ 2.0 ✏SR(TeV) ,

✏T (2GeV) ⇡ 0.8 ✏T (TeV) .
(2.9)

Here, ✏X(TeV) refers to the corresponding combination of SMEFT WCs in Eq. (2.8). Vector oper-
ators do not run under QCD, and the electromagnetic and EW running remains at the percent level.
Similarly, other RGE-induced contributions, including the mixing with other SMEFT operators, do
not receive large QCD enhancements and remain at the percent level. All these effects are below
the level of precision of our studies, so we neglect them in the following.

3 Decays of charmed mesons

Leptonic and semileptonic decays D(s) ! ē
↵
⌫ and D ! ⇡(K)¯̀⌫ follow from the Lagrangian

in Eq. (2.5). This captures the leading effects of any possible short-distance contribution to c !

d
i
ē
↵
⌫
� flavor transitions, with the SM being a particular limit, ✏↵�iX,SM = 0 for all X . Hadronic ma-

trix elements of the corresponding operators are constrained by Lorentz symmetry and invariance of
QCD under parity. As a result, pure leptonic decays are sensitive only to axial (✏↵�iA = ✏

↵�i
VR

� ✏
↵�i
VL

)
and pseudoscalar (✏↵�iP = ✏

↵�i
SR

� ✏
↵�i
SL

) combinations of WCs. On the other hand, the semileptonic
decays are sensitive to vectorial (✏↵�iV = ✏

↵�i
VR

+ ✏
↵�i
VL

) and scalar (✏↵�iS = ✏
↵�i
SR

+ ✏
↵�i
SL

) combinations
of WCs, and to the tensor WC (✏↵�iT ).

The largest available phase space that can be achieved for the semileptonic decays is given
by mD+ � m⇡0 ' 1.735 GeV. Note that this is smaller than the ⌧ lepton mass, which makes the
semitauonic D-meson decays kinematically forbidden. A similar conclusion follows for the decays
of charmed baryons. In other words, the tauonic vector, scalar and tensor operators (O⌧�

V,S,T ) are
not directly accessible and, as we will see below, high-pT tails provide a unique probe of these
operators. On the other hand, pure tauonic decays of D(s) are allowed.2

In the following, we derive bounds on the WCs of the operators in Eq. (2.6) from D(s)-meson
decays. First, we restrict ourselves to the lepton-flavor diagonal case (✏↵iX ⌘ ✏

↵↵i
X ), which interferes

with the SM and leads to the strongest bounds. The rate of the leptonic D decays is

BR(D+
! ē

↵
⌫
↵) = ⌧D+

mD+m
2
↵f

2
DG

2
F |Vcd|

2
�
4
↵

8⇡

����1� ✏
↵d
A +

m
2
D

m↵(mc +mu)
✏
↵d
P

����
2

, (3.1)

2The phase-space restriction is lifted for semitauonic decays of excited D⇤ mesons. However, these predominantly
decay electromagnetically or strongly and the branching fractions of weak decays are suppressed [56, 57]. Furthermore,
one could in principle access the tauonic tensor operator by measuring D(s) ! ⌧⌫� (see e.g. Ref. [40] for the equivalent
pion and kaon decays).
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Thus, the operators in Eqs. (2.2) and (2.3) capture all leading effects in the SMEFT in semilep-
tonic charm transitions. Unless stated otherwise, throughout this paper we work in the up-basis for
the SU(2)L multiplets, where

q
i
L =

 
u
i
L

Vij d
j
L

!
, l

↵
L =

 
⌫
↵
L

e
↵
L

!
, (2.4)

with V the CKM matrix, and use i, j = 1, 2, 3 and ↵,� = 1, 2, 3 to label quark and lepton flavor
indices, respectively. We also use ` to denote the light leptons e and µ, but not ⌧ . The matching of
the SMEFT to the low-energy effective theory is reported next, while we postpone the discussion
of SU(2)L relations to Section 7.

2.2 The low-energy effective theory

The low-energy effective Lagrangian involving c ! d
i
ē
↵
⌫
� transitions can be written as

LCC = �
4GF
p
2
Vci

h�
1 + ✏

↵�i
VL

�
O

↵�i
VL

+ ✏
↵�i
VR

O
↵�i
VR

+ ✏
↵�i
SL

O
↵�i
SL

+ ✏
↵�i
SR

O
↵�i
SR

+ ✏
↵�i
T O

↵�i
T

i
+ h.c.,

(2.5)

where the effective operators read

O
↵�i
VL

= (ē↵L�µ⌫
�
L)(c̄L�

µ
d
i
L) , O

↵�i
VR

= (ē↵L�µ⌫
�
L)(c̄R�

µ
d
i
R) ,

O
↵�i
SL

= (ē↵R ⌫
�
L)(c̄R d

i
L) , O

↵�i
SR

= (ē↵R ⌫
�
L)(c̄L d

i
R) ,

O
↵�i
T = (ē↵R�µ⌫⌫

�
L)(c̄R�

µ⌫
d
i
L) .

(2.6)

Note that mixed chirality tensor operators vanish by Lorentz invariance. The extraction of the CKM
matrix in the SMEFT is a delicate exercise [52]. For our purposes here, Vcd and Vcs can be safely
obtained by exploiting unitarity in the Wolfenstein parametrization,

Vcd = ��c +O(�5
c),

Vcs = 1� �
2
c/2 +O(�4

c),
(2.7)

where �c is the sine of the Cabibbo angle. We assume that any contribution of NP to the inputs of
these unitarity relations is small compared to the precision achieved with charm weak transitions.
For instance, �c obtained from kaon decays receives strong constraints from the unitarity of the first
row of the CKM matrix (see e.g. Ref. [40]). Similarly, we neglect the effects of NP modifications
to GF as determined from muon decays.

The tree-level matching conditions between the SMEFT in Eq. (2.1) and the low-energy La-
grangian in Eq. (2.5) are

✏
↵�i
VL

= �
Vji

Vci
[C(3)

lq ]↵�2j + �↵�
Vji

Vci
[C(3)

�q ]2j , ✏
↵�i
VR

=
1

2Vci
�↵� [C�ud]2i ,

✏
↵�i
SL

= �
Vji

2Vci
[C(1)

lequ]
⇤
�↵j2 , ✏

↵�i
SR

= �
1

2Vci
[Cledq]

⇤
�↵i2 ,

✏
↵�i
T = �

Vji

2Vci
[C(3)

lequ]
⇤
�↵j2 ,

(2.8)
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where a sum over j is implicitly assumed. Interestingly, the low-energy operator O↵�i
VR

is gener-
ated in the SMEFT from an operator that modifies a chirality preserving W vertex but not from a
new four-fermion interaction, unlike other operators in Eq. (2.6). On the contrary, O↵�i

VL
receives

contributions from both a modified W vertex and a new four-fermion interaction, which cannot be
disentangled at low energies.

The relations in Eq. (2.8) hold at the matching scale µ = mW . The renormalization group
equations (RGE) induced by QCD and EW (QED) radiative effects allow one to robustly correlate
low- and high-pT data [53, 54]. In particular, the RGE running from µ = 1 TeV down to µ = 2 GeV
yields sizable effects in scalar and tensor operators [55],

✏SL(2GeV) ⇡ 2.1 ✏SL(TeV)� 0.3 ✏T (TeV) , ✏SR(2GeV) ⇡ 2.0 ✏SR(TeV) ,

✏T (2GeV) ⇡ 0.8 ✏T (TeV) .
(2.9)

Here, ✏X(TeV) refers to the corresponding combination of SMEFT WCs in Eq. (2.8). Vector oper-
ators do not run under QCD, and the electromagnetic and EW running remains at the percent level.
Similarly, other RGE-induced contributions, including the mixing with other SMEFT operators, do
not receive large QCD enhancements and remain at the percent level. All these effects are below
the level of precision of our studies, so we neglect them in the following.

3 Decays of charmed mesons

Leptonic and semileptonic decays D(s) ! ē
↵
⌫ and D ! ⇡(K)¯̀⌫ follow from the Lagrangian

in Eq. (2.5). This captures the leading effects of any possible short-distance contribution to c !

d
i
ē
↵
⌫
� flavor transitions, with the SM being a particular limit, ✏↵�iX,SM = 0 for all X . Hadronic ma-

trix elements of the corresponding operators are constrained by Lorentz symmetry and invariance of
QCD under parity. As a result, pure leptonic decays are sensitive only to axial (✏↵�iA = ✏

↵�i
VR

� ✏
↵�i
VL

)
and pseudoscalar (✏↵�iP = ✏

↵�i
SR

� ✏
↵�i
SL

) combinations of WCs. On the other hand, the semileptonic
decays are sensitive to vectorial (✏↵�iV = ✏

↵�i
VR

+ ✏
↵�i
VL

) and scalar (✏↵�iS = ✏
↵�i
SR

+ ✏
↵�i
SL

) combinations
of WCs, and to the tensor WC (✏↵�iT ).

The largest available phase space that can be achieved for the semileptonic decays is given
by mD+ � m⇡0 ' 1.735 GeV. Note that this is smaller than the ⌧ lepton mass, which makes the
semitauonic D-meson decays kinematically forbidden. A similar conclusion follows for the decays
of charmed baryons. In other words, the tauonic vector, scalar and tensor operators (O⌧�

V,S,T ) are
not directly accessible and, as we will see below, high-pT tails provide a unique probe of these
operators. On the other hand, pure tauonic decays of D(s) are allowed.2

In the following, we derive bounds on the WCs of the operators in Eq. (2.6) from D(s)-meson
decays. First, we restrict ourselves to the lepton-flavor diagonal case (✏↵iX ⌘ ✏

↵↵i
X ), which interferes

with the SM and leads to the strongest bounds. The rate of the leptonic D decays is

BR(D+
! ē

↵
⌫
↵) = ⌧D+

mD+m
2
↵f

2
DG

2
F |Vcd|

2
�
4
↵

8⇡

����1� ✏
↵d
A +

m
2
D

m↵(mc +mu)
✏
↵d
P

����
2

, (3.1)

2The phase-space restriction is lifted for semitauonic decays of excited D⇤ mesons. However, these predominantly
decay electromagnetically or strongly and the branching fractions of weak decays are suppressed [56, 57]. Furthermore,
one could in principle access the tauonic tensor operator by measuring D(s) ! ⌧⌫� (see e.g. Ref. [40] for the equivalent
pion and kaon decays).
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• Leptonic decays:

• Semileptonic decays:

i ↵ ✏↵i
V ✏↵i

A ✏↵i
S ✏↵i

P ✏↵i
T

d

e [�0.02, 0.11] [�32, 34] [�0.29, 0.29] [�0.005, 0.005] [�0.5, 0.5]

µ [�0.06, 0.07] [�0.013, 0.07] [�0.33, 0.17] [�0.0024, 0.0004] [�0.6, 0.22]

⌧ � [�0.27, 0.21] � [�0.11, 0.15] �

s

e [�0.07, 0.08] [�27, 29] [�0.29, 0.29] [�0.005, 0.004] [�0.5, 0.5]

µ [�0.09, 0.06] [�0.07, 0.02] [�0.4, 0.16] [�0.0007, 0.0022] [�0.9, 0.22]

⌧ � [�0.07, 0.014] � [�0.008, 0.04] �

Table 2. 95% CL ranges of the WCs of the charged-current operators obtained at the scale µ = 2 GeV from
current experimental data on (semi)leptonic D(s)-meson decays, assuming them to be real.

Ref. [40]) and the bound is on their quadratic contribution to the rates. Pseudoscalar contributions
to the leptonic-decay rates are, on the other hand, chirally enhanced with respect to the SM contri-
bution and, as a result, constrained down to the per-mille level for electronic and muonic channels.
For the tauonic ones, the lepton-mass enhancement is absent, and the bounds are ⇠ 1% (cs) or
⇠ 10% (cd), depending again on the experimental uncertainties.

From the model building perspective, at a scale ⇤ > v, the NP effects are naturally realized in
terms of operators in the chiral basis. Models for which the dominant contribution is through scalar
operators receive the strongest constraint from leptonic decays, unless some tuning between OSL

and OSR is enforced. In addition, scalar and tensor operators receive radiative contributions that
rescale and mix them significantly when connecting the direct bounds in Table 2 to the matching
scale, cf. Eq. (2.9). Or, inversely, a model producing a tensor contribution at the matching scale
will produce a scalar contribution at low energies that is then constrained by leptonic decays. This
is illustrated in Table 3 where we have expressed the low-energy bounds in terms of the WCs in the
chiral basis at µ = 1 TeV. As expected, bounds on single scalar and tensor operators are dominated
by the measurements of pure leptonic decays.

Except for operators whose dominant contribution to the observables is already quadratic
(Oei

A,P and O
`i
S,T ), the limits in Table 2 are weakened if NP does not interfere with the SM. This

is the case when the neutrino flavor is � 6= ↵, or when the WCs are imaginary. The bounds are
relaxed typically by a factor ⇠ 3 � 6 over the symmetrized ranges shown in that table. However,
for a few operators, namely O

µs
A,P , O⌧s

A,P and O
ed
V , the worsening is by an order of magnitude.

Therefore, in the absence of SM interference, the bounds from D(s) meson decays are weak except
for the pseudoscalar operators, which can still be competitive with other constraints.

Improvements on purely muonic and tauonic branching fractions by a factor ⇠ 2 � 3 are
expected from future measurements at BES III [2] and Belle II [4] (see detailed projections in
Ref. [2]), while no projections for electronic decays have been provided. For semileptonic de-
cays, the data samples are expected to increase by two orders of magnitude after the full 50 ab�1

of integrated luminosity planned at Belle II [4], thus the precision will most likely be limited by
systematic uncertainties. Moreover, going beyond ⇠ 1% accuracy in the SM prediction of these
decay modes will be challenging because of the precision required in the computation of the cor-
responding hadronic matrix elements, including radiative (QED) effects (see LQCD projections in
Ref. [3]). In summary, improvements of the bounds reported in Tables 2 and 3 from the modes
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95% CL ranges on WCs at 2 GeV (one parameter fit).
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where a sum over j is implicitly assumed. Interestingly, the low-energy operator O↵�i
VR

is gener-
ated in the SMEFT from an operator that modifies a chirality preserving W vertex but not from a
new four-fermion interaction, unlike other operators in Eq. (2.6). On the contrary, O↵�i

VL
receives

contributions from both a modified W vertex and a new four-fermion interaction, which cannot be
disentangled at low energies.

The relations in Eq. (2.8) hold at the matching scale µ = mW . The renormalization group
equations (RGE) induced by QCD and EW (QED) radiative effects allow one to robustly correlate
low- and high-pT data [53, 54]. In particular, the RGE running from µ = 1 TeV down to µ = 2 GeV
yields sizable effects in scalar and tensor operators [55],

✏SL(2GeV) ⇡ 2.1 ✏SL(TeV)� 0.3 ✏T (TeV) , ✏SR(2GeV) ⇡ 2.0 ✏SR(TeV) ,

✏T (2GeV) ⇡ 0.8 ✏T (TeV) .
(2.9)

Here, ✏X(TeV) refers to the corresponding combination of SMEFT WCs in Eq. (2.8). Vector oper-
ators do not run under QCD, and the electromagnetic and EW running remains at the percent level.
Similarly, other RGE-induced contributions, including the mixing with other SMEFT operators, do
not receive large QCD enhancements and remain at the percent level. All these effects are below
the level of precision of our studies, so we neglect them in the following.

3 Decays of charmed mesons

Leptonic and semileptonic decays D(s) ! ē
↵
⌫ and D ! ⇡(K)¯̀⌫ follow from the Lagrangian

in Eq. (2.5). This captures the leading effects of any possible short-distance contribution to c !

d
i
ē
↵
⌫
� flavor transitions, with the SM being a particular limit, ✏↵�iX,SM = 0 for all X . Hadronic ma-

trix elements of the corresponding operators are constrained by Lorentz symmetry and invariance of
QCD under parity. As a result, pure leptonic decays are sensitive only to axial (✏↵�iA = ✏

↵�i
VR

� ✏
↵�i
VL

)
and pseudoscalar (✏↵�iP = ✏

↵�i
SR

� ✏
↵�i
SL

) combinations of WCs. On the other hand, the semileptonic
decays are sensitive to vectorial (✏↵�iV = ✏

↵�i
VR

+ ✏
↵�i
VL

) and scalar (✏↵�iS = ✏
↵�i
SR

+ ✏
↵�i
SL

) combinations
of WCs, and to the tensor WC (✏↵�iT ).

The largest available phase space that can be achieved for the semileptonic decays is given
by mD+ � m⇡0 ' 1.735 GeV. Note that this is smaller than the ⌧ lepton mass, which makes the
semitauonic D-meson decays kinematically forbidden. A similar conclusion follows for the decays
of charmed baryons. In other words, the tauonic vector, scalar and tensor operators (O⌧�

V,S,T ) are
not directly accessible and, as we will see below, high-pT tails provide a unique probe of these
operators. On the other hand, pure tauonic decays of D(s) are allowed.2

In the following, we derive bounds on the WCs of the operators in Eq. (2.6) from D(s)-meson
decays. First, we restrict ourselves to the lepton-flavor diagonal case (✏↵iX ⌘ ✏

↵↵i
X ), which interferes

with the SM and leads to the strongest bounds. The rate of the leptonic D decays is

BR(D+
! ē

↵
⌫
↵) = ⌧D+

mD+m
2
↵f

2
DG

2
F |Vcd|

2
�
4
↵

8⇡

����1� ✏
↵d
A +

m
2
D

m↵(mc +mu)
✏
↵d
P

����
2

, (3.1)

2The phase-space restriction is lifted for semitauonic decays of excited D⇤ mesons. However, these predominantly
decay electromagnetically or strongly and the branching fractions of weak decays are suppressed [56, 57]. Furthermore,
one could in principle access the tauonic tensor operator by measuring D(s) ! ⌧⌫� (see e.g. Ref. [40] for the equivalent
pion and kaon decays).
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Thus, the operators in Eqs. (2.2) and (2.3) capture all leading effects in the SMEFT in semilep-
tonic charm transitions. Unless stated otherwise, throughout this paper we work in the up-basis for
the SU(2)L multiplets, where

q
i
L =

 
u
i
L

Vij d
j
L

!
, l

↵
L =

 
⌫
↵
L

e
↵
L

!
, (2.4)

with V the CKM matrix, and use i, j = 1, 2, 3 and ↵,� = 1, 2, 3 to label quark and lepton flavor
indices, respectively. We also use ` to denote the light leptons e and µ, but not ⌧ . The matching of
the SMEFT to the low-energy effective theory is reported next, while we postpone the discussion
of SU(2)L relations to Section 7.

2.2 The low-energy effective theory

The low-energy effective Lagrangian involving c ! d
i
ē
↵
⌫
� transitions can be written as

LCC = �
4GF
p
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Vci

h�
1 + ✏

↵�i
VL

�
O

↵�i
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+ ✏
↵�i
VR

O
↵�i
VR

+ ✏
↵�i
SL

O
↵�i
SL

+ ✏
↵�i
SR

O
↵�i
SR

+ ✏
↵�i
T O

↵�i
T

i
+ h.c.,

(2.5)

where the effective operators read

O
↵�i
VL

= (ē↵L�µ⌫
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L)(c̄L�

µ
d
i
L) , O

↵�i
VR

= (ē↵L�µ⌫
�
L)(c̄R�

µ
d
i
R) ,

O
↵�i
SL

= (ē↵R ⌫
�
L)(c̄R d

i
L) , O

↵�i
SR

= (ē↵R ⌫
�
L)(c̄L d

i
R) ,

O
↵�i
T = (ē↵R�µ⌫⌫

�
L)(c̄R�

µ⌫
d
i
L) .

(2.6)

Note that mixed chirality tensor operators vanish by Lorentz invariance. The extraction of the CKM
matrix in the SMEFT is a delicate exercise [52]. For our purposes here, Vcd and Vcs can be safely
obtained by exploiting unitarity in the Wolfenstein parametrization,

Vcd = ��c +O(�5
c),

Vcs = 1� �
2
c/2 +O(�4

c),
(2.7)

where �c is the sine of the Cabibbo angle. We assume that any contribution of NP to the inputs of
these unitarity relations is small compared to the precision achieved with charm weak transitions.
For instance, �c obtained from kaon decays receives strong constraints from the unitarity of the first
row of the CKM matrix (see e.g. Ref. [40]). Similarly, we neglect the effects of NP modifications
to GF as determined from muon decays.

The tree-level matching conditions between the SMEFT in Eq. (2.1) and the low-energy La-
grangian in Eq. (2.5) are

✏
↵�i
VL

= �
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Vci
[C(3)

lq ]↵�2j + �↵�
Vji

Vci
[C(3)

�q ]2j , ✏
↵�i
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1

2Vci
�↵� [C�ud]2i ,

✏
↵�i
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= �
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2Vci
[C(1)
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⇤
�↵j2 , ✏

↵�i
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= �
1

2Vci
[Cledq]

⇤
�↵i2 ,

✏
↵�i
T = �

Vji

2Vci
[C(3)

lequ]
⇤
�↵j2 ,

(2.8)
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where a sum over j is implicitly assumed. Interestingly, the low-energy operator O↵�i
VR

is gener-
ated in the SMEFT from an operator that modifies a chirality preserving W vertex but not from a
new four-fermion interaction, unlike other operators in Eq. (2.6). On the contrary, O↵�i

VL
receives

contributions from both a modified W vertex and a new four-fermion interaction, which cannot be
disentangled at low energies.

The relations in Eq. (2.8) hold at the matching scale µ = mW . The renormalization group
equations (RGE) induced by QCD and EW (QED) radiative effects allow one to robustly correlate
low- and high-pT data [53, 54]. In particular, the RGE running from µ = 1 TeV down to µ = 2 GeV
yields sizable effects in scalar and tensor operators [55],

✏SL(2GeV) ⇡ 2.1 ✏SL(TeV)� 0.3 ✏T (TeV) , ✏SR(2GeV) ⇡ 2.0 ✏SR(TeV) ,

✏T (2GeV) ⇡ 0.8 ✏T (TeV) .
(2.9)

Here, ✏X(TeV) refers to the corresponding combination of SMEFT WCs in Eq. (2.8). Vector oper-
ators do not run under QCD, and the electromagnetic and EW running remains at the percent level.
Similarly, other RGE-induced contributions, including the mixing with other SMEFT operators, do
not receive large QCD enhancements and remain at the percent level. All these effects are below
the level of precision of our studies, so we neglect them in the following.

3 Decays of charmed mesons

Leptonic and semileptonic decays D(s) ! ē
↵
⌫ and D ! ⇡(K)¯̀⌫ follow from the Lagrangian

in Eq. (2.5). This captures the leading effects of any possible short-distance contribution to c !

d
i
ē
↵
⌫
� flavor transitions, with the SM being a particular limit, ✏↵�iX,SM = 0 for all X . Hadronic ma-

trix elements of the corresponding operators are constrained by Lorentz symmetry and invariance of
QCD under parity. As a result, pure leptonic decays are sensitive only to axial (✏↵�iA = ✏

↵�i
VR

� ✏
↵�i
VL

)
and pseudoscalar (✏↵�iP = ✏

↵�i
SR

� ✏
↵�i
SL

) combinations of WCs. On the other hand, the semileptonic
decays are sensitive to vectorial (✏↵�iV = ✏

↵�i
VR

+ ✏
↵�i
VL

) and scalar (✏↵�iS = ✏
↵�i
SR

+ ✏
↵�i
SL

) combinations
of WCs, and to the tensor WC (✏↵�iT ).

The largest available phase space that can be achieved for the semileptonic decays is given
by mD+ � m⇡0 ' 1.735 GeV. Note that this is smaller than the ⌧ lepton mass, which makes the
semitauonic D-meson decays kinematically forbidden. A similar conclusion follows for the decays
of charmed baryons. In other words, the tauonic vector, scalar and tensor operators (O⌧�

V,S,T ) are
not directly accessible and, as we will see below, high-pT tails provide a unique probe of these
operators. On the other hand, pure tauonic decays of D(s) are allowed.2

In the following, we derive bounds on the WCs of the operators in Eq. (2.6) from D(s)-meson
decays. First, we restrict ourselves to the lepton-flavor diagonal case (✏↵iX ⌘ ✏

↵↵i
X ), which interferes

with the SM and leads to the strongest bounds. The rate of the leptonic D decays is

BR(D+
! ē

↵
⌫
↵) = ⌧D+

mD+m
2
↵f

2
DG

2
F |Vcd|

2
�
4
↵

8⇡

����1� ✏
↵d
A +

m
2
D

m↵(mc +mu)
✏
↵d
P

����
2

, (3.1)

2The phase-space restriction is lifted for semitauonic decays of excited D⇤ mesons. However, these predominantly
decay electromagnetically or strongly and the branching fractions of weak decays are suppressed [56, 57]. Furthermore,
one could in principle access the tauonic tensor operator by measuring D(s) ! ⌧⌫� (see e.g. Ref. [40] for the equivalent
pion and kaon decays).
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• Not considered / future directions
• D > V, no lattice QCD predictions
• Baryonic Λc decays, data not precise
• Kinematic distributions
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• In the UV, the relevant operator basis is the “chiral basis” not the “parity basis”

• Electron: Semileptonic

• Muon: Semileptonic and 
leptonic comparable

• Tau: Leptonic

due to its manifest SU(2)L gauge invariance, this framework allows to establish correlations with
kaon and tau physics.

The next four sections investigate, in steps, charged-current transitions. Namely, starting from
the effective field theory setup in Section 2, we study the set of constraints from charmed meson
decays in Section 3, the production of monoleptons at high-pT LHC in Section 4 and, finally, com-
pare the two in Section 5. The analysis is then repeated for neutral-current transitions in Section 6.
Complementary constraints implied by SU(2)L gauge symmetry are derived in Section 7. We
conclude in Section 8.

2 Theoretical framework: c ! diē↵⌫�

2.1 The high-energy effective theory

We focus on short-distance NP that can affect semileptonic charged-current charm transitions, par-
ticularly when charm number changes by one unit, �C = 1. Under the assumption of no new
degrees of freedom below (or at) the electroweak scale, NP effects can be fully described employ-
ing the SMEFT. The relevant Lagrangian is

LSMEFT �
1

v2

X

k

Ck Ok , (2.1)

where v ⇡ 246 GeV is the SM Higgs vacuum expectation value and the Wilson coefficients (WCs)
scale as Ck / v

2
/⇤2, with ⇤ being the scale of NP. We employ the Warsaw basis [50] for operators

of canonical dimension six, which is particularly suited for flavor physics as covariant derivatives
and field strengths are reduced in favor of fermionic currents using the equations of motion. The
most general set of semileptonic four-fermion SMEFT operators contributing to c ! d

i
ē
↵
⌫
� tran-

sitions are

O
(3)
lq = (l̄L�µ⌧

I
lL)(q̄L�

µ
⌧
I
qL) , Oledq = (l̄LeR)(d̄RqL) ,

O
(1)
lequ = (l̄pLeR)✏pr(q̄

r
LuR) , O

(3)
lequ = (l̄pL�µ⌫eR)✏pr(q̄

r
L�

µ⌫
uR) ,

(2.2)

with �µ⌫ = i
2 [�

µ
, �

⌫ ], ⌧ I the Pauli matrices, ✏pr the Levi-Civita symbol and {p, r} being SU(2)L
indices.1 The left-handed quark and lepton doublets are denoted by qL and lL, respectively, while
the right-handed singlets are uR, dR and eR. On the other hand, the SMEFT operators that modify
the W couplings to quarks read

O
(3)
�q = (�† i

$
D

I
µ �)(q̄L�

µ
⌧
I
qL) , O�ud = (�̃† iDµ�)(ūR�

µ
dR) , (2.3)

where � is the Higgs field and Dµ its covariant derivative. We neglect the chirality-flipping W

vertices of the type  ̄�µ⌫ �Fµ⌫ . Their effects are subleading relative to the operators in Eq. (2.3)
at low-energies, since they are charm mass suppressed, and to the operators in Eq. (2.2) at high-pT ,
due to their different high-energy behavior discussed in Section 4.1. We also neglect all modifica-
tions to the leptonic W vertices, since they are better probed in purely leptonic transitions.

1The SM extended by a light right-handed neutrino (⌫R) potentially accessible in charm decays would require sup-
plementing the SMEFT with a new set of operators such as (l̄L⌫R)(ūRqL). For the full list see Eq. (2.1) in Ref. [51].
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contributions from both a modified W vertex and a new four-fermion interaction, which cannot be
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The relations in Eq. (2.8) hold at the matching scale µ = mW . The renormalization group
equations (RGE) induced by QCD and EW (QED) radiative effects allow one to robustly correlate
low- and high-pT data [53, 54]. In particular, the RGE running from µ = 1 TeV down to µ = 2 GeV
yields sizable effects in scalar and tensor operators [55],

✏SL(2GeV) ⇡ 2.1 ✏SL(TeV)� 0.3 ✏T (TeV) , ✏SR(2GeV) ⇡ 2.0 ✏SR(TeV) ,

✏T (2GeV) ⇡ 0.8 ✏T (TeV) .
(2.9)

Here, ✏X(TeV) refers to the corresponding combination of SMEFT WCs in Eq. (2.8). Vector oper-
ators do not run under QCD, and the electromagnetic and EW running remains at the percent level.
Similarly, other RGE-induced contributions, including the mixing with other SMEFT operators, do
not receive large QCD enhancements and remain at the percent level. All these effects are below
the level of precision of our studies, so we neglect them in the following.

3 Decays of charmed mesons

Leptonic and semileptonic decays D(s) ! ē
↵
⌫ and D ! ⇡(K)¯̀⌫ follow from the Lagrangian

in Eq. (2.5). This captures the leading effects of any possible short-distance contribution to c !

d
i
ē
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� flavor transitions, with the SM being a particular limit, ✏↵�iX,SM = 0 for all X . Hadronic ma-

trix elements of the corresponding operators are constrained by Lorentz symmetry and invariance of
QCD under parity. As a result, pure leptonic decays are sensitive only to axial (✏↵�iA = ✏
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and pseudoscalar (✏↵�iP = ✏
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VL

) and scalar (✏↵�iS = ✏
↵�i
SR

+ ✏
↵�i
SL

) combinations
of WCs, and to the tensor WC (✏↵�iT ).

The largest available phase space that can be achieved for the semileptonic decays is given
by mD+ � m⇡0 ' 1.735 GeV. Note that this is smaller than the ⌧ lepton mass, which makes the
semitauonic D-meson decays kinematically forbidden. A similar conclusion follows for the decays
of charmed baryons. In other words, the tauonic vector, scalar and tensor operators (O⌧�

V,S,T ) are
not directly accessible and, as we will see below, high-pT tails provide a unique probe of these
operators. On the other hand, pure tauonic decays of D(s) are allowed.2

In the following, we derive bounds on the WCs of the operators in Eq. (2.6) from D(s)-meson
decays. First, we restrict ourselves to the lepton-flavor diagonal case (✏↵iX ⌘ ✏

↵↵i
X ), which interferes

with the SM and leads to the strongest bounds. The rate of the leptonic D decays is
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2The phase-space restriction is lifted for semitauonic decays of excited D⇤ mesons. However, these predominantly
decay electromagnetically or strongly and the branching fractions of weak decays are suppressed [56, 57]. Furthermore,
one could in principle access the tauonic tensor operator by measuring D(s) ! ⌧⌫� (see e.g. Ref. [40] for the equivalent
pion and kaon decays).
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i ↵ ✏↵i
SL

(�✏↵i
SR

) ⇥ 103 ✏↵i
T ⇥ 102

d

e [�2.5, 2.7] [�1.6, 1.5]

µ [�0.2, 1.2] [�0.7, 0.13]

⌧ [�70, 60] [�33, 44]

s

e [�2.0, 2.2] [�1.3, 1.2]

µ [�1.1, 0.3] [�0.2, 0.6]

⌧ [�19, 4.0] [�2.0, 12]

Table 3. 95% CL ranges of the WCs, assumed to be real, obtained from D(s)-meson decays for scalar and
tensor operators in the chiral basis at µ = 1 TeV. The ranges of ✏↵SR

are those of �✏
↵
SL

.

analyzed in this work will remain modest in the near future.
Finally, it is important to stress that we have restricted our analysis to decay channels for

which precise measurements and accurate LQCD predictions of the form factors currently exist.
Additional modes that can be considered are D ! V `⌫ decays (V = ⇢, K

⇤), for which modern
lattice results do not exist [9], or baryonic ⇤c decays for which data is not very precise yet. In
addition, one may consider other observables such as kinematic distributions. Including these
observables may improve the bounds on some of the WCs in the future and close flat directions in
a global fit of decay data (see e.g. Ref. [9]).

4 High-pT lepton production at the LHC

4.1 Short-distance new physics in high-pT tails

The monolepton production in proton-proton collisions at high-energy,
p
s � mW , is an excellent

probe of new contact interactions between quarks and leptons.3 The final state in this process fea-
tures missing energy plus a charged lepton of three possible flavors. In addition, there are five quark
flavors accessible in the incoming protons whose composition is described by the corresponding
parton distribution functions (PDF). Within the SMEFT, a total of 4 four-fermion operators con-
tribute to this process at tree-level for each combination of quark and lepton flavors, see Eq. (2.2).
Their contribution to the partonic cross section grows with energy as �̂ / s, see Eq. (4.2). Other
effects in the SMEFT include the chirality preserving (flipping) W -boson vertex corrections which
scale as �̂ / s

�1(s0) and are negligible in the high-pT tails compared to the four-fermion interac-
tions.4

The numerical results derived in this work are based on the Monte Carlo simulations described
in Section 4.2. Here we present a (semi-)analytic understanding of the main physical effects. The
tree-level unpolarized partonic differential cross section for dj(p1) ūi(p2) ! e

↵(p3)⌫̄�(p4) , in-
duced by the SMEFT four-fermion operators in Eq. (2.2) , expanded and matched to the notation

3There is a rich literature of NP exploration in neutral and charged Drell-Yan production, for an incomplete list
see [39–43, 45, 48, 73–79].

4The modification of the W -boson propagator in the universal basis [80] through the Ŵ parameter is captured by
the specific combination of the four-fermion contact interactions and vertex corrections in the Warsaw basis. For Ŵ
searches in the high-pT lepton tails see Ref. [74].
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• In the UV, the relevant operator basis is the “chiral basis” not the “parity basis”

95% CL ranges on WCs at 1 TeV (one parameter fit).

• RGE flow to P operator at low energies 

• Electron: Semileptonic

• Muon: Semileptonic and 
leptonic comparable

• Tau: Leptonic

due to its manifest SU(2)L gauge invariance, this framework allows to establish correlations with
kaon and tau physics.

The next four sections investigate, in steps, charged-current transitions. Namely, starting from
the effective field theory setup in Section 2, we study the set of constraints from charmed meson
decays in Section 3, the production of monoleptons at high-pT LHC in Section 4 and, finally, com-
pare the two in Section 5. The analysis is then repeated for neutral-current transitions in Section 6.
Complementary constraints implied by SU(2)L gauge symmetry are derived in Section 7. We
conclude in Section 8.

2 Theoretical framework: c ! diē↵⌫�

2.1 The high-energy effective theory

We focus on short-distance NP that can affect semileptonic charged-current charm transitions, par-
ticularly when charm number changes by one unit, �C = 1. Under the assumption of no new
degrees of freedom below (or at) the electroweak scale, NP effects can be fully described employ-
ing the SMEFT. The relevant Lagrangian is

LSMEFT �
1

v2

X

k

Ck Ok , (2.1)

where v ⇡ 246 GeV is the SM Higgs vacuum expectation value and the Wilson coefficients (WCs)
scale as Ck / v

2
/⇤2, with ⇤ being the scale of NP. We employ the Warsaw basis [50] for operators

of canonical dimension six, which is particularly suited for flavor physics as covariant derivatives
and field strengths are reduced in favor of fermionic currents using the equations of motion. The
most general set of semileptonic four-fermion SMEFT operators contributing to c ! d

i
ē
↵
⌫
� tran-

sitions are

O
(3)
lq = (l̄L�µ⌧

I
lL)(q̄L�

µ
⌧
I
qL) , Oledq = (l̄LeR)(d̄RqL) ,

O
(1)
lequ = (l̄pLeR)✏pr(q̄

r
LuR) , O

(3)
lequ = (l̄pL�µ⌫eR)✏pr(q̄

r
L�

µ⌫
uR) ,

(2.2)

with �µ⌫ = i
2 [�

µ
, �

⌫ ], ⌧ I the Pauli matrices, ✏pr the Levi-Civita symbol and {p, r} being SU(2)L
indices.1 The left-handed quark and lepton doublets are denoted by qL and lL, respectively, while
the right-handed singlets are uR, dR and eR. On the other hand, the SMEFT operators that modify
the W couplings to quarks read

O
(3)
�q = (�† i

$
D

I
µ �)(q̄L�

µ
⌧
I
qL) , O�ud = (�̃† iDµ�)(ūR�

µ
dR) , (2.3)

where � is the Higgs field and Dµ its covariant derivative. We neglect the chirality-flipping W

vertices of the type  ̄�µ⌫ �Fµ⌫ . Their effects are subleading relative to the operators in Eq. (2.3)
at low-energies, since they are charm mass suppressed, and to the operators in Eq. (2.2) at high-pT ,
due to their different high-energy behavior discussed in Section 4.1. We also neglect all modifica-
tions to the leptonic W vertices, since they are better probed in purely leptonic transitions.

1The SM extended by a light right-handed neutrino (⌫R) potentially accessible in charm decays would require sup-
plementing the SMEFT with a new set of operators such as (l̄L⌫R)(ūRqL). For the full list see Eq. (2.1) in Ref. [51].
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the W couplings to quarks read

O
(3)
�q = (�† i

$
D

I
µ �)(q̄L�

µ
⌧
I
qL) , O�ud = (�̃† iDµ�)(ūR�

µ
dR) , (2.3)

where � is the Higgs field and Dµ its covariant derivative. We neglect the chirality-flipping W

vertices of the type  ̄�µ⌫ �Fµ⌫ . Their effects are subleading relative to the operators in Eq. (2.3)
at low-energies, since they are charm mass suppressed, and to the operators in Eq. (2.2) at high-pT ,
due to their different high-energy behavior discussed in Section 4.1. We also neglect all modifica-
tions to the leptonic W vertices, since they are better probed in purely leptonic transitions.

1The SM extended by a light right-handed neutrino (⌫R) potentially accessible in charm decays would require sup-
plementing the SMEFT with a new set of operators such as (l̄L⌫R)(ūRqL). For the full list see Eq. (2.1) in Ref. [51].
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where a sum over j is implicitly assumed. Interestingly, the low-energy operator O↵�i
VR

is gener-
ated in the SMEFT from an operator that modifies a chirality preserving W vertex but not from a
new four-fermion interaction, unlike other operators in Eq. (2.6). On the contrary, O↵�i

VL
receives

contributions from both a modified W vertex and a new four-fermion interaction, which cannot be
disentangled at low energies.

The relations in Eq. (2.8) hold at the matching scale µ = mW . The renormalization group
equations (RGE) induced by QCD and EW (QED) radiative effects allow one to robustly correlate
low- and high-pT data [53, 54]. In particular, the RGE running from µ = 1 TeV down to µ = 2 GeV
yields sizable effects in scalar and tensor operators [55],

✏SL(2GeV) ⇡ 2.1 ✏SL(TeV)� 0.3 ✏T (TeV) , ✏SR(2GeV) ⇡ 2.0 ✏SR(TeV) ,

✏T (2GeV) ⇡ 0.8 ✏T (TeV) .
(2.9)

Here, ✏X(TeV) refers to the corresponding combination of SMEFT WCs in Eq. (2.8). Vector oper-
ators do not run under QCD, and the electromagnetic and EW running remains at the percent level.
Similarly, other RGE-induced contributions, including the mixing with other SMEFT operators, do
not receive large QCD enhancements and remain at the percent level. All these effects are below
the level of precision of our studies, so we neglect them in the following.

3 Decays of charmed mesons

Leptonic and semileptonic decays D(s) ! ē
↵
⌫ and D ! ⇡(K)¯̀⌫ follow from the Lagrangian

in Eq. (2.5). This captures the leading effects of any possible short-distance contribution to c !

d
i
ē
↵
⌫
� flavor transitions, with the SM being a particular limit, ✏↵�iX,SM = 0 for all X . Hadronic ma-

trix elements of the corresponding operators are constrained by Lorentz symmetry and invariance of
QCD under parity. As a result, pure leptonic decays are sensitive only to axial (✏↵�iA = ✏

↵�i
VR

� ✏
↵�i
VL

)
and pseudoscalar (✏↵�iP = ✏

↵�i
SR

� ✏
↵�i
SL

) combinations of WCs. On the other hand, the semileptonic
decays are sensitive to vectorial (✏↵�iV = ✏

↵�i
VR

+ ✏
↵�i
VL

) and scalar (✏↵�iS = ✏
↵�i
SR

+ ✏
↵�i
SL

) combinations
of WCs, and to the tensor WC (✏↵�iT ).

The largest available phase space that can be achieved for the semileptonic decays is given
by mD+ � m⇡0 ' 1.735 GeV. Note that this is smaller than the ⌧ lepton mass, which makes the
semitauonic D-meson decays kinematically forbidden. A similar conclusion follows for the decays
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V,S,T ) are
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operators. On the other hand, pure tauonic decays of D(s) are allowed.2

In the following, we derive bounds on the WCs of the operators in Eq. (2.6) from D(s)-meson
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↵↵i
X ), which interferes

with the SM and leads to the strongest bounds. The rate of the leptonic D decays is

BR(D+
! ē

↵
⌫
↵) = ⌧D+

mD+m
2
↵f

2
DG

2
F |Vcd|

2
�
4
↵

8⇡

����1� ✏
↵d
A +

m
2
D

m↵(mc +mu)
✏
↵d
P

����
2

, (3.1)

2The phase-space restriction is lifted for semitauonic decays of excited D⇤ mesons. However, these predominantly
decay electromagnetically or strongly and the branching fractions of weak decays are suppressed [56, 57]. Furthermore,
one could in principle access the tauonic tensor operator by measuring D(s) ! ⌧⌫� (see e.g. Ref. [40] for the equivalent
pion and kaon decays).
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due to its manifest SU(2)L gauge invariance, this framework allows to establish correlations with
kaon and tau physics.

The next four sections investigate, in steps, charged-current transitions. Namely, starting from
the effective field theory setup in Section 2, we study the set of constraints from charmed meson
decays in Section 3, the production of monoleptons at high-pT LHC in Section 4 and, finally, com-
pare the two in Section 5. The analysis is then repeated for neutral-current transitions in Section 6.
Complementary constraints implied by SU(2)L gauge symmetry are derived in Section 7. We
conclude in Section 8.

2 Theoretical framework: c ! diē↵⌫�

2.1 The high-energy effective theory

We focus on short-distance NP that can affect semileptonic charged-current charm transitions, par-
ticularly when charm number changes by one unit, �C = 1. Under the assumption of no new
degrees of freedom below (or at) the electroweak scale, NP effects can be fully described employ-
ing the SMEFT. The relevant Lagrangian is

LSMEFT �
1

v2

X

k

Ck Ok , (2.1)

where v ⇡ 246 GeV is the SM Higgs vacuum expectation value and the Wilson coefficients (WCs)
scale as Ck / v

2
/⇤2, with ⇤ being the scale of NP. We employ the Warsaw basis [50] for operators

of canonical dimension six, which is particularly suited for flavor physics as covariant derivatives
and field strengths are reduced in favor of fermionic currents using the equations of motion. The
most general set of semileptonic four-fermion SMEFT operators contributing to c ! d

i
ē
↵
⌫
� tran-

sitions are

O
(3)
lq = (l̄L�µ⌧

I
lL)(q̄L�

µ
⌧
I
qL) , Oledq = (l̄LeR)(d̄RqL) ,

O
(1)
lequ = (l̄pLeR)✏pr(q̄

r
LuR) , O

(3)
lequ = (l̄pL�µ⌫eR)✏pr(q̄

r
L�

µ⌫
uR) ,

(2.2)

with �µ⌫ = i
2 [�

µ
, �

⌫ ], ⌧ I the Pauli matrices, ✏pr the Levi-Civita symbol and {p, r} being SU(2)L
indices.1 The left-handed quark and lepton doublets are denoted by qL and lL, respectively, while
the right-handed singlets are uR, dR and eR. On the other hand, the SMEFT operators that modify
the W couplings to quarks read

O
(3)
�q = (�† i

$
D

I
µ �)(q̄L�

µ
⌧
I
qL) , O�ud = (�̃† iDµ�)(ūR�

µ
dR) , (2.3)

where � is the Higgs field and Dµ its covariant derivative. We neglect the chirality-flipping W

vertices of the type  ̄�µ⌫ �Fµ⌫ . Their effects are subleading relative to the operators in Eq. (2.3)
at low-energies, since they are charm mass suppressed, and to the operators in Eq. (2.2) at high-pT ,
due to their different high-energy behavior discussed in Section 4.1. We also neglect all modifica-
tions to the leptonic W vertices, since they are better probed in purely leptonic transitions.

1The SM extended by a light right-handed neutrino (⌫R) potentially accessible in charm decays would require sup-
plementing the SMEFT with a new set of operators such as (l̄L⌫R)(ūRqL). For the full list see Eq. (2.1) in Ref. [51].
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In the high-energy limit

i ↵ ✏↵i
SL

(�✏↵i
SR

) ⇥ 103 ✏↵i
T ⇥ 102

d

e [�2.5, 2.7] [�1.6, 1.5]

µ [�0.2, 1.2] [�0.7, 0.13]

⌧ [�70, 60] [�33, 44]

s

e [�2.0, 2.2] [�1.3, 1.2]

µ [�1.1, 0.3] [�0.2, 0.6]

⌧ [�19, 4.0] [�2.0, 12]

Table 3. 95% CL ranges of the WCs, assumed to be real, obtained from D(s)-meson decays for scalar and
tensor operators in the chiral basis at µ = 1 TeV. The ranges of ✏↵SR

are those of �✏
↵
SL

.

analyzed in this work will remain modest in the near future.
Finally, it is important to stress that we have restricted our analysis to decay channels for

which precise measurements and accurate LQCD predictions of the form factors currently exist.
Additional modes that can be considered are D ! V `⌫ decays (V = ⇢, K

⇤), for which modern
lattice results do not exist [9], or baryonic ⇤c decays for which data is not very precise yet. In
addition, one may consider other observables such as kinematic distributions. Including these
observables may improve the bounds on some of the WCs in the future and close flat directions in
a global fit of decay data (see e.g. Ref. [9]).

4 High-pT lepton production at the LHC

4.1 Short-distance new physics in high-pT tails

The monolepton production in proton-proton collisions at high-energy,
p
s � mW , is an excellent

probe of new contact interactions between quarks and leptons.3 The final state in this process fea-
tures missing energy plus a charged lepton of three possible flavors. In addition, there are five quark
flavors accessible in the incoming protons whose composition is described by the corresponding
parton distribution functions (PDF). Within the SMEFT, a total of 4 four-fermion operators con-
tribute to this process at tree-level for each combination of quark and lepton flavors, see Eq. (2.2).
Their contribution to the partonic cross section grows with energy as �̂ / s, see Eq. (4.2). Other
effects in the SMEFT include the chirality preserving (flipping) W -boson vertex corrections which
scale as �̂ / s

�1(s0) and are negligible in the high-pT tails compared to the four-fermion interac-
tions.4

The numerical results derived in this work are based on the Monte Carlo simulations described
in Section 4.2. Here we present a (semi-)analytic understanding of the main physical effects. The
tree-level unpolarized partonic differential cross section for dj(p1) ūi(p2) ! e

↵(p3)⌫̄�(p4) , in-
duced by the SMEFT four-fermion operators in Eq. (2.2) , expanded and matched to the notation

3There is a rich literature of NP exploration in neutral and charged Drell-Yan production, for an incomplete list
see [39–43, 45, 48, 73–79].

4The modification of the W -boson propagator in the universal basis [80] through the Ŵ parameter is captured by
the specific combination of the four-fermion contact interactions and vertex corrections in the Warsaw basis. For Ŵ
searches in the high-pT lepton tails see Ref. [74].
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In the high-energy limit
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Table 3. 95% CL ranges of the WCs, assumed to be real, obtained from D(s)-meson decays for scalar and
tensor operators in the chiral basis at µ = 1 TeV. The ranges of ✏↵SR

are those of �✏
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.

analyzed in this work will remain modest in the near future.
Finally, it is important to stress that we have restricted our analysis to decay channels for

which precise measurements and accurate LQCD predictions of the form factors currently exist.
Additional modes that can be considered are D ! V `⌫ decays (V = ⇢, K

⇤), for which modern
lattice results do not exist [9], or baryonic ⇤c decays for which data is not very precise yet. In
addition, one may consider other observables such as kinematic distributions. Including these
observables may improve the bounds on some of the WCs in the future and close flat directions in
a global fit of decay data (see e.g. Ref. [9]).

4 High-pT lepton production at the LHC

4.1 Short-distance new physics in high-pT tails

The monolepton production in proton-proton collisions at high-energy,
p
s � mW , is an excellent

probe of new contact interactions between quarks and leptons.3 The final state in this process fea-
tures missing energy plus a charged lepton of three possible flavors. In addition, there are five quark
flavors accessible in the incoming protons whose composition is described by the corresponding
parton distribution functions (PDF). Within the SMEFT, a total of 4 four-fermion operators con-
tribute to this process at tree-level for each combination of quark and lepton flavors, see Eq. (2.2).
Their contribution to the partonic cross section grows with energy as �̂ / s, see Eq. (4.2). Other
effects in the SMEFT include the chirality preserving (flipping) W -boson vertex corrections which
scale as �̂ / s

�1(s0) and are negligible in the high-pT tails compared to the four-fermion interac-
tions.4

The numerical results derived in this work are based on the Monte Carlo simulations described
in Section 4.2. Here we present a (semi-)analytic understanding of the main physical effects. The
tree-level unpolarized partonic differential cross section for dj(p1) ūi(p2) ! e

↵(p3)⌫̄�(p4) , in-
duced by the SMEFT four-fermion operators in Eq. (2.2) , expanded and matched to the notation

3There is a rich literature of NP exploration in neutral and charged Drell-Yan production, for an incomplete list
see [39–43, 45, 48, 73–79].

4The modification of the W -boson propagator in the universal basis [80] through the Ŵ parameter is captured by
the specific combination of the four-fermion contact interactions and vertex corrections in the Warsaw basis. For Ŵ
searches in the high-pT lepton tails see Ref. [74].
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↵
SL

.

analyzed in this work will remain modest in the near future.
Finally, it is important to stress that we have restricted our analysis to decay channels for

which precise measurements and accurate LQCD predictions of the form factors currently exist.
Additional modes that can be considered are D ! V `⌫ decays (V = ⇢, K

⇤), for which modern
lattice results do not exist [9], or baryonic ⇤c decays for which data is not very precise yet. In
addition, one may consider other observables such as kinematic distributions. Including these
observables may improve the bounds on some of the WCs in the future and close flat directions in
a global fit of decay data (see e.g. Ref. [9]).

4 High-pT lepton production at the LHC

4.1 Short-distance new physics in high-pT tails

The monolepton production in proton-proton collisions at high-energy,
p
s � mW , is an excellent

probe of new contact interactions between quarks and leptons.3 The final state in this process fea-
tures missing energy plus a charged lepton of three possible flavors. In addition, there are five quark
flavors accessible in the incoming protons whose composition is described by the corresponding
parton distribution functions (PDF). Within the SMEFT, a total of 4 four-fermion operators con-
tribute to this process at tree-level for each combination of quark and lepton flavors, see Eq. (2.2).
Their contribution to the partonic cross section grows with energy as �̂ / s, see Eq. (4.2). Other
effects in the SMEFT include the chirality preserving (flipping) W -boson vertex corrections which
scale as �̂ / s

�1(s0) and are negligible in the high-pT tails compared to the four-fermion interac-
tions.4

The numerical results derived in this work are based on the Monte Carlo simulations described
in Section 4.2. Here we present a (semi-)analytic understanding of the main physical effects. The
tree-level unpolarized partonic differential cross section for dj(p1) ūi(p2) ! e

↵(p3)⌫̄�(p4) , in-
duced by the SMEFT four-fermion operators in Eq. (2.2) , expanded and matched to the notation

3There is a rich literature of NP exploration in neutral and charged Drell-Yan production, for an incomplete list
see [39–43, 45, 48, 73–79].

4The modification of the W -boson propagator in the universal basis [80] through the Ŵ parameter is captured by
the specific combination of the four-fermion contact interactions and vertex corrections in the Warsaw basis. For Ŵ
searches in the high-pT lepton tails see Ref. [74].
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• Partonic level cross section

of Eq. (2.5) , is

d�̂

dt
=

G
2
F |Vij |

2

6⇡s2

"
(s+ t)2

�����
↵�m

2
W

s
� ✏

↵�ij
VL

����
2

+
s
2

4

�
|✏
↵�ij
SL

|
2 + |✏

↵�ij
SR

|
2
�
+ 4(s+ 2t)2 |✏↵�ijT |

2

� 2s(s+ 2t)Re
�
✏
⇤↵�ij
SL

✏
↵�ij
T

�i
, (4.1)

where s ⌘ (p1 + p2)2 and t = (p3 � p1)2 are the corresponding Mandelstam variables. The
interference with the SM is absent in the case of lepton flavor violation (LFV), i.e. ↵ 6= �. In
the relativistic limit, chiral fermions act as independent particles with definite helicity. Therefore,
the interference among operators is achieved only when the operators match the same flavor and
chirality for all four fermions. Integrating over t, we find the partonic cross section

�̂(s) =
G

2
F |Vij |

2

18⇡
s

"�����
↵�m

2
W

s
� ✏

↵�ij
VL

����
2

+
3

4

�
|✏
↵�ij
SL

|
2 + |✏

↵�ij
SR

|
2
�
+ 4 |✏↵�ijT |

2

#
, (4.2)

as a function of the dilepton invariant mass
p
s. The interference with the SM is relevant for

|✏VL | ⇠ m
2
W /TeV2 or smaller. This holds irrespective of the initial quark flavors in d

j
ū
i
! e

↵
⌫̄
↵

(i = 1, 2 and j = 1, 2, 3). The results obtained in our numerical analysis (see Table 4) suggest that
the quadratic term in ✏VL dominates present limits. However, there is already a non-negligible cor-
rection from the interference term which will become prominent with more integrated luminosity.
The lack of interference in the other cases tends to increase the cross section in the high-pT tails,
and allows to extract bounds on several NP operators simultaneously.5 On the contrary, most of
the bounds from D(s) mesons decays discussed in Section 3 depend on interference terms among
different WCs, and it becomes difficult to break flat directions without additional observables.

While the energy growth of the amplitude enhances the signal, the PDF of the sea quarks
reduce it. The parton luminosity for colliding flavors i and j is

Lqiq̄j (⌧, µF ) =

Z 1

⌧

dx

x
fqi(x, µF )fq̄j (⌧/x, µF ) , (4.3)

where ⌧ = s/s0 and
p
s0 is the collider energy (here set to 13 TeV). The relative correction to the

Drell-Yan cross section in the tails (
p
s � mW ) is

��

�
⇡ Rij ⇥

dX ✏
2
X�

m
2
W /s

�2 , (4.4)

with dX = 1, 34 , 4 for X = V, S, T respectively, and

Rij ⌘
(Luid̄j + Ldj ūi)⇥ |Vij |

2

(Lud̄ + Ldū)⇥ |Vud|
2

. (4.5)

We show in Figure 1 the ratios Rij for du (red dashed), dc (red solid), su (blue dashed), sc (blue
solid), bu (green dashed) and bc (green solid) as a function of the dilepton invariant mass

p
s.

Here we use the MMHT2014 NNLO188 PDF [81] with the factorization scale µF =
p
s. The

5The transverse mass distribution (mT ⇡ 2 p`T ) also inherits negligible ✏SL � ✏T interference.
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SL
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analyzed in this work will remain modest in the near future.
Finally, it is important to stress that we have restricted our analysis to decay channels for

which precise measurements and accurate LQCD predictions of the form factors currently exist.
Additional modes that can be considered are D ! V `⌫ decays (V = ⇢, K

⇤), for which modern
lattice results do not exist [9], or baryonic ⇤c decays for which data is not very precise yet. In
addition, one may consider other observables such as kinematic distributions. Including these
observables may improve the bounds on some of the WCs in the future and close flat directions in
a global fit of decay data (see e.g. Ref. [9]).

4 High-pT lepton production at the LHC

4.1 Short-distance new physics in high-pT tails

The monolepton production in proton-proton collisions at high-energy,
p
s � mW , is an excellent

probe of new contact interactions between quarks and leptons.3 The final state in this process fea-
tures missing energy plus a charged lepton of three possible flavors. In addition, there are five quark
flavors accessible in the incoming protons whose composition is described by the corresponding
parton distribution functions (PDF). Within the SMEFT, a total of 4 four-fermion operators con-
tribute to this process at tree-level for each combination of quark and lepton flavors, see Eq. (2.2).
Their contribution to the partonic cross section grows with energy as �̂ / s, see Eq. (4.2). Other
effects in the SMEFT include the chirality preserving (flipping) W -boson vertex corrections which
scale as �̂ / s

�1(s0) and are negligible in the high-pT tails compared to the four-fermion interac-
tions.4

The numerical results derived in this work are based on the Monte Carlo simulations described
in Section 4.2. Here we present a (semi-)analytic understanding of the main physical effects. The
tree-level unpolarized partonic differential cross section for dj(p1) ūi(p2) ! e

↵(p3)⌫̄�(p4) , in-
duced by the SMEFT four-fermion operators in Eq. (2.2) , expanded and matched to the notation

3There is a rich literature of NP exploration in neutral and charged Drell-Yan production, for an incomplete list
see [39–43, 45, 48, 73–79].

4The modification of the W -boson propagator in the universal basis [80] through the Ŵ parameter is captured by
the specific combination of the four-fermion contact interactions and vertex corrections in the Warsaw basis. For Ŵ
searches in the high-pT lepton tails see Ref. [74].
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where s ⌘ (p1 + p2)2 and t = (p3 � p1)2 are the corresponding Mandelstam variables. The
interference with the SM is absent in the case of lepton flavor violation (LFV), i.e. ↵ 6= �. In
the relativistic limit, chiral fermions act as independent particles with definite helicity. Therefore,
the interference among operators is achieved only when the operators match the same flavor and
chirality for all four fermions. Integrating over t, we find the partonic cross section
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as a function of the dilepton invariant mass
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s. The interference with the SM is relevant for
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W /TeV2 or smaller. This holds irrespective of the initial quark flavors in d
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(i = 1, 2 and j = 1, 2, 3). The results obtained in our numerical analysis (see Table 4) suggest that
the quadratic term in ✏VL dominates present limits. However, there is already a non-negligible cor-
rection from the interference term which will become prominent with more integrated luminosity.
The lack of interference in the other cases tends to increase the cross section in the high-pT tails,
and allows to extract bounds on several NP operators simultaneously.5 On the contrary, most of
the bounds from D(s) mesons decays discussed in Section 3 depend on interference terms among
different WCs, and it becomes difficult to break flat directions without additional observables.

While the energy growth of the amplitude enhances the signal, the PDF of the sea quarks
reduce it. The parton luminosity for colliding flavors i and j is

Lqiq̄j (⌧, µF ) =

Z 1

⌧

dx

x
fqi(x, µF )fq̄j (⌧/x, µF ) , (4.3)

where ⌧ = s/s0 and
p
s0 is the collider energy (here set to 13 TeV). The relative correction to the
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We show in Figure 1 the ratios Rij for du (red dashed), dc (red solid), su (blue dashed), sc (blue
solid), bu (green dashed) and bc (green solid) as a function of the dilepton invariant mass

p
s.

Here we use the MMHT2014 NNLO188 PDF [81] with the factorization scale µF =
p
s. The

5The transverse mass distribution (mT ⇡ 2 p`T ) also inherits negligible ✏SL � ✏T interference.
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• In the relativistic limit, chiral fermions act as independent particles with definite 
helicity. 

• Therefore, the interference among operators is achieved only when the 
operators match the same flavor and chirality for all four fermions. 

• The lack of interference tends to increase the cross section in the high-pT tails, 
and allows to set bounds on several NP operators simultaneously. 

• Different / complementary to charm decays.
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e [�2.5, 2.7] [�1.6, 1.5]

µ [�0.2, 1.2] [�0.7, 0.13]

⌧ [�70, 60] [�33, 44]

s

e [�2.0, 2.2] [�1.3, 1.2]

µ [�1.1, 0.3] [�0.2, 0.6]
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Table 3. 95% CL ranges of the WCs, assumed to be real, obtained from D(s)-meson decays for scalar and
tensor operators in the chiral basis at µ = 1 TeV. The ranges of ✏↵SR

are those of �✏
↵
SL

.

analyzed in this work will remain modest in the near future.
Finally, it is important to stress that we have restricted our analysis to decay channels for

which precise measurements and accurate LQCD predictions of the form factors currently exist.
Additional modes that can be considered are D ! V `⌫ decays (V = ⇢, K

⇤), for which modern
lattice results do not exist [9], or baryonic ⇤c decays for which data is not very precise yet. In
addition, one may consider other observables such as kinematic distributions. Including these
observables may improve the bounds on some of the WCs in the future and close flat directions in
a global fit of decay data (see e.g. Ref. [9]).

4 High-pT lepton production at the LHC

4.1 Short-distance new physics in high-pT tails

The monolepton production in proton-proton collisions at high-energy,
p
s � mW , is an excellent

probe of new contact interactions between quarks and leptons.3 The final state in this process fea-
tures missing energy plus a charged lepton of three possible flavors. In addition, there are five quark
flavors accessible in the incoming protons whose composition is described by the corresponding
parton distribution functions (PDF). Within the SMEFT, a total of 4 four-fermion operators con-
tribute to this process at tree-level for each combination of quark and lepton flavors, see Eq. (2.2).
Their contribution to the partonic cross section grows with energy as �̂ / s, see Eq. (4.2). Other
effects in the SMEFT include the chirality preserving (flipping) W -boson vertex corrections which
scale as �̂ / s

�1(s0) and are negligible in the high-pT tails compared to the four-fermion interac-
tions.4

The numerical results derived in this work are based on the Monte Carlo simulations described
in Section 4.2. Here we present a (semi-)analytic understanding of the main physical effects. The
tree-level unpolarized partonic differential cross section for dj(p1) ūi(p2) ! e

↵(p3)⌫̄�(p4) , in-
duced by the SMEFT four-fermion operators in Eq. (2.2) , expanded and matched to the notation

3There is a rich literature of NP exploration in neutral and charged Drell-Yan production, for an incomplete list
see [39–43, 45, 48, 73–79].

4The modification of the W -boson propagator in the universal basis [80] through the Ŵ parameter is captured by
the specific combination of the four-fermion contact interactions and vertex corrections in the Warsaw basis. For Ŵ
searches in the high-pT lepton tails see Ref. [74].
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where s ⌘ (p1 + p2)2 and t = (p3 � p1)2 are the corresponding Mandelstam variables. The
interference with the SM is absent in the case of lepton flavor violation (LFV), i.e. ↵ 6= �. In
the relativistic limit, chiral fermions act as independent particles with definite helicity. Therefore,
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ū
i
! e

↵
⌫̄
↵

(i = 1, 2 and j = 1, 2, 3). The results obtained in our numerical analysis (see Table 4) suggest that
the quadratic term in ✏VL dominates present limits. However, there is already a non-negligible cor-
rection from the interference term which will become prominent with more integrated luminosity.
The lack of interference in the other cases tends to increase the cross section in the high-pT tails,
and allows to extract bounds on several NP operators simultaneously.5 On the contrary, most of
the bounds from D(s) mesons decays discussed in Section 3 depend on interference terms among
different WCs, and it becomes difficult to break flat directions without additional observables.

While the energy growth of the amplitude enhances the signal, the PDF of the sea quarks
reduce it. The parton luminosity for colliding flavors i and j is
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We show in Figure 1 the ratios Rij for du (red dashed), dc (red solid), su (blue dashed), sc (blue
solid), bu (green dashed) and bc (green solid) as a function of the dilepton invariant mass

p
s.

Here we use the MMHT2014 NNLO188 PDF [81] with the factorization scale µF =
p
s. The

5The transverse mass distribution (mT ⇡ 2 p`T ) also inherits negligible ✏SL � ✏T interference.
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flavors accessible in the incoming protons whose composition is described by the corresponding
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scale as �̂ / s
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↵(p3)⌫̄�(p4) , in-
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where s ⌘ (p1 + p2)2 and t = (p3 � p1)2 are the corresponding Mandelstam variables. The
interference with the SM is absent in the case of lepton flavor violation (LFV), i.e. ↵ 6= �. In
the relativistic limit, chiral fermions act as independent particles with definite helicity. Therefore,
the interference among operators is achieved only when the operators match the same flavor and
chirality for all four fermions. Integrating over t, we find the partonic cross section
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as a function of the dilepton invariant mass
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s. The interference with the SM is relevant for
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(i = 1, 2 and j = 1, 2, 3). The results obtained in our numerical analysis (see Table 4) suggest that
the quadratic term in ✏VL dominates present limits. However, there is already a non-negligible cor-
rection from the interference term which will become prominent with more integrated luminosity.
The lack of interference in the other cases tends to increase the cross section in the high-pT tails,
and allows to extract bounds on several NP operators simultaneously.5 On the contrary, most of
the bounds from D(s) mesons decays discussed in Section 3 depend on interference terms among
different WCs, and it becomes difficult to break flat directions without additional observables.

While the energy growth of the amplitude enhances the signal, the PDF of the sea quarks
reduce it. The parton luminosity for colliding flavors i and j is

Lqiq̄j (⌧, µF ) =
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fqi(x, µF )fq̄j (⌧/x, µF ) , (4.3)
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2

(Lud̄ + Ldū)⇥ |Vud|
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We show in Figure 1 the ratios Rij for du (red dashed), dc (red solid), su (blue dashed), sc (blue
solid), bu (green dashed) and bc (green solid) as a function of the dilepton invariant mass

p
s.

Here we use the MMHT2014 NNLO188 PDF [81] with the factorization scale µF =
p
s. The

5The transverse mass distribution (mT ⇡ 2 p`T ) also inherits negligible ✏SL � ✏T interference.
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where s ⌘ (p1 + p2)2 and t = (p3 � p1)2 are the corresponding Mandelstam variables. The
interference with the SM is absent in the case of lepton flavor violation (LFV), i.e. ↵ 6= �. In
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(i = 1, 2 and j = 1, 2, 3). The results obtained in our numerical analysis (see Table 4) suggest that
the quadratic term in ✏VL dominates present limits. However, there is already a non-negligible cor-
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The lack of interference in the other cases tends to increase the cross section in the high-pT tails,
and allows to extract bounds on several NP operators simultaneously.5 On the contrary, most of
the bounds from D(s) mesons decays discussed in Section 3 depend on interference terms among
different WCs, and it becomes difficult to break flat directions without additional observables.
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We show in Figure 1 the ratios Rij for du (red dashed), dc (red solid), su (blue dashed), sc (blue
solid), bu (green dashed) and bc (green solid) as a function of the dilepton invariant mass

p
s.

Here we use the MMHT2014 NNLO188 PDF [81] with the factorization scale µF =
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where s ⌘ (p1 + p2)2 and t = (p3 � p1)2 are the corresponding Mandelstam variables. The
interference with the SM is absent in the case of lepton flavor violation (LFV), i.e. ↵ 6= �. In
the relativistic limit, chiral fermions act as independent particles with definite helicity. Therefore,
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(i = 1, 2 and j = 1, 2, 3). The results obtained in our numerical analysis (see Table 4) suggest that
the quadratic term in ✏VL dominates present limits. However, there is already a non-negligible cor-
rection from the interference term which will become prominent with more integrated luminosity.
The lack of interference in the other cases tends to increase the cross section in the high-pT tails,
and allows to extract bounds on several NP operators simultaneously.5 On the contrary, most of
the bounds from D(s) mesons decays discussed in Section 3 depend on interference terms among
different WCs, and it becomes difficult to break flat directions without additional observables.

While the energy growth of the amplitude enhances the signal, the PDF of the sea quarks
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where s ⌘ (p1 + p2)2 and t = (p3 � p1)2 are the corresponding Mandelstam variables. The
interference with the SM is absent in the case of lepton flavor violation (LFV), i.e. ↵ 6= �. In
the relativistic limit, chiral fermions act as independent particles with definite helicity. Therefore,
the interference among operators is achieved only when the operators match the same flavor and
chirality for all four fermions. Integrating over t, we find the partonic cross section
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as a function of the dilepton invariant mass
p
s. The interference with the SM is relevant for

|✏VL | ⇠ m
2
W /TeV2 or smaller. This holds irrespective of the initial quark flavors in d

j
ū
i
! e

↵
⌫̄
↵

(i = 1, 2 and j = 1, 2, 3). The results obtained in our numerical analysis (see Table 4) suggest that
the quadratic term in ✏VL dominates present limits. However, there is already a non-negligible cor-
rection from the interference term which will become prominent with more integrated luminosity.
The lack of interference in the other cases tends to increase the cross section in the high-pT tails,
and allows to extract bounds on several NP operators simultaneously.5 On the contrary, most of
the bounds from D(s) mesons decays discussed in Section 3 depend on interference terms among
different WCs, and it becomes difficult to break flat directions without additional observables.

While the energy growth of the amplitude enhances the signal, the PDF of the sea quarks
reduce it. The parton luminosity for colliding flavors i and j is

Lqiq̄j (⌧, µF ) =

Z 1

⌧

dx

x
fqi(x, µF )fq̄j (⌧/x, µF ) , (4.3)

where ⌧ = s/s0 and
p
s0 is the collider energy (here set to 13 TeV). The relative correction to the

Drell-Yan cross section in the tails (
p
s � mW ) is

��

�
⇡ Rij ⇥

dX ✏
2
X�

m
2
W /s

�2 , (4.4)

with dX = 1, 34 , 4 for X = V, S, T respectively, and

Rij ⌘
(Luid̄j + Ldj ūi)⇥ |Vij |

2

(Lud̄ + Ldū)⇥ |Vud|
2

. (4.5)

We show in Figure 1 the ratios Rij for du (red dashed), dc (red solid), su (blue dashed), sc (blue
solid), bu (green dashed) and bc (green solid) as a function of the dilepton invariant mass

p
s.

Here we use the MMHT2014 NNLO188 PDF [81] with the factorization scale µF =
p
s. The

5The transverse mass distribution (mT ⇡ 2 p`T ) also inherits negligible ✏SL � ✏T interference.
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Table 3. 95% CL ranges of the WCs, assumed to be real, obtained from D(s)-meson decays for scalar and
tensor operators in the chiral basis at µ = 1 TeV. The ranges of ✏↵SR

are those of �✏
↵
SL

.

analyzed in this work will remain modest in the near future.
Finally, it is important to stress that we have restricted our analysis to decay channels for

which precise measurements and accurate LQCD predictions of the form factors currently exist.
Additional modes that can be considered are D ! V `⌫ decays (V = ⇢, K

⇤), for which modern
lattice results do not exist [9], or baryonic ⇤c decays for which data is not very precise yet. In
addition, one may consider other observables such as kinematic distributions. Including these
observables may improve the bounds on some of the WCs in the future and close flat directions in
a global fit of decay data (see e.g. Ref. [9]).

4 High-pT lepton production at the LHC

4.1 Short-distance new physics in high-pT tails

The monolepton production in proton-proton collisions at high-energy,
p
s � mW , is an excellent

probe of new contact interactions between quarks and leptons.3 The final state in this process fea-
tures missing energy plus a charged lepton of three possible flavors. In addition, there are five quark
flavors accessible in the incoming protons whose composition is described by the corresponding
parton distribution functions (PDF). Within the SMEFT, a total of 4 four-fermion operators con-
tribute to this process at tree-level for each combination of quark and lepton flavors, see Eq. (2.2).
Their contribution to the partonic cross section grows with energy as �̂ / s, see Eq. (4.2). Other
effects in the SMEFT include the chirality preserving (flipping) W -boson vertex corrections which
scale as �̂ / s

�1(s0) and are negligible in the high-pT tails compared to the four-fermion interac-
tions.4

The numerical results derived in this work are based on the Monte Carlo simulations described
in Section 4.2. Here we present a (semi-)analytic understanding of the main physical effects. The
tree-level unpolarized partonic differential cross section for dj(p1) ūi(p2) ! e

↵(p3)⌫̄�(p4) , in-
duced by the SMEFT four-fermion operators in Eq. (2.2) , expanded and matched to the notation

3There is a rich literature of NP exploration in neutral and charged Drell-Yan production, for an incomplete list
see [39–43, 45, 48, 73–79].

4The modification of the W -boson propagator in the universal basis [80] through the Ŵ parameter is captured by
the specific combination of the four-fermion contact interactions and vertex corrections in the Warsaw basis. For Ŵ
searches in the high-pT lepton tails see Ref. [74].
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where s ⌘ (p1 + p2)2 and t = (p3 � p1)2 are the corresponding Mandelstam variables. The
interference with the SM is absent in the case of lepton flavor violation (LFV), i.e. ↵ 6= �. In
the relativistic limit, chiral fermions act as independent particles with definite helicity. Therefore,
the interference among operators is achieved only when the operators match the same flavor and
chirality for all four fermions. Integrating over t, we find the partonic cross section
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as a function of the dilepton invariant mass
p
s. The interference with the SM is relevant for

|✏VL | ⇠ m
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W /TeV2 or smaller. This holds irrespective of the initial quark flavors in d
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(i = 1, 2 and j = 1, 2, 3). The results obtained in our numerical analysis (see Table 4) suggest that
the quadratic term in ✏VL dominates present limits. However, there is already a non-negligible cor-
rection from the interference term which will become prominent with more integrated luminosity.
The lack of interference in the other cases tends to increase the cross section in the high-pT tails,
and allows to extract bounds on several NP operators simultaneously.5 On the contrary, most of
the bounds from D(s) mesons decays discussed in Section 3 depend on interference terms among
different WCs, and it becomes difficult to break flat directions without additional observables.

While the energy growth of the amplitude enhances the signal, the PDF of the sea quarks
reduce it. The parton luminosity for colliding flavors i and j is

Lqiq̄j (⌧, µF ) =

Z 1

⌧

dx

x
fqi(x, µF )fq̄j (⌧/x, µF ) , (4.3)

where ⌧ = s/s0 and
p
s0 is the collider energy (here set to 13 TeV). The relative correction to the

Drell-Yan cross section in the tails (
p
s � mW ) is
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with dX = 1, 34 , 4 for X = V, S, T respectively, and
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. (4.5)

We show in Figure 1 the ratios Rij for du (red dashed), dc (red solid), su (blue dashed), sc (blue
solid), bu (green dashed) and bc (green solid) as a function of the dilepton invariant mass

p
s.

Here we use the MMHT2014 NNLO188 PDF [81] with the factorization scale µF =
p
s. The

5The transverse mass distribution (mT ⇡ 2 p`T ) also inherits negligible ✏SL � ✏T interference.
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Figure 1. Suppression factors for the charged-current Drell-Yan cross section with different colliding quark
flavors, Rij , stemming from the PDF and the CKM matrix, see Eq. (4.5).

suppression from Rij is compensated by the energy enhancement (
p
s/mW )4 ⇠ O(105). Thus,

a measurement of the cross section in the tails with O(10%) precision would probe cs and cd at
the level of ✏X ⇠ O(10�2). The weak dependence on the energy across the most sensitive bins
allows to rescale the limits for different flavor combinations provided the lepton cuts are sufficiently
inclusive (see Section 4.2).

The theoretical prediction for the signal rate is plagued by the uncertainties stemming from the
missing high-order perturbative corrections, as well as the knowledge of the PDF of the colliding
sea quarks. These have been studied in detail in [42, 45]. More precisely, NLO QCD and PDF
uncertainties are quantified in the supplemental material of Ref. [45] for a bc ! W

0 example (and
in Ref. [42] for bb ! Z

0) as a function of the vector boson mass mV 0 . These estimates are trivially
applicable for the corresponding quark-lepton contact interactions when replacing mV 0 with the
dilepton invariant mass

p
s. A relative uncertainty of ⇠ 10% is found on the differential cross sec-

tion in the most sensitive bins. Another potential issue comes from the PDF extraction, as recent
analyses also include Drell-Yan data, see e.g. Ref. [82]. While at the moment this data has a sub-
leading impact on the PDF determination, it will become important at the HL-LHC [83]. A proper
approach would be to perform a combined SMEFT and PDF fit. First steps in this direction show
discriminating power between EFT and PDF effects in the context of deep inelastic scattering [84].

4.2 Recast of the existing experimental searches

We use the analyses reported by ATLAS and CMS collaborations with one lepton plus missing
transverse momentum signature. For the ⌧ + ⌫ channel, we recast the searches in Refs. [85, 86] us-
ing 36.1 fb�1 and 35.9 fb�1 of data, respectively. In the case of `+⌫ final state, we use the ATLAS
139 fb�1 [87] and the CMS 35.9 fb�1 [88] analyses. The Monte Carlo (MC) simulation pipeline is
as follows: we use FeynRules [89] for the model generation, MadGraph5_aMC@NLO [90, 91]
for the partonic process simulation interfaced with Pythia 8 [92] to simulate the hadronic pro-
cesses, and finally Delphes [93] to get an estimate of the detector effects. We set a dynamical
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where s ⌘ (p1 + p2)2 and t = (p3 � p1)2 are the corresponding Mandelstam variables. The
interference with the SM is absent in the case of lepton flavor violation (LFV), i.e. ↵ 6= �. In
the relativistic limit, chiral fermions act as independent particles with definite helicity. Therefore,
the interference among operators is achieved only when the operators match the same flavor and
chirality for all four fermions. Integrating over t, we find the partonic cross section

�̂(s) =
G

2
F |Vij |

2

18⇡
s

"�����
↵�m

2
W

s
� ✏

↵�ij
VL

����
2

+
3

4

�
|✏
↵�ij
SL

|
2 + |✏

↵�ij
SR

|
2
�
+ 4 |✏↵�ijT |

2

#
, (4.2)

as a function of the dilepton invariant mass
p
s. The interference with the SM is relevant for
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W /TeV2 or smaller. This holds irrespective of the initial quark flavors in d
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(i = 1, 2 and j = 1, 2, 3). The results obtained in our numerical analysis (see Table 4) suggest that
the quadratic term in ✏VL dominates present limits. However, there is already a non-negligible cor-
rection from the interference term which will become prominent with more integrated luminosity.
The lack of interference in the other cases tends to increase the cross section in the high-pT tails,
and allows to extract bounds on several NP operators simultaneously.5 On the contrary, most of
the bounds from D(s) mesons decays discussed in Section 3 depend on interference terms among
different WCs, and it becomes difficult to break flat directions without additional observables.

While the energy growth of the amplitude enhances the signal, the PDF of the sea quarks
reduce it. The parton luminosity for colliding flavors i and j is

Lqiq̄j (⌧, µF ) =

Z 1

⌧

dx

x
fqi(x, µF )fq̄j (⌧/x, µF ) , (4.3)

where ⌧ = s/s0 and
p
s0 is the collider energy (here set to 13 TeV). The relative correction to the

Drell-Yan cross section in the tails (
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with dX = 1, 34 , 4 for X = V, S, T respectively, and
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We show in Figure 1 the ratios Rij for du (red dashed), dc (red solid), su (blue dashed), sc (blue
solid), bu (green dashed) and bc (green solid) as a function of the dilepton invariant mass

p
s.

Here we use the MMHT2014 NNLO188 PDF [81] with the factorization scale µF =
p
s. The

5The transverse mass distribution (mT ⇡ 2 p`T ) also inherits negligible ✏SL � ✏T interference.
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where s ⌘ (p1 + p2)2 and t = (p3 � p1)2 are the corresponding Mandelstam variables. The
interference with the SM is absent in the case of lepton flavor violation (LFV), i.e. ↵ 6= �. In
the relativistic limit, chiral fermions act as independent particles with definite helicity. Therefore,
the interference among operators is achieved only when the operators match the same flavor and
chirality for all four fermions. Integrating over t, we find the partonic cross section
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as a function of the dilepton invariant mass
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s. The interference with the SM is relevant for
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W /TeV2 or smaller. This holds irrespective of the initial quark flavors in d
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(i = 1, 2 and j = 1, 2, 3). The results obtained in our numerical analysis (see Table 4) suggest that
the quadratic term in ✏VL dominates present limits. However, there is already a non-negligible cor-
rection from the interference term which will become prominent with more integrated luminosity.
The lack of interference in the other cases tends to increase the cross section in the high-pT tails,
and allows to extract bounds on several NP operators simultaneously.5 On the contrary, most of
the bounds from D(s) mesons decays discussed in Section 3 depend on interference terms among
different WCs, and it becomes difficult to break flat directions without additional observables.

While the energy growth of the amplitude enhances the signal, the PDF of the sea quarks
reduce it. The parton luminosity for colliding flavors i and j is

Lqiq̄j (⌧, µF ) =

Z 1

⌧

dx

x
fqi(x, µF )fq̄j (⌧/x, µF ) , (4.3)

where ⌧ = s/s0 and
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We show in Figure 1 the ratios Rij for du (red dashed), dc (red solid), su (blue dashed), sc (blue
solid), bu (green dashed) and bc (green solid) as a function of the dilepton invariant mass

p
s.

Here we use the MMHT2014 NNLO188 PDF [81] with the factorization scale µF =
p
s. The

5The transverse mass distribution (mT ⇡ 2 p`T ) also inherits negligible ✏SL � ✏T interference.
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where s ⌘ (p1 + p2)2 and t = (p3 � p1)2 are the corresponding Mandelstam variables. The
interference with the SM is absent in the case of lepton flavor violation (LFV), i.e. ↵ 6= �. In
the relativistic limit, chiral fermions act as independent particles with definite helicity. Therefore,
the interference among operators is achieved only when the operators match the same flavor and
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as a function of the dilepton invariant mass
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s. The interference with the SM is relevant for
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W /TeV2 or smaller. This holds irrespective of the initial quark flavors in d
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(i = 1, 2 and j = 1, 2, 3). The results obtained in our numerical analysis (see Table 4) suggest that
the quadratic term in ✏VL dominates present limits. However, there is already a non-negligible cor-
rection from the interference term which will become prominent with more integrated luminosity.
The lack of interference in the other cases tends to increase the cross section in the high-pT tails,
and allows to extract bounds on several NP operators simultaneously.5 On the contrary, most of
the bounds from D(s) mesons decays discussed in Section 3 depend on interference terms among
different WCs, and it becomes difficult to break flat directions without additional observables.

While the energy growth of the amplitude enhances the signal, the PDF of the sea quarks
reduce it. The parton luminosity for colliding flavors i and j is

Lqiq̄j (⌧, µF ) =

Z 1
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where ⌧ = s/s0 and
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We show in Figure 1 the ratios Rij for du (red dashed), dc (red solid), su (blue dashed), sc (blue
solid), bu (green dashed) and bc (green solid) as a function of the dilepton invariant mass

p
s.

Here we use the MMHT2014 NNLO188 PDF [81] with the factorization scale µF =
p
s. The

5The transverse mass distribution (mT ⇡ 2 p`T ) also inherits negligible ✏SL � ✏T interference.
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Table 3. 95% CL ranges of the WCs, assumed to be real, obtained from D(s)-meson decays for scalar and
tensor operators in the chiral basis at µ = 1 TeV. The ranges of ✏↵SR
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analyzed in this work will remain modest in the near future.
Finally, it is important to stress that we have restricted our analysis to decay channels for

which precise measurements and accurate LQCD predictions of the form factors currently exist.
Additional modes that can be considered are D ! V `⌫ decays (V = ⇢, K

⇤), for which modern
lattice results do not exist [9], or baryonic ⇤c decays for which data is not very precise yet. In
addition, one may consider other observables such as kinematic distributions. Including these
observables may improve the bounds on some of the WCs in the future and close flat directions in
a global fit of decay data (see e.g. Ref. [9]).

4 High-pT lepton production at the LHC

4.1 Short-distance new physics in high-pT tails

The monolepton production in proton-proton collisions at high-energy,
p
s � mW , is an excellent

probe of new contact interactions between quarks and leptons.3 The final state in this process fea-
tures missing energy plus a charged lepton of three possible flavors. In addition, there are five quark
flavors accessible in the incoming protons whose composition is described by the corresponding
parton distribution functions (PDF). Within the SMEFT, a total of 4 four-fermion operators con-
tribute to this process at tree-level for each combination of quark and lepton flavors, see Eq. (2.2).
Their contribution to the partonic cross section grows with energy as �̂ / s, see Eq. (4.2). Other
effects in the SMEFT include the chirality preserving (flipping) W -boson vertex corrections which
scale as �̂ / s

�1(s0) and are negligible in the high-pT tails compared to the four-fermion interac-
tions.4

The numerical results derived in this work are based on the Monte Carlo simulations described
in Section 4.2. Here we present a (semi-)analytic understanding of the main physical effects. The
tree-level unpolarized partonic differential cross section for dj(p1) ūi(p2) ! e

↵(p3)⌫̄�(p4) , in-
duced by the SMEFT four-fermion operators in Eq. (2.2) , expanded and matched to the notation

3There is a rich literature of NP exploration in neutral and charged Drell-Yan production, for an incomplete list
see [39–43, 45, 48, 73–79].

4The modification of the W -boson propagator in the universal basis [80] through the Ŵ parameter is captured by
the specific combination of the four-fermion contact interactions and vertex corrections in the Warsaw basis. For Ŵ
searches in the high-pT lepton tails see Ref. [74].
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where s ⌘ (p1 + p2)2 and t = (p3 � p1)2 are the corresponding Mandelstam variables. The
interference with the SM is absent in the case of lepton flavor violation (LFV), i.e. ↵ 6= �. In
the relativistic limit, chiral fermions act as independent particles with definite helicity. Therefore,
the interference among operators is achieved only when the operators match the same flavor and
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as a function of the dilepton invariant mass
p
s. The interference with the SM is relevant for

|✏VL | ⇠ m
2
W /TeV2 or smaller. This holds irrespective of the initial quark flavors in d

j
ū
i
! e

↵
⌫̄
↵

(i = 1, 2 and j = 1, 2, 3). The results obtained in our numerical analysis (see Table 4) suggest that
the quadratic term in ✏VL dominates present limits. However, there is already a non-negligible cor-
rection from the interference term which will become prominent with more integrated luminosity.
The lack of interference in the other cases tends to increase the cross section in the high-pT tails,
and allows to extract bounds on several NP operators simultaneously.5 On the contrary, most of
the bounds from D(s) mesons decays discussed in Section 3 depend on interference terms among
different WCs, and it becomes difficult to break flat directions without additional observables.

While the energy growth of the amplitude enhances the signal, the PDF of the sea quarks
reduce it. The parton luminosity for colliding flavors i and j is

Lqiq̄j (⌧, µF ) =

Z 1

⌧

dx

x
fqi(x, µF )fq̄j (⌧/x, µF ) , (4.3)

where ⌧ = s/s0 and
p
s0 is the collider energy (here set to 13 TeV). The relative correction to the

Drell-Yan cross section in the tails (
p
s � mW ) is
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with dX = 1, 34 , 4 for X = V, S, T respectively, and
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2
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2

. (4.5)

We show in Figure 1 the ratios Rij for du (red dashed), dc (red solid), su (blue dashed), sc (blue
solid), bu (green dashed) and bc (green solid) as a function of the dilepton invariant mass

p
s.

Here we use the MMHT2014 NNLO188 PDF [81] with the factorization scale µF =
p
s. The

5The transverse mass distribution (mT ⇡ 2 p`T ) also inherits negligible ✏SL � ✏T interference.

– 9 –

pp @ 13 TeV

Rij =
ℒui d

_
j
+ℒd j u_i

ℒu d
_ + ℒd u_

⨯
�Vij�2

�Vud�2

d u

d c

s u
s c

b c
b u

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
10-6

10-5

10-4

10-3

10-2

10-1

100

s [TeV]

Rij

Figure 1. Suppression factors for the charged-current Drell-Yan cross section with different colliding quark
flavors, Rij , stemming from the PDF and the CKM matrix, see Eq. (4.5).

suppression from Rij is compensated by the energy enhancement (
p
s/mW )4 ⇠ O(105). Thus,

a measurement of the cross section in the tails with O(10%) precision would probe cs and cd at
the level of ✏X ⇠ O(10�2). The weak dependence on the energy across the most sensitive bins
allows to rescale the limits for different flavor combinations provided the lepton cuts are sufficiently
inclusive (see Section 4.2).

The theoretical prediction for the signal rate is plagued by the uncertainties stemming from the
missing high-order perturbative corrections, as well as the knowledge of the PDF of the colliding
sea quarks. These have been studied in detail in [42, 45]. More precisely, NLO QCD and PDF
uncertainties are quantified in the supplemental material of Ref. [45] for a bc ! W

0 example (and
in Ref. [42] for bb ! Z

0) as a function of the vector boson mass mV 0 . These estimates are trivially
applicable for the corresponding quark-lepton contact interactions when replacing mV 0 with the
dilepton invariant mass

p
s. A relative uncertainty of ⇠ 10% is found on the differential cross sec-

tion in the most sensitive bins. Another potential issue comes from the PDF extraction, as recent
analyses also include Drell-Yan data, see e.g. Ref. [82]. While at the moment this data has a sub-
leading impact on the PDF determination, it will become important at the HL-LHC [83]. A proper
approach would be to perform a combined SMEFT and PDF fit. First steps in this direction show
discriminating power between EFT and PDF effects in the context of deep inelastic scattering [84].

4.2 Recast of the existing experimental searches

We use the analyses reported by ATLAS and CMS collaborations with one lepton plus missing
transverse momentum signature. For the ⌧ + ⌫ channel, we recast the searches in Refs. [85, 86] us-
ing 36.1 fb�1 and 35.9 fb�1 of data, respectively. In the case of `+⌫ final state, we use the ATLAS
139 fb�1 [87] and the CMS 35.9 fb�1 [88] analyses. The Monte Carlo (MC) simulation pipeline is
as follows: we use FeynRules [89] for the model generation, MadGraph5_aMC@NLO [90, 91]
for the partonic process simulation interfaced with Pythia 8 [92] to simulate the hadronic pro-
cesses, and finally Delphes [93] to get an estimate of the detector effects. We set a dynamical
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where s ⌘ (p1 + p2)2 and t = (p3 � p1)2 are the corresponding Mandelstam variables. The
interference with the SM is absent in the case of lepton flavor violation (LFV), i.e. ↵ 6= �. In
the relativistic limit, chiral fermions act as independent particles with definite helicity. Therefore,
the interference among operators is achieved only when the operators match the same flavor and
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as a function of the dilepton invariant mass
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s. The interference with the SM is relevant for
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W /TeV2 or smaller. This holds irrespective of the initial quark flavors in d
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(i = 1, 2 and j = 1, 2, 3). The results obtained in our numerical analysis (see Table 4) suggest that
the quadratic term in ✏VL dominates present limits. However, there is already a non-negligible cor-
rection from the interference term which will become prominent with more integrated luminosity.
The lack of interference in the other cases tends to increase the cross section in the high-pT tails,
and allows to extract bounds on several NP operators simultaneously.5 On the contrary, most of
the bounds from D(s) mesons decays discussed in Section 3 depend on interference terms among
different WCs, and it becomes difficult to break flat directions without additional observables.

While the energy growth of the amplitude enhances the signal, the PDF of the sea quarks
reduce it. The parton luminosity for colliding flavors i and j is

Lqiq̄j (⌧, µF ) =

Z 1

⌧

dx

x
fqi(x, µF )fq̄j (⌧/x, µF ) , (4.3)

where ⌧ = s/s0 and
p
s0 is the collider energy (here set to 13 TeV). The relative correction to the
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We show in Figure 1 the ratios Rij for du (red dashed), dc (red solid), su (blue dashed), sc (blue
solid), bu (green dashed) and bc (green solid) as a function of the dilepton invariant mass

p
s.

Here we use the MMHT2014 NNLO188 PDF [81] with the factorization scale µF =
p
s. The

5The transverse mass distribution (mT ⇡ 2 p`T ) also inherits negligible ✏SL � ✏T interference.
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where s ⌘ (p1 + p2)2 and t = (p3 � p1)2 are the corresponding Mandelstam variables. The
interference with the SM is absent in the case of lepton flavor violation (LFV), i.e. ↵ 6= �. In
the relativistic limit, chiral fermions act as independent particles with definite helicity. Therefore,
the interference among operators is achieved only when the operators match the same flavor and
chirality for all four fermions. Integrating over t, we find the partonic cross section
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as a function of the dilepton invariant mass
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s. The interference with the SM is relevant for
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W /TeV2 or smaller. This holds irrespective of the initial quark flavors in d
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(i = 1, 2 and j = 1, 2, 3). The results obtained in our numerical analysis (see Table 4) suggest that
the quadratic term in ✏VL dominates present limits. However, there is already a non-negligible cor-
rection from the interference term which will become prominent with more integrated luminosity.
The lack of interference in the other cases tends to increase the cross section in the high-pT tails,
and allows to extract bounds on several NP operators simultaneously.5 On the contrary, most of
the bounds from D(s) mesons decays discussed in Section 3 depend on interference terms among
different WCs, and it becomes difficult to break flat directions without additional observables.

While the energy growth of the amplitude enhances the signal, the PDF of the sea quarks
reduce it. The parton luminosity for colliding flavors i and j is

Lqiq̄j (⌧, µF ) =

Z 1
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dx

x
fqi(x, µF )fq̄j (⌧/x, µF ) , (4.3)

where ⌧ = s/s0 and
p
s0 is the collider energy (here set to 13 TeV). The relative correction to the
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We show in Figure 1 the ratios Rij for du (red dashed), dc (red solid), su (blue dashed), sc (blue
solid), bu (green dashed) and bc (green solid) as a function of the dilepton invariant mass

p
s.

Here we use the MMHT2014 NNLO188 PDF [81] with the factorization scale µF =
p
s. The

5The transverse mass distribution (mT ⇡ 2 p`T ) also inherits negligible ✏SL � ✏T interference.
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where s ⌘ (p1 + p2)2 and t = (p3 � p1)2 are the corresponding Mandelstam variables. The
interference with the SM is absent in the case of lepton flavor violation (LFV), i.e. ↵ 6= �. In
the relativistic limit, chiral fermions act as independent particles with definite helicity. Therefore,
the interference among operators is achieved only when the operators match the same flavor and
chirality for all four fermions. Integrating over t, we find the partonic cross section
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as a function of the dilepton invariant mass
p
s. The interference with the SM is relevant for

|✏VL | ⇠ m
2
W /TeV2 or smaller. This holds irrespective of the initial quark flavors in d
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(i = 1, 2 and j = 1, 2, 3). The results obtained in our numerical analysis (see Table 4) suggest that
the quadratic term in ✏VL dominates present limits. However, there is already a non-negligible cor-
rection from the interference term which will become prominent with more integrated luminosity.
The lack of interference in the other cases tends to increase the cross section in the high-pT tails,
and allows to extract bounds on several NP operators simultaneously.5 On the contrary, most of
the bounds from D(s) mesons decays discussed in Section 3 depend on interference terms among
different WCs, and it becomes difficult to break flat directions without additional observables.

While the energy growth of the amplitude enhances the signal, the PDF of the sea quarks
reduce it. The parton luminosity for colliding flavors i and j is

Lqiq̄j (⌧, µF ) =

Z 1

⌧

dx

x
fqi(x, µF )fq̄j (⌧/x, µF ) , (4.3)

where ⌧ = s/s0 and
p
s0 is the collider energy (here set to 13 TeV). The relative correction to the

Drell-Yan cross section in the tails (
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s � mW ) is
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We show in Figure 1 the ratios Rij for du (red dashed), dc (red solid), su (blue dashed), sc (blue
solid), bu (green dashed) and bc (green solid) as a function of the dilepton invariant mass

p
s.

Here we use the MMHT2014 NNLO188 PDF [81] with the factorization scale µF =
p
s. The

5The transverse mass distribution (mT ⇡ 2 p`T ) also inherits negligible ✏SL � ✏T interference.
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PDF and CKM suppression

Energy enhancement

(s/m2
W)2 ∼ 𝒪(105)

i ↵ ✏↵i
SL

(�✏↵i
SR

) ⇥ 103 ✏↵i
T ⇥ 102

d

e [�2.5, 2.7] [�1.6, 1.5]

µ [�0.2, 1.2] [�0.7, 0.13]

⌧ [�70, 60] [�33, 44]

s

e [�2.0, 2.2] [�1.3, 1.2]

µ [�1.1, 0.3] [�0.2, 0.6]

⌧ [�19, 4.0] [�2.0, 12]

Table 3. 95% CL ranges of the WCs, assumed to be real, obtained from D(s)-meson decays for scalar and
tensor operators in the chiral basis at µ = 1 TeV. The ranges of ✏↵SR

are those of �✏
↵
SL

.

analyzed in this work will remain modest in the near future.
Finally, it is important to stress that we have restricted our analysis to decay channels for

which precise measurements and accurate LQCD predictions of the form factors currently exist.
Additional modes that can be considered are D ! V `⌫ decays (V = ⇢, K

⇤), for which modern
lattice results do not exist [9], or baryonic ⇤c decays for which data is not very precise yet. In
addition, one may consider other observables such as kinematic distributions. Including these
observables may improve the bounds on some of the WCs in the future and close flat directions in
a global fit of decay data (see e.g. Ref. [9]).

4 High-pT lepton production at the LHC

4.1 Short-distance new physics in high-pT tails

The monolepton production in proton-proton collisions at high-energy,
p
s � mW , is an excellent

probe of new contact interactions between quarks and leptons.3 The final state in this process fea-
tures missing energy plus a charged lepton of three possible flavors. In addition, there are five quark
flavors accessible in the incoming protons whose composition is described by the corresponding
parton distribution functions (PDF). Within the SMEFT, a total of 4 four-fermion operators con-
tribute to this process at tree-level for each combination of quark and lepton flavors, see Eq. (2.2).
Their contribution to the partonic cross section grows with energy as �̂ / s, see Eq. (4.2). Other
effects in the SMEFT include the chirality preserving (flipping) W -boson vertex corrections which
scale as �̂ / s

�1(s0) and are negligible in the high-pT tails compared to the four-fermion interac-
tions.4

The numerical results derived in this work are based on the Monte Carlo simulations described
in Section 4.2. Here we present a (semi-)analytic understanding of the main physical effects. The
tree-level unpolarized partonic differential cross section for dj(p1) ūi(p2) ! e

↵(p3)⌫̄�(p4) , in-
duced by the SMEFT four-fermion operators in Eq. (2.2) , expanded and matched to the notation

3There is a rich literature of NP exploration in neutral and charged Drell-Yan production, for an incomplete list
see [39–43, 45, 48, 73–79].

4The modification of the W -boson propagator in the universal basis [80] through the Ŵ parameter is captured by
the specific combination of the four-fermion contact interactions and vertex corrections in the Warsaw basis. For Ŵ
searches in the high-pT lepton tails see Ref. [74].
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where s ⌘ (p1 + p2)2 and t = (p3 � p1)2 are the corresponding Mandelstam variables. The
interference with the SM is absent in the case of lepton flavor violation (LFV), i.e. ↵ 6= �. In
the relativistic limit, chiral fermions act as independent particles with definite helicity. Therefore,
the interference among operators is achieved only when the operators match the same flavor and
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as a function of the dilepton invariant mass
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s. The interference with the SM is relevant for
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W /TeV2 or smaller. This holds irrespective of the initial quark flavors in d
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(i = 1, 2 and j = 1, 2, 3). The results obtained in our numerical analysis (see Table 4) suggest that
the quadratic term in ✏VL dominates present limits. However, there is already a non-negligible cor-
rection from the interference term which will become prominent with more integrated luminosity.
The lack of interference in the other cases tends to increase the cross section in the high-pT tails,
and allows to extract bounds on several NP operators simultaneously.5 On the contrary, most of
the bounds from D(s) mesons decays discussed in Section 3 depend on interference terms among
different WCs, and it becomes difficult to break flat directions without additional observables.

While the energy growth of the amplitude enhances the signal, the PDF of the sea quarks
reduce it. The parton luminosity for colliding flavors i and j is

Lqiq̄j (⌧, µF ) =

Z 1
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We show in Figure 1 the ratios Rij for du (red dashed), dc (red solid), su (blue dashed), sc (blue
solid), bu (green dashed) and bc (green solid) as a function of the dilepton invariant mass

p
s.

Here we use the MMHT2014 NNLO188 PDF [81] with the factorization scale µF =
p
s. The

5The transverse mass distribution (mT ⇡ 2 p`T ) also inherits negligible ✏SL � ✏T interference.

– 9 –

pp @ 13 TeV

Rij =
ℒui d

_
j
+ℒd j u_i

ℒu d
_ + ℒd u_

⨯
�Vij�2

�Vud�2

d u

d c

s u
s c

b c
b u

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
10-6

10-5

10-4

10-3

10-2

10-1

100

s [TeV]

Rij

Figure 1. Suppression factors for the charged-current Drell-Yan cross section with different colliding quark
flavors, Rij , stemming from the PDF and the CKM matrix, see Eq. (4.5).

suppression from Rij is compensated by the energy enhancement (
p
s/mW )4 ⇠ O(105). Thus,

a measurement of the cross section in the tails with O(10%) precision would probe cs and cd at
the level of ✏X ⇠ O(10�2). The weak dependence on the energy across the most sensitive bins
allows to rescale the limits for different flavor combinations provided the lepton cuts are sufficiently
inclusive (see Section 4.2).

The theoretical prediction for the signal rate is plagued by the uncertainties stemming from the
missing high-order perturbative corrections, as well as the knowledge of the PDF of the colliding
sea quarks. These have been studied in detail in [42, 45]. More precisely, NLO QCD and PDF
uncertainties are quantified in the supplemental material of Ref. [45] for a bc ! W

0 example (and
in Ref. [42] for bb ! Z

0) as a function of the vector boson mass mV 0 . These estimates are trivially
applicable for the corresponding quark-lepton contact interactions when replacing mV 0 with the
dilepton invariant mass

p
s. A relative uncertainty of ⇠ 10% is found on the differential cross sec-

tion in the most sensitive bins. Another potential issue comes from the PDF extraction, as recent
analyses also include Drell-Yan data, see e.g. Ref. [82]. While at the moment this data has a sub-
leading impact on the PDF determination, it will become important at the HL-LHC [83]. A proper
approach would be to perform a combined SMEFT and PDF fit. First steps in this direction show
discriminating power between EFT and PDF effects in the context of deep inelastic scattering [84].

4.2 Recast of the existing experimental searches

We use the analyses reported by ATLAS and CMS collaborations with one lepton plus missing
transverse momentum signature. For the ⌧ + ⌫ channel, we recast the searches in Refs. [85, 86] us-
ing 36.1 fb�1 and 35.9 fb�1 of data, respectively. In the case of `+⌫ final state, we use the ATLAS
139 fb�1 [87] and the CMS 35.9 fb�1 [88] analyses. The Monte Carlo (MC) simulation pipeline is
as follows: we use FeynRules [89] for the model generation, MadGraph5_aMC@NLO [90, 91]
for the partonic process simulation interfaced with Pythia 8 [92] to simulate the hadronic pro-
cesses, and finally Delphes [93] to get an estimate of the detector effects. We set a dynamical
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• The relative correction to the x-section in the tail
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interference with the SM is absent in the case of lepton flavor violation (LFV), i.e. ↵ 6= �. In
the relativistic limit, chiral fermions act as independent particles with definite helicity. Therefore,
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as a function of the dilepton invariant mass
p
s. The interference with the SM is relevant for

|✏VL | ⇠ m
2
W /TeV2 or smaller. This holds irrespective of the initial quark flavors in d

j
ū
i
! e

↵
⌫̄
↵

(i = 1, 2 and j = 1, 2, 3). The results obtained in our numerical analysis (see Table 4) suggest that
the quadratic term in ✏VL dominates present limits. However, there is already a non-negligible cor-
rection from the interference term which will become prominent with more integrated luminosity.
The lack of interference in the other cases tends to increase the cross section in the high-pT tails,
and allows to extract bounds on several NP operators simultaneously.5 On the contrary, most of
the bounds from D(s) mesons decays discussed in Section 3 depend on interference terms among
different WCs, and it becomes difficult to break flat directions without additional observables.

While the energy growth of the amplitude enhances the signal, the PDF of the sea quarks
reduce it. The parton luminosity for colliding flavors i and j is

Lqiq̄j (⌧, µF ) =

Z 1

⌧

dx

x
fqi(x, µF )fq̄j (⌧/x, µF ) , (4.3)

where ⌧ = s/s0 and
p
s0 is the collider energy (here set to 13 TeV). The relative correction to the

Drell-Yan cross section in the tails (
p
s � mW ) is

��

�
⇡ Rij ⇥

dX ✏
2
X�

m
2
W /s

�2 , (4.4)

with dX = 1, 34 , 4 for X = V, S, T respectively, and

Rij ⌘
(Luid̄j + Ldj ūi)⇥ |Vij |

2

(Lud̄ + Ldū)⇥ |Vud|
2

. (4.5)

We show in Figure 1 the ratios Rij for du (red dashed), dc (red solid), su (blue dashed), sc (blue
solid), bu (green dashed) and bc (green solid) as a function of the dilepton invariant mass

p
s.

Here we use the MMHT2014 NNLO188 PDF [81] with the factorization scale µF =
p
s. The

5The transverse mass distribution (mT ⇡ 2 p`T ) also inherits negligible ✏SL � ✏T interference.
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(i = 1, 2 and j = 1, 2, 3). The results obtained in our numerical analysis (see Table 4) suggest that
the quadratic term in ✏VL dominates present limits. However, there is already a non-negligible cor-
rection from the interference term which will become prominent with more integrated luminosity.
The lack of interference in the other cases tends to increase the cross section in the high-pT tails,
and allows to extract bounds on several NP operators simultaneously.5 On the contrary, most of
the bounds from D(s) mesons decays discussed in Section 3 depend on interference terms among
different WCs, and it becomes difficult to break flat directions without additional observables.

While the energy growth of the amplitude enhances the signal, the PDF of the sea quarks
reduce it. The parton luminosity for colliding flavors i and j is
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We show in Figure 1 the ratios Rij for du (red dashed), dc (red solid), su (blue dashed), sc (blue
solid), bu (green dashed) and bc (green solid) as a function of the dilepton invariant mass

p
s.

Here we use the MMHT2014 NNLO188 PDF [81] with the factorization scale µF =
p
s. The

5The transverse mass distribution (mT ⇡ 2 p`T ) also inherits negligible ✏SL � ✏T interference.
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(i = 1, 2 and j = 1, 2, 3). The results obtained in our numerical analysis (see Table 4) suggest that
the quadratic term in ✏VL dominates present limits. However, there is already a non-negligible cor-
rection from the interference term which will become prominent with more integrated luminosity.
The lack of interference in the other cases tends to increase the cross section in the high-pT tails,
and allows to extract bounds on several NP operators simultaneously.5 On the contrary, most of
the bounds from D(s) mesons decays discussed in Section 3 depend on interference terms among
different WCs, and it becomes difficult to break flat directions without additional observables.

While the energy growth of the amplitude enhances the signal, the PDF of the sea quarks
reduce it. The parton luminosity for colliding flavors i and j is

Lqiq̄j (⌧, µF ) =

Z 1

⌧

dx

x
fqi(x, µF )fq̄j (⌧/x, µF ) , (4.3)
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We show in Figure 1 the ratios Rij for du (red dashed), dc (red solid), su (blue dashed), sc (blue
solid), bu (green dashed) and bc (green solid) as a function of the dilepton invariant mass
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s.

Here we use the MMHT2014 NNLO188 PDF [81] with the factorization scale µF =
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s. The
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PDF and CKM suppression

Energy enhancement

(s/m2
W)2 ∼ 𝒪(105)

ϵcs
L ≲ 𝒪(0.01)

Δσ/σ
tails

≲ 𝒪(0.1)

e.g.

i ↵ ✏↵i
SL

(�✏↵i
SR

) ⇥ 103 ✏↵i
T ⇥ 102

d

e [�2.5, 2.7] [�1.6, 1.5]

µ [�0.2, 1.2] [�0.7, 0.13]

⌧ [�70, 60] [�33, 44]

s

e [�2.0, 2.2] [�1.3, 1.2]

µ [�1.1, 0.3] [�0.2, 0.6]

⌧ [�19, 4.0] [�2.0, 12]

Table 3. 95% CL ranges of the WCs, assumed to be real, obtained from D(s)-meson decays for scalar and
tensor operators in the chiral basis at µ = 1 TeV. The ranges of ✏↵SR

are those of �✏
↵
SL

.

analyzed in this work will remain modest in the near future.
Finally, it is important to stress that we have restricted our analysis to decay channels for

which precise measurements and accurate LQCD predictions of the form factors currently exist.
Additional modes that can be considered are D ! V `⌫ decays (V = ⇢, K

⇤), for which modern
lattice results do not exist [9], or baryonic ⇤c decays for which data is not very precise yet. In
addition, one may consider other observables such as kinematic distributions. Including these
observables may improve the bounds on some of the WCs in the future and close flat directions in
a global fit of decay data (see e.g. Ref. [9]).

4 High-pT lepton production at the LHC

4.1 Short-distance new physics in high-pT tails

The monolepton production in proton-proton collisions at high-energy,
p
s � mW , is an excellent

probe of new contact interactions between quarks and leptons.3 The final state in this process fea-
tures missing energy plus a charged lepton of three possible flavors. In addition, there are five quark
flavors accessible in the incoming protons whose composition is described by the corresponding
parton distribution functions (PDF). Within the SMEFT, a total of 4 four-fermion operators con-
tribute to this process at tree-level for each combination of quark and lepton flavors, see Eq. (2.2).
Their contribution to the partonic cross section grows with energy as �̂ / s, see Eq. (4.2). Other
effects in the SMEFT include the chirality preserving (flipping) W -boson vertex corrections which
scale as �̂ / s

�1(s0) and are negligible in the high-pT tails compared to the four-fermion interac-
tions.4

The numerical results derived in this work are based on the Monte Carlo simulations described
in Section 4.2. Here we present a (semi-)analytic understanding of the main physical effects. The
tree-level unpolarized partonic differential cross section for dj(p1) ūi(p2) ! e

↵(p3)⌫̄�(p4) , in-
duced by the SMEFT four-fermion operators in Eq. (2.2) , expanded and matched to the notation

3There is a rich literature of NP exploration in neutral and charged Drell-Yan production, for an incomplete list
see [39–43, 45, 48, 73–79].

4The modification of the W -boson propagator in the universal basis [80] through the Ŵ parameter is captured by
the specific combination of the four-fermion contact interactions and vertex corrections in the Warsaw basis. For Ŵ
searches in the high-pT lepton tails see Ref. [74].
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• Charged (and neutral) Drell-Yan is extremely well measured at the LHC.
Compilation of experimental searches

Javier Fuentes-Mart́ın, Admir Greljo, Jorge Martin-Camalich, José Ruiz-Alvarez

Thursday 14
th

November, 2019

Channel Statistics [fb
�1
] Experiment Ref. HEPData Remarks

⌧⌫ 36 CMS [1] not available

36 ATLAS [2] available small signal excess

e⌫, µ⌫ 139 ATLAS [3] available

36 ATLAS [4] available small signal excess in µ tail

36 CMS [5] not available

⌧⌧ 36 ATLAS [6] available

⌧⌧, eµ, e⌧, µ⌧ 2.2 CMS [7] not available

ee, µµ 139 ATLAS [8] available polinomial background fit

140 CMS [9] not available

36 CMS [10, 11] available HEPData for first Ref. only

36 ATLAS [12] available

eµ, e⌧ , µ⌧ 36 ATLAS [13] not available

36 ATLAS [14] not available ⌧ modes only
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• We recast the available searches fitting the transverse mass distribution 
at the reco level.

Figure 1. Suppression factors for the charged-current Drell-Yan cross section with different colliding quark
flavors, Rij , stemming from the PDF and the CKM matrix, see Eq. (4.5).

suppression from Rij is compensated by the energy enhancement (
p
s/mW )4 ⇠ O(105). Thus,

a measurement of the cross section in the tails with O(10%) precision would probe cs and cd at
the level of ✏X ⇠ O(10�2). The weak dependence on the energy across the most sensitive bins
allows to rescale the limits for different flavor combinations provided the lepton cuts are sufficiently
inclusive (see Section 4.2).

The theoretical prediction for the signal rate is plagued by the uncertainties stemming from the
missing high-order perturbative corrections, as well as the knowledge of the PDF of the colliding
sea quarks. These have been studied in detail in [42, 45]. More precisely, NLO QCD and PDF
uncertainties are quantified in the supplemental material of Ref. [45] for a bc ! W

0 example (and
in Ref. [42] for bb ! Z

0) as a function of the vector boson mass mV 0 . These estimates are trivially
applicable for the corresponding quark-lepton contact interactions when replacing mV 0 with the
dilepton invariant mass

p
s. A relative uncertainty of ⇠ 10% is found on the differential cross sec-

tion in the most sensitive bins. Another potential issue comes from the PDF extraction, as recent
analyses also include Drell-Yan data, see e.g. Ref. [82]. While at the moment this data has a sub-
leading impact on the PDF determination, it will become important at the HL-LHC [83]. A proper
approach would be to perform a combined SMEFT and PDF fit. First steps in this direction show
discriminating power between EFT and PDF effects in the context of deep inelastic scattering [84].

4.2 Recast of the existing experimental searches

We use the analyses reported by ATLAS and CMS collaborations with one lepton plus missing
transverse momentum signature. For the ⌧ + ⌫ channel, we recast the searches in Refs. [85, 86] us-
ing 36.1 fb�1 and 35.9 fb�1 of data, respectively. In the case of `+⌫ final state, we use the ATLAS
139 fb�1 [87] and the CMS 35.9 fb�1 [88] analyses. The Monte Carlo (MC) simulation pipeline is
as follows: we use FeynRules [89] for the model generation, MadGraph5_aMC@NLO [90, 91]
for the partonic process simulation interfaced with Pythia 8 [92] to simulate the hadronic pro-
cesses, and finally Delphes [93] to get an estimate of the detector effects. We set a dynamical
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• Full-fledged simulations validated by reproducing the official SM prediction. The SM 
background systematics included conservatively. The modified frequentist CLs method used.
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Figure 1: Distributions of the transverse mass for data and predicted background events in the electron (top) and
muon (bottom) channels. Expected signal distributions for several SSM W

0 boson masses are shown stacked on top
of the total expected background. The middle panels show ratios of the number of events observed in the data to the
expected total background count, while the lower panels show the same ratio when taking into account the pulls
on the nuisance parameters observed in the statistical analysis (Section 7). The hatched bands represent the total
uncertainty in the background estimate (Section 6). Arrows in the middle and lower panels for the electron channel
indicate data points that lie outside the vertical axis range.
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i ↵ ✏↵↵i
VL

⇥ 102
|✏↵�i

VL
| ⇥ 102 |✏↵�i

SL,R
(µ)| ⇥ 102 |✏↵�i

T (µ)| ⇥ 103

(↵ 6= �) µ = 1 TeV µ = 2 GeV µ = 1 TeV µ = 2 GeV

d

e [�0.52, 0.86] 0.67 (0.42) 0.72 (0.46) 1.5 (0.96) 4.3 (2.7) 3.4 (2.2)

µ [�0.85, 1.2] 1.0 (0.38) 1.1 (0.42) 2.3 (0.86) 6.6 (2.4) 5.2 (1.9)

⌧ [�1.4, 1.8] 1.6 (0.68) 1.5 (0.55) 3.1 (1.1) 8.7 (3.1) 6.9 (2.5)

s

e [�0.28, 0.59] 0.42 (0.26) 0.43 (0.28) 0.91 (0.57) 2.8 (1.5) 2.2 (1.2)

µ [�0.46, 0.78] 0.63 (0.23) 0.68 (0.25) 1.4 (0.52) 4.0 (1.4) 3.1 (1.1)

⌧ [�0.65, 1.2] 0.93 (0.40) 0.87 (0.31) 1.8 (0.65) 5.2 (1.8) 4.1 (1.5)

Table 4. 95% CL limits on the value of the WCs of the charged-current operators obtained from high-pT
data (� = e, µ, ⌧ ). We also show in parenthesis the naive projections for the HL-LHC (3 ab�1) on the
expected limits, assuming that the error will be statistically dominated.

scale for renormalization and factorization scales, µR/F = mT . We use the ATLAS and CMS
Delphes cards, respectively, when making the simulations for each experiment. ROOT [94] is used
to apply the selection criteria of each analysis to the corresponding Delphes output, and to obtain
the expected yields for our signals in each bin of the reported transverse mass distributions.

We validated our setup by producing MC samples for W ! e
↵
⌫ + jets in the SM, and

comparing the yields with those reported by ATLAS and CMS. We reproduce their results within
10% to 20% accuracy. As we only use limited MC simulation capabilities, detector emulation
via Delphes, and no experimental corrections from data, as done in the experimental analyses, we
consider this level of agreement as an accurate reproduction of the experimental results from the
phenomenological perspective. The same techniques have been used and reported in [45]. Thus,
the relative error on the limits derived here from the high-pT data is expected to be below 10%

(�✏X/✏X ⇡ 0.5��/�).
The limits on the WCs are obtained by comparing our simulated signal events for the trans-

verse mass distributions to the background events in the corresponding collaboration analyses. For
the statistical analysis, we use the modified frequentist CLs method [95]. We compute the CLs
using the ROOT package Tlimit [96], and exclude WC values with CLs < 0.05. In our statisti-
cal analysis, we include the SM background systematic and statistical errors (added in quadrature)
provided by the collaborations for all bins. We ignore any possible correlation in the bin errors
when combining the bins, since these are not provided. For the vector operator, both NP-squared
and NP-SM interference contributions are computed. We do not include systematic errors for the
signal simulation in our analysis, as they are expected to be subdominant compared to the over-
all signal normalization uncertainty stemming from the theoretical prediction of the cross section
discussed in Section 4.1.

Our results are reported in Table 4 in terms of the WCs at two different scales µ = 1 TeV
and µ = 2 GeV, respectively.6 The resulting limits qualitatively agree with the naive ratios in the

6See Eq. (2.9) for the RGE solutions. The difference between SL and SR is O(1%) so we use a single column.
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Figure 1. Suppression factors for the charged-current Drell-Yan cross section with different colliding quark
flavors, Rij , stemming from the PDF and the CKM matrix, see Eq. (4.5).

suppression from Rij is compensated by the energy enhancement (
p
s/mW )4 ⇠ O(105). Thus,

a measurement of the cross section in the tails with O(10%) precision would probe cs and cd at
the level of ✏X ⇠ O(10�2). The weak dependence on the energy across the most sensitive bins
allows to rescale the limits for different flavor combinations provided the lepton cuts are sufficiently
inclusive (see Section 4.2).

The theoretical prediction for the signal rate is plagued by the uncertainties stemming from the
missing high-order perturbative corrections, as well as the knowledge of the PDF of the colliding
sea quarks. These have been studied in detail in [42, 45]. More precisely, NLO QCD and PDF
uncertainties are quantified in the supplemental material of Ref. [45] for a bc ! W

0 example (and
in Ref. [42] for bb ! Z

0) as a function of the vector boson mass mV 0 . These estimates are trivially
applicable for the corresponding quark-lepton contact interactions when replacing mV 0 with the
dilepton invariant mass

p
s. A relative uncertainty of ⇠ 10% is found on the differential cross sec-

tion in the most sensitive bins. Another potential issue comes from the PDF extraction, as recent
analyses also include Drell-Yan data, see e.g. Ref. [82]. While at the moment this data has a sub-
leading impact on the PDF determination, it will become important at the HL-LHC [83]. A proper
approach would be to perform a combined SMEFT and PDF fit. First steps in this direction show
discriminating power between EFT and PDF effects in the context of deep inelastic scattering [84].

4.2 Recast of the existing experimental searches

We use the analyses reported by ATLAS and CMS collaborations with one lepton plus missing
transverse momentum signature. For the ⌧ + ⌫ channel, we recast the searches in Refs. [85, 86] us-
ing 36.1 fb�1 and 35.9 fb�1 of data, respectively. In the case of `+⌫ final state, we use the ATLAS
139 fb�1 [87] and the CMS 35.9 fb�1 [88] analyses. The Monte Carlo (MC) simulation pipeline is
as follows: we use FeynRules [89] for the model generation, MadGraph5_aMC@NLO [90, 91]
for the partonic process simulation interfaced with Pythia 8 [92] to simulate the hadronic pro-
cesses, and finally Delphes [93] to get an estimate of the detector effects. We set a dynamical

– 10 –
95% CL ranges on WCs. Naive HL-LHC projection in (). 
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µ [�0.85, 1.2] 1.0 (0.38) 1.1 (0.42) 2.3 (0.86) 6.6 (2.4) 5.2 (1.9)

⌧ [�1.4, 1.8] 1.6 (0.68) 1.5 (0.55) 3.1 (1.1) 8.7 (3.1) 6.9 (2.5)

s

e [�0.28, 0.59] 0.42 (0.26) 0.43 (0.28) 0.91 (0.57) 2.8 (1.5) 2.2 (1.2)
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Table 4. 95% CL limits on the value of the WCs of the charged-current operators obtained from high-pT
data (� = e, µ, ⌧ ). We also show in parenthesis the naive projections for the HL-LHC (3 ab�1) on the
expected limits, assuming that the error will be statistically dominated.

scale for renormalization and factorization scales, µR/F = mT . We use the ATLAS and CMS
Delphes cards, respectively, when making the simulations for each experiment. ROOT [94] is used
to apply the selection criteria of each analysis to the corresponding Delphes output, and to obtain
the expected yields for our signals in each bin of the reported transverse mass distributions.

We validated our setup by producing MC samples for W ! e
↵
⌫ + jets in the SM, and

comparing the yields with those reported by ATLAS and CMS. We reproduce their results within
10% to 20% accuracy. As we only use limited MC simulation capabilities, detector emulation
via Delphes, and no experimental corrections from data, as done in the experimental analyses, we
consider this level of agreement as an accurate reproduction of the experimental results from the
phenomenological perspective. The same techniques have been used and reported in [45]. Thus,
the relative error on the limits derived here from the high-pT data is expected to be below 10%

(�✏X/✏X ⇡ 0.5��/�).
The limits on the WCs are obtained by comparing our simulated signal events for the trans-

verse mass distributions to the background events in the corresponding collaboration analyses. For
the statistical analysis, we use the modified frequentist CLs method [95]. We compute the CLs
using the ROOT package Tlimit [96], and exclude WC values with CLs < 0.05. In our statisti-
cal analysis, we include the SM background systematic and statistical errors (added in quadrature)
provided by the collaborations for all bins. We ignore any possible correlation in the bin errors
when combining the bins, since these are not provided. For the vector operator, both NP-squared
and NP-SM interference contributions are computed. We do not include systematic errors for the
signal simulation in our analysis, as they are expected to be subdominant compared to the over-
all signal normalization uncertainty stemming from the theoretical prediction of the cross section
discussed in Section 4.1.

Our results are reported in Table 4 in terms of the WCs at two different scales µ = 1 TeV
and µ = 2 GeV, respectively.6 The resulting limits qualitatively agree with the naive ratios in the

6See Eq. (2.9) for the RGE solutions. The difference between SL and SR is O(1%) so we use a single column.
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analyses also include Drell-Yan data, see e.g. Ref. [82]. While at the moment this data has a sub-
leading impact on the PDF determination, it will become important at the HL-LHC [83]. A proper
approach would be to perform a combined SMEFT and PDF fit. First steps in this direction show
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• Similar results for d and s - strange PDF versus Cabibo squared.

• Approx all limits O(0.01).  

•  

• Quadratic terms dominates the limits also for VL.

• The most sensitive bins fall in the range [1 - 1.5] TeV

• Dedicated future analysis: angular dependence, lepton charge asymmetry, etc.
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due to rather inclusive kinematics of the analysis. A dedicated future analysis should exploit the
angular dependence in Eq. (4.1) in order to differentiate among operators, and possibly further sup-
press the background. We also recommend separating future data by the lepton charge as a way to
further enhance the signal over background discrimination. For instance, ud-induced monolepton
production is asymmetric in lepton charge unlike cs.

For the ⌧ + ⌫ channel, the reported limits are well compatible with those obtained by naive
rescaling via the Rij ratios in Eq. (4.5) of the ones presented in Ref. [45] (neglecting the interfer-
ence for ✏VL). In principle, this method can be used to estimate the limit on any u

i
! d

j transition.
Finally, the jackknife analysis performed in the supplemental material of [45] suggests that the
most sensitive bins in these types of searches to fall in the range between 1 and 1.5 TeV. This
raises questions about the applicability of the high-pT bounds to the space of possible NP models
modifying charged-current charm transitions, to which we turn next.

4.3 Possible caveats within and beyond the EFT

As shown in section 4.2, most of the limits obtained from high-pT tails are stronger than their low-
energy counterparts. However, one could argue that high-pT limits are not free of caveats, which
would allow certain NP models to evade them while still yielding sizeable low-energy contribu-
tions.

For concreteness, let us first remain within the realm of the SMEFT, where any new degree of
freedom is well above the EW scale. The partonic cross-section for c̄di ! e

↵
⌫̄
↵ scattering in the

presence of dimension-six operators is given in Eq. (4.2). As can be seen from this expression, the
NP-squared piece receives an energy enhancement with respect to both the pure SM contribution
and SM-NP interference. As a result, the limits shown in Table 4 rely on dimension-six squared
contributions. It could be argued that dimension-8 contributions that interfere with the SM are of
the same order in the EFT, so their inclusion might significantly affect our results. To illustrate this
point, let us work in a specific example involving both dimension-6 and dimension-8 operators,
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(ē↵L�µ⌫
↵
L)@

2(c̄L�
µ
d
i
L)

�
+ h.c. , (4.7)

with the normalization chosen such that ✏(6,8)VL
are adimensional, and MNP is the NP mass threshold.

The corresponding partonic cross section including both SM and the EFT contributions in Eq. (4.7)
is given by
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where, in the second line, we neglected the dimension-8 squared term. As already mentioned,
the experimental limits in Table 4 are dominated by the |✏

(6)
VL

|
2 term, with a small correction from
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• The SM prediction (NNLO QCD + NLO EW) suffices the experimental precision. 

• The PDF determination assumes the SM. The impact of the Drell-Yan data in 
the global PDF fit is small at the moment. The issue is there in the future.

i ↵ ✏↵i
SL

(�✏↵i
SR

) ⇥ 103 ✏↵i
T ⇥ 102

d

e [�2.5, 2.7] [�1.6, 1.5]

µ [�0.2, 1.2] [�0.7, 0.13]

⌧ [�70, 60] [�33, 44]

s

e [�2.0, 2.2] [�1.3, 1.2]

µ [�1.1, 0.3] [�0.2, 0.6]

⌧ [�19, 4.0] [�2.0, 12]

Table 3. 95% CL ranges of the WCs, assumed to be real, obtained from D(s)-meson decays for scalar and
tensor operators in the chiral basis at µ = 1 TeV. The ranges of ✏↵SR

are those of �✏
↵
SL

.

analyzed in this work will remain modest in the near future.
Finally, it is important to stress that we have restricted our analysis to decay channels for

which precise measurements and accurate LQCD predictions of the form factors currently exist.
Additional modes that can be considered are D ! V `⌫ decays (V = ⇢, K

⇤), for which modern
lattice results do not exist [9], or baryonic ⇤c decays for which data is not very precise yet. In
addition, one may consider other observables such as kinematic distributions. Including these
observables may improve the bounds on some of the WCs in the future and close flat directions in
a global fit of decay data (see e.g. Ref. [9]).

4 High-pT lepton production at the LHC

4.1 Short-distance new physics in high-pT tails

The monolepton production in proton-proton collisions at high-energy,
p
s � mW , is an excellent

probe of new contact interactions between quarks and leptons.3 The final state in this process fea-
tures missing energy plus a charged lepton of three possible flavors. In addition, there are five quark
flavors accessible in the incoming protons whose composition is described by the corresponding
parton distribution functions (PDF). Within the SMEFT, a total of 4 four-fermion operators con-
tribute to this process at tree-level for each combination of quark and lepton flavors, see Eq. (2.2).
Their contribution to the partonic cross section grows with energy as �̂ / s, see Eq. (4.2). Other
effects in the SMEFT include the chirality preserving (flipping) W -boson vertex corrections which
scale as �̂ / s

�1(s0) and are negligible in the high-pT tails compared to the four-fermion interac-
tions.4

The numerical results derived in this work are based on the Monte Carlo simulations described
in Section 4.2. Here we present a (semi-)analytic understanding of the main physical effects. The
tree-level unpolarized partonic differential cross section for dj(p1) ūi(p2) ! e

↵(p3)⌫̄�(p4) , in-
duced by the SMEFT four-fermion operators in Eq. (2.2) , expanded and matched to the notation

3There is a rich literature of NP exploration in neutral and charged Drell-Yan production, for an incomplete list
see [39–43, 45, 48, 73–79].

4The modification of the W -boson propagator in the universal basis [80] through the Ŵ parameter is captured by
the specific combination of the four-fermion contact interactions and vertex corrections in the Warsaw basis. For Ŵ
searches in the high-pT lepton tails see Ref. [74].
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• The uncertainty on the signal prediction from NLO QCD and PDF replicas 
estimated to be ~ 10 % on the rate in the most sensitive bin. Electroweak 
corrections at the similar level. 
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(↵ 6= �) µ = 1 TeV µ = 2 GeV µ = 1 TeV µ = 2 GeV

d

e [�0.52, 0.86] 0.67 (0.42) 0.72 (0.46) 1.5 (0.96) 4.3 (2.7) 3.4 (2.2)

µ [�0.85, 1.2] 1.0 (0.38) 1.1 (0.42) 2.3 (0.86) 6.6 (2.4) 5.2 (1.9)

⌧ [�1.4, 1.8] 1.6 (0.68) 1.5 (0.55) 3.1 (1.1) 8.7 (3.1) 6.9 (2.5)

s

e [�0.28, 0.59] 0.42 (0.26) 0.43 (0.28) 0.91 (0.57) 2.8 (1.5) 2.2 (1.2)

µ [�0.46, 0.78] 0.63 (0.23) 0.68 (0.25) 1.4 (0.52) 4.0 (1.4) 3.1 (1.1)

⌧ [�0.65, 1.2] 0.93 (0.40) 0.87 (0.31) 1.8 (0.65) 5.2 (1.8) 4.1 (1.5)

Table 4. 95% CL limits on the value of the WCs of the charged-current operators obtained from high-pT
data (� = e, µ, ⌧ ). We also show in parenthesis the naive projections for the HL-LHC (3 ab�1) on the
expected limits, assuming that the error will be statistically dominated.

scale for renormalization and factorization scales, µR/F = mT . We use the ATLAS and CMS
Delphes cards, respectively, when making the simulations for each experiment. ROOT [94] is used
to apply the selection criteria of each analysis to the corresponding Delphes output, and to obtain
the expected yields for our signals in each bin of the reported transverse mass distributions.

We validated our setup by producing MC samples for W ! e
↵
⌫ + jets in the SM, and

comparing the yields with those reported by ATLAS and CMS. We reproduce their results within
10% to 20% accuracy. As we only use limited MC simulation capabilities, detector emulation
via Delphes, and no experimental corrections from data, as done in the experimental analyses, we
consider this level of agreement as an accurate reproduction of the experimental results from the
phenomenological perspective. The same techniques have been used and reported in [45]. Thus,
the relative error on the limits derived here from the high-pT data is expected to be below 10%

(�✏X/✏X ⇡ 0.5��/�).
The limits on the WCs are obtained by comparing our simulated signal events for the trans-

verse mass distributions to the background events in the corresponding collaboration analyses. For
the statistical analysis, we use the modified frequentist CLs method [95]. We compute the CLs
using the ROOT package Tlimit [96], and exclude WC values with CLs < 0.05. In our statisti-
cal analysis, we include the SM background systematic and statistical errors (added in quadrature)
provided by the collaborations for all bins. We ignore any possible correlation in the bin errors
when combining the bins, since these are not provided. For the vector operator, both NP-squared
and NP-SM interference contributions are computed. We do not include systematic errors for the
signal simulation in our analysis, as they are expected to be subdominant compared to the over-
all signal normalization uncertainty stemming from the theoretical prediction of the cross section
discussed in Section 4.1.

Our results are reported in Table 4 in terms of the WCs at two different scales µ = 1 TeV
and µ = 2 GeV, respectively.6 The resulting limits qualitatively agree with the naive ratios in the

6See Eq. (2.9) for the RGE solutions. The difference between SL and SR is O(1%) so we use a single column.
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Figure 2. Exclusion limits at 95% CL on c ! d(s)ē↵⌫↵ transitions in (✏↵↵dVL
, ✏

↵↵s
VL

) plane were ↵ = e (top
left), ↵ = µ (top right), and ↵ = ⌧ (bottom). The region colored in pink is excluded by D(s) meson decays,
while the region colored in blue is excluded by high-pT LHC.

5 Interplay between low and high energy

Once we have clarified possible caveats concerning high-pT limits on effective operators we are
ready to compare low and high-energy results and discuss their complementarity. The comparison
for scalar and tensor operators is quite direct because they receive contributions only from four-
fermion operators in the SMEFT, cf. Eqs. (2.8). Vector and axial operators, on the other hand,
receive two types of SMEFT contributions from: (i) four-fermion operators, and (ii) W vertex cor-
rections. As discussed in detail in Section 4, only (i) experience the energy enhancement exploited
by our analysis of the high-pT tails. In the following, we discuss the interplay between low-energy
and high pT bounds in four-fermion operators and then we obtain limits on W vertex corrections.

– 14 –

due to its manifest SU(2)L gauge invariance, this framework allows to establish correlations with
kaon and tau physics.

The next four sections investigate, in steps, charged-current transitions. Namely, starting from
the effective field theory setup in Section 2, we study the set of constraints from charmed meson
decays in Section 3, the production of monoleptons at high-pT LHC in Section 4 and, finally, com-
pare the two in Section 5. The analysis is then repeated for neutral-current transitions in Section 6.
Complementary constraints implied by SU(2)L gauge symmetry are derived in Section 7. We
conclude in Section 8.

2 Theoretical framework: c ! diē↵⌫�

2.1 The high-energy effective theory

We focus on short-distance NP that can affect semileptonic charged-current charm transitions, par-
ticularly when charm number changes by one unit, �C = 1. Under the assumption of no new
degrees of freedom below (or at) the electroweak scale, NP effects can be fully described employ-
ing the SMEFT. The relevant Lagrangian is

LSMEFT �
1

v2

X

k

Ck Ok , (2.1)

where v ⇡ 246 GeV is the SM Higgs vacuum expectation value and the Wilson coefficients (WCs)
scale as Ck / v

2
/⇤2, with ⇤ being the scale of NP. We employ the Warsaw basis [50] for operators

of canonical dimension six, which is particularly suited for flavor physics as covariant derivatives
and field strengths are reduced in favor of fermionic currents using the equations of motion. The
most general set of semileptonic four-fermion SMEFT operators contributing to c ! d

i
ē
↵
⌫
� tran-

sitions are

O
(3)
lq = (l̄L�µ⌧

I
lL)(q̄L�

µ
⌧
I
qL) , Oledq = (l̄LeR)(d̄RqL) ,

O
(1)
lequ = (l̄pLeR)✏pr(q̄

r
LuR) , O

(3)
lequ = (l̄pL�µ⌫eR)✏pr(q̄

r
L�

µ⌫
uR) ,

(2.2)

with �µ⌫ = i
2 [�

µ
, �

⌫ ], ⌧ I the Pauli matrices, ✏pr the Levi-Civita symbol and {p, r} being SU(2)L
indices.1 The left-handed quark and lepton doublets are denoted by qL and lL, respectively, while
the right-handed singlets are uR, dR and eR. On the other hand, the SMEFT operators that modify
the W couplings to quarks read

O
(3)
�q = (�† i

$
D

I
µ �)(q̄L�

µ
⌧
I
qL) , O�ud = (�̃† iDµ�)(ūR�

µ
dR) , (2.3)

where � is the Higgs field and Dµ its covariant derivative. We neglect the chirality-flipping W

vertices of the type  ̄�µ⌫ �Fµ⌫ . Their effects are subleading relative to the operators in Eq. (2.3)
at low-energies, since they are charm mass suppressed, and to the operators in Eq. (2.2) at high-pT ,
due to their different high-energy behavior discussed in Section 4.1. We also neglect all modifica-
tions to the leptonic W vertices, since they are better probed in purely leptonic transitions.

1The SM extended by a light right-handed neutrino (⌫R) potentially accessible in charm decays would require sup-
plementing the SMEFT with a new set of operators such as (l̄L⌫R)(ūRqL). For the full list see Eq. (2.1) in Ref. [51].
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) plane were ↵ = e (top
left), ↵ = µ (top right), and ↵ = ⌧ (bottom). The region colored in pink is excluded by D(s) meson decays,
while the region colored in blue is excluded by high-pT LHC.

5 Interplay between low and high energy

Once we have clarified possible caveats concerning high-pT limits on effective operators we are
ready to compare low and high-energy results and discuss their complementarity. The comparison
for scalar and tensor operators is quite direct because they receive contributions only from four-
fermion operators in the SMEFT, cf. Eqs. (2.8). Vector and axial operators, on the other hand,
receive two types of SMEFT contributions from: (i) four-fermion operators, and (ii) W vertex cor-
rections. As discussed in detail in Section 4, only (i) experience the energy enhancement exploited
by our analysis of the high-pT tails. In the following, we discuss the interplay between low-energy
and high pT bounds in four-fermion operators and then we obtain limits on W vertex corrections.
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T to the charmed-meson decay data with
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Projections for the high-luminosity phase of the LHC (3 ab�1), obtained by rescaling the expected limits
with luminosity, are represented by dashed ellipses.
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Figure 3. 95% CL regions for the combined fits of ✏↵�iSL
and ✏
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T to the charmed-meson decay data with

� = ↵ (red solid line) or � 6= ↵ (light-red dash-dotted line) and to monolepton LHC data (blue solid line).
Projections for the high-luminosity phase of the LHC (3 ab�1), obtained by rescaling the expected limits
with luminosity, are represented by dashed ellipses.

5.1 Four-fermion interactions

High-pT bounds on left-handed (V � A) four-fermion operators are almost an order of magnitude
stronger than those derived from meson decays. In Figure 2, we compare the regions excluded by
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conserving combination ↵ = �, while for ↵ 6= � the improvement with respect to charm decays
is even more significant. These comparisons provide a striking illustration of the LHC potential to
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The high-pT LHC bounds are also stronger than those from D(s)-meson decays in all channels
and WCs except for the pseudoscalar operators, constrained by the electronic and muonic D(s)

decays. As discussed in Section 3 and shown in Table 3, the latter strongly constrains any NP
producing a single scalar or tensor operator at the high-energy scale. Even in this scenario, high-pT
LHC limits are stronger for the tauonic operators and for the electronic tensor operators.

In NP scenarios where various operators with the same flavor entries are produced at the
matching scale, the complementarity between high-pT LHC and meson decays becomes more
pronounced. As discussed above, the quadratic contributions of NP dominate the high-pT limits,
allowing one to extract bounds on several operators simultaneously (see e.g. Figure 2). On the
other hand, the D(s) branching fractions depend on interference terms between WCs, and some
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To illustrate this, we compare in Figure 3 the constraints on the (✏↵�iSL
, ✏

↵�i
T ) planes for µ =

– 15 –
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kaon and tau physics.

The next four sections investigate, in steps, charged-current transitions. Namely, starting from
the effective field theory setup in Section 2, we study the set of constraints from charmed meson
decays in Section 3, the production of monoleptons at high-pT LHC in Section 4 and, finally, com-
pare the two in Section 5. The analysis is then repeated for neutral-current transitions in Section 6.
Complementary constraints implied by SU(2)L gauge symmetry are derived in Section 7. We
conclude in Section 8.
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We focus on short-distance NP that can affect semileptonic charged-current charm transitions, par-
ticularly when charm number changes by one unit, �C = 1. Under the assumption of no new
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where � is the Higgs field and Dµ its covariant derivative. We neglect the chirality-flipping W

vertices of the type  ̄�µ⌫ �Fµ⌫ . Their effects are subleading relative to the operators in Eq. (2.3)
at low-energies, since they are charm mass suppressed, and to the operators in Eq. (2.2) at high-pT ,
due to their different high-energy behavior discussed in Section 4.1. We also neglect all modifica-
tions to the leptonic W vertices, since they are better probed in purely leptonic transitions.

1The SM extended by a light right-handed neutrino (⌫R) potentially accessible in charm decays would require sup-
plementing the SMEFT with a new set of operators such as (l̄L⌫R)(ūRqL). For the full list see Eq. (2.1) in Ref. [51].
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Figure 3. 95% CL regions for the combined fits of ✏↵�iSL
and ✏
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T to the charmed-meson decay data with

� = ↵ (red solid line) or � 6= ↵ (light-red dash-dotted line) and to monolepton LHC data (blue solid line).
Projections for the high-luminosity phase of the LHC (3 ab�1), obtained by rescaling the expected limits
with luminosity, are represented by dashed ellipses.
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⌫ ], ⌧ I the Pauli matrices, ✏pr the Levi-Civita symbol and {p, r} being SU(2)L
indices.1 The left-handed quark and lepton doublets are denoted by qL and lL, respectively, while
the right-handed singlets are uR, dR and eR. On the other hand, the SMEFT operators that modify
the W couplings to quarks read
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where � is the Higgs field and Dµ its covariant derivative. We neglect the chirality-flipping W

vertices of the type  ̄�µ⌫ �Fµ⌫ . Their effects are subleading relative to the operators in Eq. (2.3)
at low-energies, since they are charm mass suppressed, and to the operators in Eq. (2.2) at high-pT ,
due to their different high-energy behavior discussed in Section 4.1. We also neglect all modifica-
tions to the leptonic W vertices, since they are better probed in purely leptonic transitions.

1The SM extended by a light right-handed neutrino (⌫R) potentially accessible in charm decays would require sup-
plementing the SMEFT with a new set of operators such as (l̄L⌫R)(ūRqL). For the full list see Eq. (2.1) in Ref. [51].
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where � is the Higgs field and Dµ its covariant derivative. We neglect the chirality-flipping W

vertices of the type  ̄�µ⌫ �Fµ⌫ . Their effects are subleading relative to the operators in Eq. (2.3)
at low-energies, since they are charm mass suppressed, and to the operators in Eq. (2.2) at high-pT ,
due to their different high-energy behavior discussed in Section 4.1. We also neglect all modifica-
tions to the leptonic W vertices, since they are better probed in purely leptonic transitions.

1The SM extended by a light right-handed neutrino (⌫R) potentially accessible in charm decays would require sup-
plementing the SMEFT with a new set of operators such as (l̄L⌫R)(ūRqL). For the full list see Eq. (2.1) in Ref. [51].
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Figure 3. 95% CL regions for the combined fits of ✏↵�iSL
and ✏

↵�i
T to the charmed-meson decay data with

� = ↵ (red solid line) or � 6= ↵ (light-red dash-dotted line) and to monolepton LHC data (blue solid line).
Projections for the high-luminosity phase of the LHC (3 ab�1), obtained by rescaling the expected limits
with luminosity, are represented by dashed ellipses.

5.1 Four-fermion interactions

High-pT bounds on left-handed (V � A) four-fermion operators are almost an order of magnitude
stronger than those derived from meson decays. In Figure 2, we compare the regions excluded by
charmed-meson decays (cf. Table 2) and high-pT monolepton tails (cf. Table 4) in the (✏↵↵dVL

, ✏
↵↵s
VL

)

plane, assuming NP only in the SMEFT operator O(3)
lq . The three plots are for each lepton flavor

conserving combination ↵ = �, while for ↵ 6= � the improvement with respect to charm decays
is even more significant. These comparisons provide a striking illustration of the LHC potential to
probe new flavor violating interactions at high-pT .

The high-pT LHC bounds are also stronger than those from D(s)-meson decays in all channels
and WCs except for the pseudoscalar operators, constrained by the electronic and muonic D(s)

decays. As discussed in Section 3 and shown in Table 3, the latter strongly constrains any NP
producing a single scalar or tensor operator at the high-energy scale. Even in this scenario, high-pT
LHC limits are stronger for the tauonic operators and for the electronic tensor operators.

In NP scenarios where various operators with the same flavor entries are produced at the
matching scale, the complementarity between high-pT LHC and meson decays becomes more
pronounced. As discussed above, the quadratic contributions of NP dominate the high-pT limits,
allowing one to extract bounds on several operators simultaneously (see e.g. Figure 2). On the
other hand, the D(s) branching fractions depend on interference terms between WCs, and some
combinations remain unconstrained (tauonic operators) or poorly bounded by the low-energy data.

To illustrate this, we compare in Figure 3 the constraints on the (✏↵�iSL
, ✏

↵�i
T ) planes for µ =
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due to its manifest SU(2)L gauge invariance, this framework allows to establish correlations with
kaon and tau physics.

The next four sections investigate, in steps, charged-current transitions. Namely, starting from
the effective field theory setup in Section 2, we study the set of constraints from charmed meson
decays in Section 3, the production of monoleptons at high-pT LHC in Section 4 and, finally, com-
pare the two in Section 5. The analysis is then repeated for neutral-current transitions in Section 6.
Complementary constraints implied by SU(2)L gauge symmetry are derived in Section 7. We
conclude in Section 8.
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We focus on short-distance NP that can affect semileptonic charged-current charm transitions, par-
ticularly when charm number changes by one unit, �C = 1. Under the assumption of no new
degrees of freedom below (or at) the electroweak scale, NP effects can be fully described employ-
ing the SMEFT. The relevant Lagrangian is
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where v ⇡ 246 GeV is the SM Higgs vacuum expectation value and the Wilson coefficients (WCs)
scale as Ck / v
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of canonical dimension six, which is particularly suited for flavor physics as covariant derivatives
and field strengths are reduced in favor of fermionic currents using the equations of motion. The
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with �µ⌫ = i
2 [�

µ
, �

⌫ ], ⌧ I the Pauli matrices, ✏pr the Levi-Civita symbol and {p, r} being SU(2)L
indices.1 The left-handed quark and lepton doublets are denoted by qL and lL, respectively, while
the right-handed singlets are uR, dR and eR. On the other hand, the SMEFT operators that modify
the W couplings to quarks read
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where � is the Higgs field and Dµ its covariant derivative. We neglect the chirality-flipping W

vertices of the type  ̄�µ⌫ �Fµ⌫ . Their effects are subleading relative to the operators in Eq. (2.3)
at low-energies, since they are charm mass suppressed, and to the operators in Eq. (2.2) at high-pT ,
due to their different high-energy behavior discussed in Section 4.1. We also neglect all modifica-
tions to the leptonic W vertices, since they are better probed in purely leptonic transitions.

1The SM extended by a light right-handed neutrino (⌫R) potentially accessible in charm decays would require sup-
plementing the SMEFT with a new set of operators such as (l̄L⌫R)(ūRqL). For the full list see Eq. (2.1) in Ref. [51].
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where � is the Higgs field and Dµ its covariant derivative. We neglect the chirality-flipping W

vertices of the type  ̄�µ⌫ �Fµ⌫ . Their effects are subleading relative to the operators in Eq. (2.3)
at low-energies, since they are charm mass suppressed, and to the operators in Eq. (2.2) at high-pT ,
due to their different high-energy behavior discussed in Section 4.1. We also neglect all modifica-
tions to the leptonic W vertices, since they are better probed in purely leptonic transitions.

1The SM extended by a light right-handed neutrino (⌫R) potentially accessible in charm decays would require sup-
plementing the SMEFT with a new set of operators such as (l̄L⌫R)(ūRqL). For the full list see Eq. (2.1) in Ref. [51].
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absence of SM-NP interference,
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due to rather inclusive kinematics of the analysis. A dedicated future analysis should exploit the
angular dependence in Eq. (4.1) in order to differentiate among operators, and possibly further sup-
press the background. We also recommend separating future data by the lepton charge as a way to
further enhance the signal over background discrimination. For instance, ud-induced monolepton
production is asymmetric in lepton charge unlike cs.

For the ⌧ + ⌫ channel, the reported limits are well compatible with those obtained by naive
rescaling via the Rij ratios in Eq. (4.5) of the ones presented in Ref. [45] (neglecting the interfer-
ence for ✏VL). In principle, this method can be used to estimate the limit on any u

i
! d

j transition.
Finally, the jackknife analysis performed in the supplemental material of [45] suggests that the
most sensitive bins in these types of searches to fall in the range between 1 and 1.5 TeV. This
raises questions about the applicability of the high-pT bounds to the space of possible NP models
modifying charged-current charm transitions, to which we turn next.

4.3 Possible caveats within and beyond the EFT

As shown in section 4.2, most of the limits obtained from high-pT tails are stronger than their low-
energy counterparts. However, one could argue that high-pT limits are not free of caveats, which
would allow certain NP models to evade them while still yielding sizeable low-energy contribu-
tions.

For concreteness, let us first remain within the realm of the SMEFT, where any new degree of
freedom is well above the EW scale. The partonic cross-section for c̄di ! e

↵
⌫̄
↵ scattering in the

presence of dimension-six operators is given in Eq. (4.2). As can be seen from this expression, the
NP-squared piece receives an energy enhancement with respect to both the pure SM contribution
and SM-NP interference. As a result, the limits shown in Table 4 rely on dimension-six squared
contributions. It could be argued that dimension-8 contributions that interfere with the SM are of
the same order in the EFT, so their inclusion might significantly affect our results. To illustrate this
point, let us work in a specific example involving both dimension-6 and dimension-8 operators,
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with the normalization chosen such that ✏(6,8)VL
are adimensional, and MNP is the NP mass threshold.

The corresponding partonic cross section including both SM and the EFT contributions in Eq. (4.7)
is given by
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where, in the second line, we neglected the dimension-8 squared term. As already mentioned,
the experimental limits in Table 4 are dominated by the |✏

(6)
VL

|
2 term, with a small correction from
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• Negative interference with the dominant SM Drell-Yan channel 

the term proportional to Re(✏(6)VL
). The term proportional to Re(✏(8)VL

) is even smaller than the

dimension-6 interference if |Re(✏(8)VL
)|  |Re(✏(6)VL

)|, since M
2
NP > s by construction. To give

an example of explicit UV realization, a single tree-level s-channel resonance exchange predicts
✏
(6)
VL

= ✏
(8)
VL

. A significant cancellation between dimension-6 and 8 contributions would require a
peculiar NP scenario.

Another possible way to evade our limits within the SMEFT regime would consist in including
a semileptonic operator mediating ud̄ ! ē

↵
⌫
↵ transitions which negatively interferes with the

dominant SM background. One could then enforce a tuning between NP contributions to reduce
the number of NP events in the tails. Even with this tuning, the different

p
s dependence of each

contribution would not allow for an exact cancellation between the two.
The EFT is no longer valid if a new mass threshold is at or below the typical energy of the

process. Indeed, inverting the obtained limits on the WCs (v/
p
✏x ⇡ few TeV) and invoking

perturbative unitarity suggests that the largest scales currently probed are at most O(10 TeV) for
strongly coupled theories. Any suppression in the matching, such as loop, weak coupling, or flavor
spurion, brings the actual NP mass scale down. Clearly, the EFT approach has a significantly
reduced scope in the high-pT lepton tails compared to charmed meson decays. Outside the EFT
realm, one may wonder how well our limits approximate the correct values. Charged mediators
responsible for generating charged currents at low energies, cannot be arbitrarily light since they
would be directly produced at colliders by (at least) the EW pair production mechanism. Here, the
signal yield is robustly determined in terms of the particle mass and known SM gauge couplings.
A sizeable effect in low energy transitions also means sizeable decay branching ratio to usual final
state with jets, leptons, etc, that has been searched for. Thus, charged mediators at or below the
EW scale receive strong constraint from direct searches, yielding MNP & O(100GeV).

One could think of possible mediators that satisfy this bound, but still have a mass within the
energy range invalidating the SMEFT, since the energy in the high-pT tails is around the TeV. At
tree-level, there are a finite number of possible mediators, either colorless s-channel or colored t

(u)-channel resonances. In the case of s-channel mediators, the high-pT limits derived in the EFT
are overly conservative, due to the resonance enhancement (see e.g. Figure 5 in [43]). On the other
hand, for t (u)-channel mediators, the EFT limits are typically (slightly) stronger than the real lim-
its, but they serve as a good estimate (see e.g. Figure 3 in [45]). In addition, these latter mediators,
known as leptoquarks, are copiously produced at the LHC by QCD (see e.g. [97]), and direct ex-
clusion limits push their mass above the TeV. One could advocate for tuned scenarios where the
high-pT contributions of a t-channel resonance is cancelled against a very wide s-channel reso-
nance, while still yielding a sizable low-energy contribution (see example in Section 6.1 of [98]).
As in the previous case, this requires a tuning of the NP contributions, and one can only achieve
a partial cancellation. Finally, loop-induced contributions require the NP scale to be significantly
lower (or the NP couplings to be strong) in order to generate the same effects at low energies.
This translates into typically stronger high-pT limits than the ones considered here, either from
non-resonant or from resonant production of the new mediators.

To conclude, the comparison of low-energy and high-pT within an EFT framework is useful
even if the EFT validity is not guaranteed. If high-pT provides stronger limits relative to the ones
derived from low-energies, this will also hold in a generic NP model barring tuned cancellations.
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Different scaling with s, only a partial cancellation possible.
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due to rather inclusive kinematics of the analysis. A dedicated future analysis should exploit the
angular dependence in Eq. (4.1) in order to differentiate among operators, and possibly further sup-
press the background. We also recommend separating future data by the lepton charge as a way to
further enhance the signal over background discrimination. For instance, ud-induced monolepton
production is asymmetric in lepton charge unlike cs.

For the ⌧ + ⌫ channel, the reported limits are well compatible with those obtained by naive
rescaling via the Rij ratios in Eq. (4.5) of the ones presented in Ref. [45] (neglecting the interfer-
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NP-squared piece receives an energy enhancement with respect to both the pure SM contribution
and SM-NP interference. As a result, the limits shown in Table 4 rely on dimension-six squared
contributions. It could be argued that dimension-8 contributions that interfere with the SM are of
the same order in the EFT, so their inclusion might significantly affect our results. To illustrate this
point, let us work in a specific example involving both dimension-6 and dimension-8 operators,
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where, in the second line, we neglected the dimension-8 squared term. As already mentioned,
the experimental limits in Table 4 are dominated by the |✏
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due to rather inclusive kinematics of the analysis. A dedicated future analysis should exploit the
angular dependence in Eq. (4.1) in order to differentiate among operators, and possibly further sup-
press the background. We also recommend separating future data by the lepton charge as a way to
further enhance the signal over background discrimination. For instance, ud-induced monolepton
production is asymmetric in lepton charge unlike cs.

For the ⌧ + ⌫ channel, the reported limits are well compatible with those obtained by naive
rescaling via the Rij ratios in Eq. (4.5) of the ones presented in Ref. [45] (neglecting the interfer-
ence for ✏VL). In principle, this method can be used to estimate the limit on any u

i
! d

j transition.
Finally, the jackknife analysis performed in the supplemental material of [45] suggests that the
most sensitive bins in these types of searches to fall in the range between 1 and 1.5 TeV. This
raises questions about the applicability of the high-pT bounds to the space of possible NP models
modifying charged-current charm transitions, to which we turn next.

4.3 Possible caveats within and beyond the EFT

As shown in section 4.2, most of the limits obtained from high-pT tails are stronger than their low-
energy counterparts. However, one could argue that high-pT limits are not free of caveats, which
would allow certain NP models to evade them while still yielding sizeable low-energy contribu-
tions.

For concreteness, let us first remain within the realm of the SMEFT, where any new degree of
freedom is well above the EW scale. The partonic cross-section for c̄di ! e

↵
⌫̄
↵ scattering in the

presence of dimension-six operators is given in Eq. (4.2). As can be seen from this expression, the
NP-squared piece receives an energy enhancement with respect to both the pure SM contribution
and SM-NP interference. As a result, the limits shown in Table 4 rely on dimension-six squared
contributions. It could be argued that dimension-8 contributions that interfere with the SM are of
the same order in the EFT, so their inclusion might significantly affect our results. To illustrate this
point, let us work in a specific example involving both dimension-6 and dimension-8 operators,

LEFT � �
4GF
p
2
Vci


✏
(6)
VL
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with the normalization chosen such that ✏(6,8)VL
are adimensional, and MNP is the NP mass threshold.
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where, in the second line, we neglected the dimension-8 squared term. As already mentioned,
the experimental limits in Table 4 are dominated by the |✏
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due to rather inclusive kinematics of the analysis. A dedicated future analysis should exploit the
angular dependence in Eq. (4.1) in order to differentiate among operators, and possibly further sup-
press the background. We also recommend separating future data by the lepton charge as a way to
further enhance the signal over background discrimination. For instance, ud-induced monolepton
production is asymmetric in lepton charge unlike cs.

For the ⌧ + ⌫ channel, the reported limits are well compatible with those obtained by naive
rescaling via the Rij ratios in Eq. (4.5) of the ones presented in Ref. [45] (neglecting the interfer-
ence for ✏VL). In principle, this method can be used to estimate the limit on any u

i
! d

j transition.
Finally, the jackknife analysis performed in the supplemental material of [45] suggests that the
most sensitive bins in these types of searches to fall in the range between 1 and 1.5 TeV. This
raises questions about the applicability of the high-pT bounds to the space of possible NP models
modifying charged-current charm transitions, to which we turn next.

4.3 Possible caveats within and beyond the EFT

As shown in section 4.2, most of the limits obtained from high-pT tails are stronger than their low-
energy counterparts. However, one could argue that high-pT limits are not free of caveats, which
would allow certain NP models to evade them while still yielding sizeable low-energy contribu-
tions.

For concreteness, let us first remain within the realm of the SMEFT, where any new degree of
freedom is well above the EW scale. The partonic cross-section for c̄di ! e

↵
⌫̄
↵ scattering in the

presence of dimension-six operators is given in Eq. (4.2). As can be seen from this expression, the
NP-squared piece receives an energy enhancement with respect to both the pure SM contribution
and SM-NP interference. As a result, the limits shown in Table 4 rely on dimension-six squared
contributions. It could be argued that dimension-8 contributions that interfere with the SM are of
the same order in the EFT, so their inclusion might significantly affect our results. To illustrate this
point, let us work in a specific example involving both dimension-6 and dimension-8 operators,
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with the normalization chosen such that ✏(6,8)VL
are adimensional, and MNP is the NP mass threshold.
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where, in the second line, we neglected the dimension-8 squared term. As already mentioned,
the experimental limits in Table 4 are dominated by the |✏

(6)
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|
2 term, with a small correction from
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the term proportional to Re(✏(6)VL
). The term proportional to Re(✏(8)VL

) is even smaller than the

dimension-6 interference if |Re(✏(8)VL
)|  |Re(✏(6)VL

)|, since M
2
NP > s by construction. To give

an example of explicit UV realization, a single tree-level s-channel resonance exchange predicts
✏
(6)
VL

= ✏
(8)
VL

. A significant cancellation between dimension-6 and 8 contributions would require a
peculiar NP scenario.

Another possible way to evade our limits within the SMEFT regime would consist in including
a semileptonic operator mediating ud̄ ! ē

↵
⌫
↵ transitions which negatively interferes with the

dominant SM background. One could then enforce a tuning between NP contributions to reduce
the number of NP events in the tails. Even with this tuning, the different

p
s dependence of each

contribution would not allow for an exact cancellation between the two.
The EFT is no longer valid if a new mass threshold is at or below the typical energy of the

process. Indeed, inverting the obtained limits on the WCs (v/
p
✏x ⇡ few TeV) and invoking

perturbative unitarity suggests that the largest scales currently probed are at most O(10 TeV) for
strongly coupled theories. Any suppression in the matching, such as loop, weak coupling, or flavor
spurion, brings the actual NP mass scale down. Clearly, the EFT approach has a significantly
reduced scope in the high-pT lepton tails compared to charmed meson decays. Outside the EFT
realm, one may wonder how well our limits approximate the correct values. Charged mediators
responsible for generating charged currents at low energies, cannot be arbitrarily light since they
would be directly produced at colliders by (at least) the EW pair production mechanism. Here, the
signal yield is robustly determined in terms of the particle mass and known SM gauge couplings.
A sizeable effect in low energy transitions also means sizeable decay branching ratio to usual final
state with jets, leptons, etc, that has been searched for. Thus, charged mediators at or below the
EW scale receive strong constraint from direct searches, yielding MNP & O(100GeV).

One could think of possible mediators that satisfy this bound, but still have a mass within the
energy range invalidating the SMEFT, since the energy in the high-pT tails is around the TeV. At
tree-level, there are a finite number of possible mediators, either colorless s-channel or colored t

(u)-channel resonances. In the case of s-channel mediators, the high-pT limits derived in the EFT
are overly conservative, due to the resonance enhancement (see e.g. Figure 5 in [43]). On the other
hand, for t (u)-channel mediators, the EFT limits are typically (slightly) stronger than the real lim-
its, but they serve as a good estimate (see e.g. Figure 3 in [45]). In addition, these latter mediators,
known as leptoquarks, are copiously produced at the LHC by QCD (see e.g. [97]), and direct ex-
clusion limits push their mass above the TeV. One could advocate for tuned scenarios where the
high-pT contributions of a t-channel resonance is cancelled against a very wide s-channel reso-
nance, while still yielding a sizable low-energy contribution (see example in Section 6.1 of [98]).
As in the previous case, this requires a tuning of the NP contributions, and one can only achieve
a partial cancellation. Finally, loop-induced contributions require the NP scale to be significantly
lower (or the NP couplings to be strong) in order to generate the same effects at low energies.
This translates into typically stronger high-pT limits than the ones considered here, either from
non-resonant or from resonant production of the new mediators.

To conclude, the comparison of low-energy and high-pT within an EFT framework is useful
even if the EFT validity is not guaranteed. If high-pT provides stronger limits relative to the ones
derived from low-energies, this will also hold in a generic NP model barring tuned cancellations.
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due to rather inclusive kinematics of the analysis. A dedicated future analysis should exploit the
angular dependence in Eq. (4.1) in order to differentiate among operators, and possibly further sup-
press the background. We also recommend separating future data by the lepton charge as a way to
further enhance the signal over background discrimination. For instance, ud-induced monolepton
production is asymmetric in lepton charge unlike cs.

For the ⌧ + ⌫ channel, the reported limits are well compatible with those obtained by naive
rescaling via the Rij ratios in Eq. (4.5) of the ones presented in Ref. [45] (neglecting the interfer-
ence for ✏VL). In principle, this method can be used to estimate the limit on any u

i
! d

j transition.
Finally, the jackknife analysis performed in the supplemental material of [45] suggests that the
most sensitive bins in these types of searches to fall in the range between 1 and 1.5 TeV. This
raises questions about the applicability of the high-pT bounds to the space of possible NP models
modifying charged-current charm transitions, to which we turn next.

4.3 Possible caveats within and beyond the EFT

As shown in section 4.2, most of the limits obtained from high-pT tails are stronger than their low-
energy counterparts. However, one could argue that high-pT limits are not free of caveats, which
would allow certain NP models to evade them while still yielding sizeable low-energy contribu-
tions.

For concreteness, let us first remain within the realm of the SMEFT, where any new degree of
freedom is well above the EW scale. The partonic cross-section for c̄di ! e

↵
⌫̄
↵ scattering in the

presence of dimension-six operators is given in Eq. (4.2). As can be seen from this expression, the
NP-squared piece receives an energy enhancement with respect to both the pure SM contribution
and SM-NP interference. As a result, the limits shown in Table 4 rely on dimension-six squared
contributions. It could be argued that dimension-8 contributions that interfere with the SM are of
the same order in the EFT, so their inclusion might significantly affect our results. To illustrate this
point, let us work in a specific example involving both dimension-6 and dimension-8 operators,
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with the normalization chosen such that ✏(6,8)VL
are adimensional, and MNP is the NP mass threshold.

The corresponding partonic cross section including both SM and the EFT contributions in Eq. (4.7)
is given by
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where, in the second line, we neglected the dimension-8 squared term. As already mentioned,
the experimental limits in Table 4 are dominated by the |✏

(6)
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|
2 term, with a small correction from
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due to rather inclusive kinematics of the analysis. A dedicated future analysis should exploit the
angular dependence in Eq. (4.1) in order to differentiate among operators, and possibly further sup-
press the background. We also recommend separating future data by the lepton charge as a way to
further enhance the signal over background discrimination. For instance, ud-induced monolepton
production is asymmetric in lepton charge unlike cs.

For the ⌧ + ⌫ channel, the reported limits are well compatible with those obtained by naive
rescaling via the Rij ratios in Eq. (4.5) of the ones presented in Ref. [45] (neglecting the interfer-
ence for ✏VL). In principle, this method can be used to estimate the limit on any u

i
! d

j transition.
Finally, the jackknife analysis performed in the supplemental material of [45] suggests that the
most sensitive bins in these types of searches to fall in the range between 1 and 1.5 TeV. This
raises questions about the applicability of the high-pT bounds to the space of possible NP models
modifying charged-current charm transitions, to which we turn next.

4.3 Possible caveats within and beyond the EFT

As shown in section 4.2, most of the limits obtained from high-pT tails are stronger than their low-
energy counterparts. However, one could argue that high-pT limits are not free of caveats, which
would allow certain NP models to evade them while still yielding sizeable low-energy contribu-
tions.

For concreteness, let us first remain within the realm of the SMEFT, where any new degree of
freedom is well above the EW scale. The partonic cross-section for c̄di ! e

↵
⌫̄
↵ scattering in the

presence of dimension-six operators is given in Eq. (4.2). As can be seen from this expression, the
NP-squared piece receives an energy enhancement with respect to both the pure SM contribution
and SM-NP interference. As a result, the limits shown in Table 4 rely on dimension-six squared
contributions. It could be argued that dimension-8 contributions that interfere with the SM are of
the same order in the EFT, so their inclusion might significantly affect our results. To illustrate this
point, let us work in a specific example involving both dimension-6 and dimension-8 operators,
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with the normalization chosen such that ✏(6,8)VL
are adimensional, and MNP is the NP mass threshold.

The corresponding partonic cross section including both SM and the EFT contributions in Eq. (4.7)
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where, in the second line, we neglected the dimension-8 squared term. As already mentioned,
the experimental limits in Table 4 are dominated by the |✏
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2 term, with a small correction from
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due to rather inclusive kinematics of the analysis. A dedicated future analysis should exploit the
angular dependence in Eq. (4.1) in order to differentiate among operators, and possibly further sup-
press the background. We also recommend separating future data by the lepton charge as a way to
further enhance the signal over background discrimination. For instance, ud-induced monolepton
production is asymmetric in lepton charge unlike cs.

For the ⌧ + ⌫ channel, the reported limits are well compatible with those obtained by naive
rescaling via the Rij ratios in Eq. (4.5) of the ones presented in Ref. [45] (neglecting the interfer-
ence for ✏VL). In principle, this method can be used to estimate the limit on any u

i
! d

j transition.
Finally, the jackknife analysis performed in the supplemental material of [45] suggests that the
most sensitive bins in these types of searches to fall in the range between 1 and 1.5 TeV. This
raises questions about the applicability of the high-pT bounds to the space of possible NP models
modifying charged-current charm transitions, to which we turn next.

4.3 Possible caveats within and beyond the EFT

As shown in section 4.2, most of the limits obtained from high-pT tails are stronger than their low-
energy counterparts. However, one could argue that high-pT limits are not free of caveats, which
would allow certain NP models to evade them while still yielding sizeable low-energy contribu-
tions.

For concreteness, let us first remain within the realm of the SMEFT, where any new degree of
freedom is well above the EW scale. The partonic cross-section for c̄di ! e

↵
⌫̄
↵ scattering in the

presence of dimension-six operators is given in Eq. (4.2). As can be seen from this expression, the
NP-squared piece receives an energy enhancement with respect to both the pure SM contribution
and SM-NP interference. As a result, the limits shown in Table 4 rely on dimension-six squared
contributions. It could be argued that dimension-8 contributions that interfere with the SM are of
the same order in the EFT, so their inclusion might significantly affect our results. To illustrate this
point, let us work in a specific example involving both dimension-6 and dimension-8 operators,
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with the normalization chosen such that ✏(6,8)VL
are adimensional, and MNP is the NP mass threshold.

The corresponding partonic cross section including both SM and the EFT contributions in Eq. (4.7)
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where, in the second line, we neglected the dimension-8 squared term. As already mentioned,
the experimental limits in Table 4 are dominated by the |✏
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|
2 term, with a small correction from

– 12 –

• Negative interference with the dominant SM Drell-Yan channel 

the term proportional to Re(✏(6)VL
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dimension-6 interference if |Re(✏(8)VL
)|  |Re(✏(6)VL

)|, since M
2
NP > s by construction. To give

an example of explicit UV realization, a single tree-level s-channel resonance exchange predicts
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. A significant cancellation between dimension-6 and 8 contributions would require a
peculiar NP scenario.

Another possible way to evade our limits within the SMEFT regime would consist in including
a semileptonic operator mediating ud̄ ! ē

↵
⌫
↵ transitions which negatively interferes with the

dominant SM background. One could then enforce a tuning between NP contributions to reduce
the number of NP events in the tails. Even with this tuning, the different

p
s dependence of each

contribution would not allow for an exact cancellation between the two.
The EFT is no longer valid if a new mass threshold is at or below the typical energy of the

process. Indeed, inverting the obtained limits on the WCs (v/
p
✏x ⇡ few TeV) and invoking

perturbative unitarity suggests that the largest scales currently probed are at most O(10 TeV) for
strongly coupled theories. Any suppression in the matching, such as loop, weak coupling, or flavor
spurion, brings the actual NP mass scale down. Clearly, the EFT approach has a significantly
reduced scope in the high-pT lepton tails compared to charmed meson decays. Outside the EFT
realm, one may wonder how well our limits approximate the correct values. Charged mediators
responsible for generating charged currents at low energies, cannot be arbitrarily light since they
would be directly produced at colliders by (at least) the EW pair production mechanism. Here, the
signal yield is robustly determined in terms of the particle mass and known SM gauge couplings.
A sizeable effect in low energy transitions also means sizeable decay branching ratio to usual final
state with jets, leptons, etc, that has been searched for. Thus, charged mediators at or below the
EW scale receive strong constraint from direct searches, yielding MNP & O(100GeV).

One could think of possible mediators that satisfy this bound, but still have a mass within the
energy range invalidating the SMEFT, since the energy in the high-pT tails is around the TeV. At
tree-level, there are a finite number of possible mediators, either colorless s-channel or colored t

(u)-channel resonances. In the case of s-channel mediators, the high-pT limits derived in the EFT
are overly conservative, due to the resonance enhancement (see e.g. Figure 5 in [43]). On the other
hand, for t (u)-channel mediators, the EFT limits are typically (slightly) stronger than the real lim-
its, but they serve as a good estimate (see e.g. Figure 3 in [45]). In addition, these latter mediators,
known as leptoquarks, are copiously produced at the LHC by QCD (see e.g. [97]), and direct ex-
clusion limits push their mass above the TeV. One could advocate for tuned scenarios where the
high-pT contributions of a t-channel resonance is cancelled against a very wide s-channel reso-
nance, while still yielding a sizable low-energy contribution (see example in Section 6.1 of [98]).
As in the previous case, this requires a tuning of the NP contributions, and one can only achieve
a partial cancellation. Finally, loop-induced contributions require the NP scale to be significantly
lower (or the NP couplings to be strong) in order to generate the same effects at low energies.
This translates into typically stronger high-pT limits than the ones considered here, either from
non-resonant or from resonant production of the new mediators.

To conclude, the comparison of low-energy and high-pT within an EFT framework is useful
even if the EFT validity is not guaranteed. If high-pT provides stronger limits relative to the ones
derived from low-energies, this will also hold in a generic NP model barring tuned cancellations.
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due to rather inclusive kinematics of the analysis. A dedicated future analysis should exploit the
angular dependence in Eq. (4.1) in order to differentiate among operators, and possibly further sup-
press the background. We also recommend separating future data by the lepton charge as a way to
further enhance the signal over background discrimination. For instance, ud-induced monolepton
production is asymmetric in lepton charge unlike cs.

For the ⌧ + ⌫ channel, the reported limits are well compatible with those obtained by naive
rescaling via the Rij ratios in Eq. (4.5) of the ones presented in Ref. [45] (neglecting the interfer-
ence for ✏VL). In principle, this method can be used to estimate the limit on any u

i
! d

j transition.
Finally, the jackknife analysis performed in the supplemental material of [45] suggests that the
most sensitive bins in these types of searches to fall in the range between 1 and 1.5 TeV. This
raises questions about the applicability of the high-pT bounds to the space of possible NP models
modifying charged-current charm transitions, to which we turn next.

4.3 Possible caveats within and beyond the EFT

As shown in section 4.2, most of the limits obtained from high-pT tails are stronger than their low-
energy counterparts. However, one could argue that high-pT limits are not free of caveats, which
would allow certain NP models to evade them while still yielding sizeable low-energy contribu-
tions.

For concreteness, let us first remain within the realm of the SMEFT, where any new degree of
freedom is well above the EW scale. The partonic cross-section for c̄di ! e
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⌫̄
↵ scattering in the

presence of dimension-six operators is given in Eq. (4.2). As can be seen from this expression, the
NP-squared piece receives an energy enhancement with respect to both the pure SM contribution
and SM-NP interference. As a result, the limits shown in Table 4 rely on dimension-six squared
contributions. It could be argued that dimension-8 contributions that interfere with the SM are of
the same order in the EFT, so their inclusion might significantly affect our results. To illustrate this
point, let us work in a specific example involving both dimension-6 and dimension-8 operators,
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due to rather inclusive kinematics of the analysis. A dedicated future analysis should exploit the
angular dependence in Eq. (4.1) in order to differentiate among operators, and possibly further sup-
press the background. We also recommend separating future data by the lepton charge as a way to
further enhance the signal over background discrimination. For instance, ud-induced monolepton
production is asymmetric in lepton charge unlike cs.

For the ⌧ + ⌫ channel, the reported limits are well compatible with those obtained by naive
rescaling via the Rij ratios in Eq. (4.5) of the ones presented in Ref. [45] (neglecting the interfer-
ence for ✏VL). In principle, this method can be used to estimate the limit on any u
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j transition.
Finally, the jackknife analysis performed in the supplemental material of [45] suggests that the
most sensitive bins in these types of searches to fall in the range between 1 and 1.5 TeV. This
raises questions about the applicability of the high-pT bounds to the space of possible NP models
modifying charged-current charm transitions, to which we turn next.

4.3 Possible caveats within and beyond the EFT

As shown in section 4.2, most of the limits obtained from high-pT tails are stronger than their low-
energy counterparts. However, one could argue that high-pT limits are not free of caveats, which
would allow certain NP models to evade them while still yielding sizeable low-energy contribu-
tions.

For concreteness, let us first remain within the realm of the SMEFT, where any new degree of
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presence of dimension-six operators is given in Eq. (4.2). As can be seen from this expression, the
NP-squared piece receives an energy enhancement with respect to both the pure SM contribution
and SM-NP interference. As a result, the limits shown in Table 4 rely on dimension-six squared
contributions. It could be argued that dimension-8 contributions that interfere with the SM are of
the same order in the EFT, so their inclusion might significantly affect our results. To illustrate this
point, let us work in a specific example involving both dimension-6 and dimension-8 operators,
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where, in the second line, we neglected the dimension-8 squared term. As already mentioned,
the experimental limits in Table 4 are dominated by the |✏
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due to rather inclusive kinematics of the analysis. A dedicated future analysis should exploit the
angular dependence in Eq. (4.1) in order to differentiate among operators, and possibly further sup-
press the background. We also recommend separating future data by the lepton charge as a way to
further enhance the signal over background discrimination. For instance, ud-induced monolepton
production is asymmetric in lepton charge unlike cs.

For the ⌧ + ⌫ channel, the reported limits are well compatible with those obtained by naive
rescaling via the Rij ratios in Eq. (4.5) of the ones presented in Ref. [45] (neglecting the interfer-
ence for ✏VL). In principle, this method can be used to estimate the limit on any u
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Finally, the jackknife analysis performed in the supplemental material of [45] suggests that the
most sensitive bins in these types of searches to fall in the range between 1 and 1.5 TeV. This
raises questions about the applicability of the high-pT bounds to the space of possible NP models
modifying charged-current charm transitions, to which we turn next.

4.3 Possible caveats within and beyond the EFT

As shown in section 4.2, most of the limits obtained from high-pT tails are stronger than their low-
energy counterparts. However, one could argue that high-pT limits are not free of caveats, which
would allow certain NP models to evade them while still yielding sizeable low-energy contribu-
tions.

For concreteness, let us first remain within the realm of the SMEFT, where any new degree of
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presence of dimension-six operators is given in Eq. (4.2). As can be seen from this expression, the
NP-squared piece receives an energy enhancement with respect to both the pure SM contribution
and SM-NP interference. As a result, the limits shown in Table 4 rely on dimension-six squared
contributions. It could be argued that dimension-8 contributions that interfere with the SM are of
the same order in the EFT, so their inclusion might significantly affect our results. To illustrate this
point, let us work in a specific example involving both dimension-6 and dimension-8 operators,
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with the normalization chosen such that ✏(6,8)VL
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where, in the second line, we neglected the dimension-8 squared term. As already mentioned,
the experimental limits in Table 4 are dominated by the |✏
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2 term, with a small correction from
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• Negative interference with the dominant SM Drell-Yan channel 

the term proportional to Re(✏(6)VL
). The term proportional to Re(✏(8)VL

) is even smaller than the

dimension-6 interference if |Re(✏(8)VL
)|  |Re(✏(6)VL

)|, since M
2
NP > s by construction. To give

an example of explicit UV realization, a single tree-level s-channel resonance exchange predicts
✏
(6)
VL

= ✏
(8)
VL

. A significant cancellation between dimension-6 and 8 contributions would require a
peculiar NP scenario.

Another possible way to evade our limits within the SMEFT regime would consist in including
a semileptonic operator mediating ud̄ ! ē

↵
⌫
↵ transitions which negatively interferes with the

dominant SM background. One could then enforce a tuning between NP contributions to reduce
the number of NP events in the tails. Even with this tuning, the different

p
s dependence of each

contribution would not allow for an exact cancellation between the two.
The EFT is no longer valid if a new mass threshold is at or below the typical energy of the

process. Indeed, inverting the obtained limits on the WCs (v/
p
✏x ⇡ few TeV) and invoking

perturbative unitarity suggests that the largest scales currently probed are at most O(10 TeV) for
strongly coupled theories. Any suppression in the matching, such as loop, weak coupling, or flavor
spurion, brings the actual NP mass scale down. Clearly, the EFT approach has a significantly
reduced scope in the high-pT lepton tails compared to charmed meson decays. Outside the EFT
realm, one may wonder how well our limits approximate the correct values. Charged mediators
responsible for generating charged currents at low energies, cannot be arbitrarily light since they
would be directly produced at colliders by (at least) the EW pair production mechanism. Here, the
signal yield is robustly determined in terms of the particle mass and known SM gauge couplings.
A sizeable effect in low energy transitions also means sizeable decay branching ratio to usual final
state with jets, leptons, etc, that has been searched for. Thus, charged mediators at or below the
EW scale receive strong constraint from direct searches, yielding MNP & O(100GeV).

One could think of possible mediators that satisfy this bound, but still have a mass within the
energy range invalidating the SMEFT, since the energy in the high-pT tails is around the TeV. At
tree-level, there are a finite number of possible mediators, either colorless s-channel or colored t

(u)-channel resonances. In the case of s-channel mediators, the high-pT limits derived in the EFT
are overly conservative, due to the resonance enhancement (see e.g. Figure 5 in [43]). On the other
hand, for t (u)-channel mediators, the EFT limits are typically (slightly) stronger than the real lim-
its, but they serve as a good estimate (see e.g. Figure 3 in [45]). In addition, these latter mediators,
known as leptoquarks, are copiously produced at the LHC by QCD (see e.g. [97]), and direct ex-
clusion limits push their mass above the TeV. One could advocate for tuned scenarios where the
high-pT contributions of a t-channel resonance is cancelled against a very wide s-channel reso-
nance, while still yielding a sizable low-energy contribution (see example in Section 6.1 of [98]).
As in the previous case, this requires a tuning of the NP contributions, and one can only achieve
a partial cancellation. Finally, loop-induced contributions require the NP scale to be significantly
lower (or the NP couplings to be strong) in order to generate the same effects at low energies.
This translates into typically stronger high-pT limits than the ones considered here, either from
non-resonant or from resonant production of the new mediators.

To conclude, the comparison of low-energy and high-pT within an EFT framework is useful
even if the EFT validity is not guaranteed. If high-pT provides stronger limits relative to the ones
derived from low-energies, this will also hold in a generic NP model barring tuned cancellations.
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due to rather inclusive kinematics of the analysis. A dedicated future analysis should exploit the
angular dependence in Eq. (4.1) in order to differentiate among operators, and possibly further sup-
press the background. We also recommend separating future data by the lepton charge as a way to
further enhance the signal over background discrimination. For instance, ud-induced monolepton
production is asymmetric in lepton charge unlike cs.

For the ⌧ + ⌫ channel, the reported limits are well compatible with those obtained by naive
rescaling via the Rij ratios in Eq. (4.5) of the ones presented in Ref. [45] (neglecting the interfer-
ence for ✏VL). In principle, this method can be used to estimate the limit on any u

i
! d

j transition.
Finally, the jackknife analysis performed in the supplemental material of [45] suggests that the
most sensitive bins in these types of searches to fall in the range between 1 and 1.5 TeV. This
raises questions about the applicability of the high-pT bounds to the space of possible NP models
modifying charged-current charm transitions, to which we turn next.

4.3 Possible caveats within and beyond the EFT

As shown in section 4.2, most of the limits obtained from high-pT tails are stronger than their low-
energy counterparts. However, one could argue that high-pT limits are not free of caveats, which
would allow certain NP models to evade them while still yielding sizeable low-energy contribu-
tions.

For concreteness, let us first remain within the realm of the SMEFT, where any new degree of
freedom is well above the EW scale. The partonic cross-section for c̄di ! e

↵
⌫̄
↵ scattering in the

presence of dimension-six operators is given in Eq. (4.2). As can be seen from this expression, the
NP-squared piece receives an energy enhancement with respect to both the pure SM contribution
and SM-NP interference. As a result, the limits shown in Table 4 rely on dimension-six squared
contributions. It could be argued that dimension-8 contributions that interfere with the SM are of
the same order in the EFT, so their inclusion might significantly affect our results. To illustrate this
point, let us work in a specific example involving both dimension-6 and dimension-8 operators,
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with the normalization chosen such that ✏(6,8)VL
are adimensional, and MNP is the NP mass threshold.
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where, in the second line, we neglected the dimension-8 squared term. As already mentioned,
the experimental limits in Table 4 are dominated by the |✏
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|
2 term, with a small correction from
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due to rather inclusive kinematics of the analysis. A dedicated future analysis should exploit the
angular dependence in Eq. (4.1) in order to differentiate among operators, and possibly further sup-
press the background. We also recommend separating future data by the lepton charge as a way to
further enhance the signal over background discrimination. For instance, ud-induced monolepton
production is asymmetric in lepton charge unlike cs.

For the ⌧ + ⌫ channel, the reported limits are well compatible with those obtained by naive
rescaling via the Rij ratios in Eq. (4.5) of the ones presented in Ref. [45] (neglecting the interfer-
ence for ✏VL). In principle, this method can be used to estimate the limit on any u
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j transition.
Finally, the jackknife analysis performed in the supplemental material of [45] suggests that the
most sensitive bins in these types of searches to fall in the range between 1 and 1.5 TeV. This
raises questions about the applicability of the high-pT bounds to the space of possible NP models
modifying charged-current charm transitions, to which we turn next.

4.3 Possible caveats within and beyond the EFT

As shown in section 4.2, most of the limits obtained from high-pT tails are stronger than their low-
energy counterparts. However, one could argue that high-pT limits are not free of caveats, which
would allow certain NP models to evade them while still yielding sizeable low-energy contribu-
tions.

For concreteness, let us first remain within the realm of the SMEFT, where any new degree of
freedom is well above the EW scale. The partonic cross-section for c̄di ! e
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presence of dimension-six operators is given in Eq. (4.2). As can be seen from this expression, the
NP-squared piece receives an energy enhancement with respect to both the pure SM contribution
and SM-NP interference. As a result, the limits shown in Table 4 rely on dimension-six squared
contributions. It could be argued that dimension-8 contributions that interfere with the SM are of
the same order in the EFT, so their inclusion might significantly affect our results. To illustrate this
point, let us work in a specific example involving both dimension-6 and dimension-8 operators,
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with the normalization chosen such that ✏(6,8)VL
are adimensional, and MNP is the NP mass threshold.

The corresponding partonic cross section including both SM and the EFT contributions in Eq. (4.7)
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where, in the second line, we neglected the dimension-8 squared term. As already mentioned,
the experimental limits in Table 4 are dominated by the |✏
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due to rather inclusive kinematics of the analysis. A dedicated future analysis should exploit the
angular dependence in Eq. (4.1) in order to differentiate among operators, and possibly further sup-
press the background. We also recommend separating future data by the lepton charge as a way to
further enhance the signal over background discrimination. For instance, ud-induced monolepton
production is asymmetric in lepton charge unlike cs.

For the ⌧ + ⌫ channel, the reported limits are well compatible with those obtained by naive
rescaling via the Rij ratios in Eq. (4.5) of the ones presented in Ref. [45] (neglecting the interfer-
ence for ✏VL). In principle, this method can be used to estimate the limit on any u

i
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j transition.
Finally, the jackknife analysis performed in the supplemental material of [45] suggests that the
most sensitive bins in these types of searches to fall in the range between 1 and 1.5 TeV. This
raises questions about the applicability of the high-pT bounds to the space of possible NP models
modifying charged-current charm transitions, to which we turn next.

4.3 Possible caveats within and beyond the EFT

As shown in section 4.2, most of the limits obtained from high-pT tails are stronger than their low-
energy counterparts. However, one could argue that high-pT limits are not free of caveats, which
would allow certain NP models to evade them while still yielding sizeable low-energy contribu-
tions.

For concreteness, let us first remain within the realm of the SMEFT, where any new degree of
freedom is well above the EW scale. The partonic cross-section for c̄di ! e
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presence of dimension-six operators is given in Eq. (4.2). As can be seen from this expression, the
NP-squared piece receives an energy enhancement with respect to both the pure SM contribution
and SM-NP interference. As a result, the limits shown in Table 4 rely on dimension-six squared
contributions. It could be argued that dimension-8 contributions that interfere with the SM are of
the same order in the EFT, so their inclusion might significantly affect our results. To illustrate this
point, let us work in a specific example involving both dimension-6 and dimension-8 operators,

LEFT � �
4GF
p
2
Vci


✏
(6)
VL
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(ē↵L�µ⌫
↵
L)@

2(c̄L�
µ
d
i
L)

�
+ h.c. , (4.7)

with the normalization chosen such that ✏(6,8)VL
are adimensional, and MNP is the NP mass threshold.
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where, in the second line, we neglected the dimension-8 squared term. As already mentioned,
the experimental limits in Table 4 are dominated by the |✏
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2 term, with a small correction from
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an example of explicit UV realization, a single tree-level s-channel resonance exchange predicts
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. A significant cancellation between dimension-6 and 8 contributions would require a
peculiar NP scenario.

Another possible way to evade our limits within the SMEFT regime would consist in including
a semileptonic operator mediating ud̄ ! ē
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⌫
↵ transitions which negatively interferes with the

dominant SM background. One could then enforce a tuning between NP contributions to reduce
the number of NP events in the tails. Even with this tuning, the different

p
s dependence of each

contribution would not allow for an exact cancellation between the two.
The EFT is no longer valid if a new mass threshold is at or below the typical energy of the

process. Indeed, inverting the obtained limits on the WCs (v/
p
✏x ⇡ few TeV) and invoking

perturbative unitarity suggests that the largest scales currently probed are at most O(10 TeV) for
strongly coupled theories. Any suppression in the matching, such as loop, weak coupling, or flavor
spurion, brings the actual NP mass scale down. Clearly, the EFT approach has a significantly
reduced scope in the high-pT lepton tails compared to charmed meson decays. Outside the EFT
realm, one may wonder how well our limits approximate the correct values. Charged mediators
responsible for generating charged currents at low energies, cannot be arbitrarily light since they
would be directly produced at colliders by (at least) the EW pair production mechanism. Here, the
signal yield is robustly determined in terms of the particle mass and known SM gauge couplings.
A sizeable effect in low energy transitions also means sizeable decay branching ratio to usual final
state with jets, leptons, etc, that has been searched for. Thus, charged mediators at or below the
EW scale receive strong constraint from direct searches, yielding MNP & O(100GeV).

One could think of possible mediators that satisfy this bound, but still have a mass within the
energy range invalidating the SMEFT, since the energy in the high-pT tails is around the TeV. At
tree-level, there are a finite number of possible mediators, either colorless s-channel or colored t

(u)-channel resonances. In the case of s-channel mediators, the high-pT limits derived in the EFT
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hand, for t (u)-channel mediators, the EFT limits are typically (slightly) stronger than the real lim-
its, but they serve as a good estimate (see e.g. Figure 3 in [45]). In addition, these latter mediators,
known as leptoquarks, are copiously produced at the LHC by QCD (see e.g. [97]), and direct ex-
clusion limits push their mass above the TeV. One could advocate for tuned scenarios where the
high-pT contributions of a t-channel resonance is cancelled against a very wide s-channel reso-
nance, while still yielding a sizable low-energy contribution (see example in Section 6.1 of [98]).
As in the previous case, this requires a tuning of the NP contributions, and one can only achieve
a partial cancellation. Finally, loop-induced contributions require the NP scale to be significantly
lower (or the NP couplings to be strong) in order to generate the same effects at low energies.
This translates into typically stronger high-pT limits than the ones considered here, either from
non-resonant or from resonant production of the new mediators.

To conclude, the comparison of low-energy and high-pT within an EFT framework is useful
even if the EFT validity is not guaranteed. If high-pT provides stronger limits relative to the ones
derived from low-energies, this will also hold in a generic NP model barring tuned cancellations.

– 13 –

the term proportional to Re(✏(6)VL
). The term proportional to Re(✏(8)VL

) is even smaller than the

dimension-6 interference if |Re(✏(8)VL
)|  |Re(✏(6)VL

)|, since M
2
NP > s by construction. To give

an example of explicit UV realization, a single tree-level s-channel resonance exchange predicts
✏
(6)
VL

= ✏
(8)
VL

. A significant cancellation between dimension-6 and 8 contributions would require a
peculiar NP scenario.

Another possible way to evade our limits within the SMEFT regime would consist in including
a semileptonic operator mediating ud̄ ! ē
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due to rather inclusive kinematics of the analysis. A dedicated future analysis should exploit the
angular dependence in Eq. (4.1) in order to differentiate among operators, and possibly further sup-
press the background. We also recommend separating future data by the lepton charge as a way to
further enhance the signal over background discrimination. For instance, ud-induced monolepton
production is asymmetric in lepton charge unlike cs.

For the ⌧ + ⌫ channel, the reported limits are well compatible with those obtained by naive
rescaling via the Rij ratios in Eq. (4.5) of the ones presented in Ref. [45] (neglecting the interfer-
ence for ✏VL). In principle, this method can be used to estimate the limit on any u

i
! d

j transition.
Finally, the jackknife analysis performed in the supplemental material of [45] suggests that the
most sensitive bins in these types of searches to fall in the range between 1 and 1.5 TeV. This
raises questions about the applicability of the high-pT bounds to the space of possible NP models
modifying charged-current charm transitions, to which we turn next.

4.3 Possible caveats within and beyond the EFT

As shown in section 4.2, most of the limits obtained from high-pT tails are stronger than their low-
energy counterparts. However, one could argue that high-pT limits are not free of caveats, which
would allow certain NP models to evade them while still yielding sizeable low-energy contribu-
tions.

For concreteness, let us first remain within the realm of the SMEFT, where any new degree of
freedom is well above the EW scale. The partonic cross-section for c̄di ! e

↵
⌫̄
↵ scattering in the

presence of dimension-six operators is given in Eq. (4.2). As can be seen from this expression, the
NP-squared piece receives an energy enhancement with respect to both the pure SM contribution
and SM-NP interference. As a result, the limits shown in Table 4 rely on dimension-six squared
contributions. It could be argued that dimension-8 contributions that interfere with the SM are of
the same order in the EFT, so their inclusion might significantly affect our results. To illustrate this
point, let us work in a specific example involving both dimension-6 and dimension-8 operators,
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(ē↵L�µ⌫
↵
L)@

2(c̄L�
µ
d
i
L)

�
+ h.c. , (4.7)

with the normalization chosen such that ✏(6,8)VL
are adimensional, and MNP is the NP mass threshold.

The corresponding partonic cross section including both SM and the EFT contributions in Eq. (4.7)
is given by

�̂(s) =
G

2
F |Vci|

2

18⇡
s

����
m

2
W

s
� ✏

(6)
VL

�
s

M
2
NP

✏
(8)
VL

����
2

=
G

2
F |Vci|

2

18⇡
s


m

4
W

s2
� 2

m
2
W

s
Re(✏(6)VL

) + |✏
(6)
VL

|
2
� 2

m
2
W

M
2
NP

Re(✏(8)VL
)

�
+O

✓
1

M
6
NP

◆
,

(4.8)

where, in the second line, we neglected the dimension-8 squared term. As already mentioned,
the experimental limits in Table 4 are dominated by the |✏
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2 term, with a small correction from
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(ē↵L�µ⌫
↵
L)(c̄L�

µ
d
i
L)�

1

M
2
NP

✏
(8)
VL
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the term proportional to Re(✏(6)VL
). The term proportional to Re(✏(8)VL

) is even smaller than the

dimension-6 interference if |Re(✏(8)VL
)|  |Re(✏(6)VL

)|, since M
2
NP > s by construction. To give

an example of explicit UV realization, a single tree-level s-channel resonance exchange predicts
✏
(6)
VL

= ✏
(8)
VL

. A significant cancellation between dimension-6 and 8 contributions would require a
peculiar NP scenario.

Another possible way to evade our limits within the SMEFT regime would consist in including
a semileptonic operator mediating ud̄ ! ē

↵
⌫
↵ transitions which negatively interferes with the

dominant SM background. One could then enforce a tuning between NP contributions to reduce
the number of NP events in the tails. Even with this tuning, the different

p
s dependence of each

contribution would not allow for an exact cancellation between the two.
The EFT is no longer valid if a new mass threshold is at or below the typical energy of the

process. Indeed, inverting the obtained limits on the WCs (v/
p
✏x ⇡ few TeV) and invoking

perturbative unitarity suggests that the largest scales currently probed are at most O(10 TeV) for
strongly coupled theories. Any suppression in the matching, such as loop, weak coupling, or flavor
spurion, brings the actual NP mass scale down. Clearly, the EFT approach has a significantly
reduced scope in the high-pT lepton tails compared to charmed meson decays. Outside the EFT
realm, one may wonder how well our limits approximate the correct values. Charged mediators
responsible for generating charged currents at low energies, cannot be arbitrarily light since they
would be directly produced at colliders by (at least) the EW pair production mechanism. Here, the
signal yield is robustly determined in terms of the particle mass and known SM gauge couplings.
A sizeable effect in low energy transitions also means sizeable decay branching ratio to usual final
state with jets, leptons, etc, that has been searched for. Thus, charged mediators at or below the
EW scale receive strong constraint from direct searches, yielding MNP & O(100GeV).

One could think of possible mediators that satisfy this bound, but still have a mass within the
energy range invalidating the SMEFT, since the energy in the high-pT tails is around the TeV. At
tree-level, there are a finite number of possible mediators, either colorless s-channel or colored t

(u)-channel resonances. In the case of s-channel mediators, the high-pT limits derived in the EFT
are overly conservative, due to the resonance enhancement (see e.g. Figure 5 in [43]). On the other
hand, for t (u)-channel mediators, the EFT limits are typically (slightly) stronger than the real lim-
its, but they serve as a good estimate (see e.g. Figure 3 in [45]). In addition, these latter mediators,
known as leptoquarks, are copiously produced at the LHC by QCD (see e.g. [97]), and direct ex-
clusion limits push their mass above the TeV. One could advocate for tuned scenarios where the
high-pT contributions of a t-channel resonance is cancelled against a very wide s-channel reso-
nance, while still yielding a sizable low-energy contribution (see example in Section 6.1 of [98]).
As in the previous case, this requires a tuning of the NP contributions, and one can only achieve
a partial cancellation. Finally, loop-induced contributions require the NP scale to be significantly
lower (or the NP couplings to be strong) in order to generate the same effects at low energies.
This translates into typically stronger high-pT limits than the ones considered here, either from
non-resonant or from resonant production of the new mediators.

To conclude, the comparison of low-energy and high-pT within an EFT framework is useful
even if the EFT validity is not guaranteed. If high-pT provides stronger limits relative to the ones
derived from low-energies, this will also hold in a generic NP model barring tuned cancellations.
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the number of NP events in the tails. Even with this tuning, the different
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contribution would not allow for an exact cancellation between the two.
The EFT is no longer valid if a new mass threshold is at or below the typical energy of the

process. Indeed, inverting the obtained limits on the WCs (v/
p
✏x ⇡ few TeV) and invoking

perturbative unitarity suggests that the largest scales currently probed are at most O(10 TeV) for
strongly coupled theories. Any suppression in the matching, such as loop, weak coupling, or flavor
spurion, brings the actual NP mass scale down. Clearly, the EFT approach has a significantly
reduced scope in the high-pT lepton tails compared to charmed meson decays. Outside the EFT
realm, one may wonder how well our limits approximate the correct values. Charged mediators
responsible for generating charged currents at low energies, cannot be arbitrarily light since they
would be directly produced at colliders by (at least) the EW pair production mechanism. Here, the
signal yield is robustly determined in terms of the particle mass and known SM gauge couplings.
A sizeable effect in low energy transitions also means sizeable decay branching ratio to usual final
state with jets, leptons, etc, that has been searched for. Thus, charged mediators at or below the
EW scale receive strong constraint from direct searches, yielding MNP & O(100GeV).

One could think of possible mediators that satisfy this bound, but still have a mass within the
energy range invalidating the SMEFT, since the energy in the high-pT tails is around the TeV. At
tree-level, there are a finite number of possible mediators, either colorless s-channel or colored t

(u)-channel resonances. In the case of s-channel mediators, the high-pT limits derived in the EFT
are overly conservative, due to the resonance enhancement (see e.g. Figure 5 in [43]). On the other
hand, for t (u)-channel mediators, the EFT limits are typically (slightly) stronger than the real lim-
its, but they serve as a good estimate (see e.g. Figure 3 in [45]). In addition, these latter mediators,
known as leptoquarks, are copiously produced at the LHC by QCD (see e.g. [97]), and direct ex-
clusion limits push their mass above the TeV. One could advocate for tuned scenarios where the
high-pT contributions of a t-channel resonance is cancelled against a very wide s-channel reso-
nance, while still yielding a sizable low-energy contribution (see example in Section 6.1 of [98]).
As in the previous case, this requires a tuning of the NP contributions, and one can only achieve
a partial cancellation. Finally, loop-induced contributions require the NP scale to be significantly
lower (or the NP couplings to be strong) in order to generate the same effects at low energies.
This translates into typically stronger high-pT limits than the ones considered here, either from
non-resonant or from resonant production of the new mediators.

To conclude, the comparison of low-energy and high-pT within an EFT framework is useful
even if the EFT validity is not guaranteed. If high-pT provides stronger limits relative to the ones
derived from low-energies, this will also hold in a generic NP model barring tuned cancellations.
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due to rather inclusive kinematics of the analysis. A dedicated future analysis should exploit the
angular dependence in Eq. (4.1) in order to differentiate among operators, and possibly further sup-
press the background. We also recommend separating future data by the lepton charge as a way to
further enhance the signal over background discrimination. For instance, ud-induced monolepton
production is asymmetric in lepton charge unlike cs.

For the ⌧ + ⌫ channel, the reported limits are well compatible with those obtained by naive
rescaling via the Rij ratios in Eq. (4.5) of the ones presented in Ref. [45] (neglecting the interfer-
ence for ✏VL). In principle, this method can be used to estimate the limit on any u

i
! d

j transition.
Finally, the jackknife analysis performed in the supplemental material of [45] suggests that the
most sensitive bins in these types of searches to fall in the range between 1 and 1.5 TeV. This
raises questions about the applicability of the high-pT bounds to the space of possible NP models
modifying charged-current charm transitions, to which we turn next.

4.3 Possible caveats within and beyond the EFT

As shown in section 4.2, most of the limits obtained from high-pT tails are stronger than their low-
energy counterparts. However, one could argue that high-pT limits are not free of caveats, which
would allow certain NP models to evade them while still yielding sizeable low-energy contribu-
tions.

For concreteness, let us first remain within the realm of the SMEFT, where any new degree of
freedom is well above the EW scale. The partonic cross-section for c̄di ! e

↵
⌫̄
↵ scattering in the

presence of dimension-six operators is given in Eq. (4.2). As can be seen from this expression, the
NP-squared piece receives an energy enhancement with respect to both the pure SM contribution
and SM-NP interference. As a result, the limits shown in Table 4 rely on dimension-six squared
contributions. It could be argued that dimension-8 contributions that interfere with the SM are of
the same order in the EFT, so their inclusion might significantly affect our results. To illustrate this
point, let us work in a specific example involving both dimension-6 and dimension-8 operators,
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where, in the second line, we neglected the dimension-8 squared term. As already mentioned,
the experimental limits in Table 4 are dominated by the |✏
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2 term, with a small correction from
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the term proportional to Re(✏(6)VL
). The term proportional to Re(✏(8)VL

) is even smaller than the

dimension-6 interference if |Re(✏(8)VL
)|  |Re(✏(6)VL

)|, since M
2
NP > s by construction. To give

an example of explicit UV realization, a single tree-level s-channel resonance exchange predicts
✏
(6)
VL

= ✏
(8)
VL

. A significant cancellation between dimension-6 and 8 contributions would require a
peculiar NP scenario.

Another possible way to evade our limits within the SMEFT regime would consist in including
a semileptonic operator mediating ud̄ ! ē

↵
⌫
↵ transitions which negatively interferes with the

dominant SM background. One could then enforce a tuning between NP contributions to reduce
the number of NP events in the tails. Even with this tuning, the different

p
s dependence of each

contribution would not allow for an exact cancellation between the two.
The EFT is no longer valid if a new mass threshold is at or below the typical energy of the

process. Indeed, inverting the obtained limits on the WCs (v/
p
✏x ⇡ few TeV) and invoking

perturbative unitarity suggests that the largest scales currently probed are at most O(10 TeV) for
strongly coupled theories. Any suppression in the matching, such as loop, weak coupling, or flavor
spurion, brings the actual NP mass scale down. Clearly, the EFT approach has a significantly
reduced scope in the high-pT lepton tails compared to charmed meson decays. Outside the EFT
realm, one may wonder how well our limits approximate the correct values. Charged mediators
responsible for generating charged currents at low energies, cannot be arbitrarily light since they
would be directly produced at colliders by (at least) the EW pair production mechanism. Here, the
signal yield is robustly determined in terms of the particle mass and known SM gauge couplings.
A sizeable effect in low energy transitions also means sizeable decay branching ratio to usual final
state with jets, leptons, etc, that has been searched for. Thus, charged mediators at or below the
EW scale receive strong constraint from direct searches, yielding MNP & O(100GeV).

One could think of possible mediators that satisfy this bound, but still have a mass within the
energy range invalidating the SMEFT, since the energy in the high-pT tails is around the TeV. At
tree-level, there are a finite number of possible mediators, either colorless s-channel or colored t

(u)-channel resonances. In the case of s-channel mediators, the high-pT limits derived in the EFT
are overly conservative, due to the resonance enhancement (see e.g. Figure 5 in [43]). On the other
hand, for t (u)-channel mediators, the EFT limits are typically (slightly) stronger than the real lim-
its, but they serve as a good estimate (see e.g. Figure 3 in [45]). In addition, these latter mediators,
known as leptoquarks, are copiously produced at the LHC by QCD (see e.g. [97]), and direct ex-
clusion limits push their mass above the TeV. One could advocate for tuned scenarios where the
high-pT contributions of a t-channel resonance is cancelled against a very wide s-channel reso-
nance, while still yielding a sizable low-energy contribution (see example in Section 6.1 of [98]).
As in the previous case, this requires a tuning of the NP contributions, and one can only achieve
a partial cancellation. Finally, loop-induced contributions require the NP scale to be significantly
lower (or the NP couplings to be strong) in order to generate the same effects at low energies.
This translates into typically stronger high-pT limits than the ones considered here, either from
non-resonant or from resonant production of the new mediators.

To conclude, the comparison of low-energy and high-pT within an EFT framework is useful
even if the EFT validity is not guaranteed. If high-pT provides stronger limits relative to the ones
derived from low-energies, this will also hold in a generic NP model barring tuned cancellations.
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As in the previous case, this requires a tuning of the NP contributions, and one can only achieve
a partial cancellation. Finally, loop-induced contributions require the NP scale to be significantly
lower (or the NP couplings to be strong) in order to generate the same effects at low energies.
This translates into typically stronger high-pT limits than the ones considered here, either from
non-resonant or from resonant production of the new mediators.

To conclude, the comparison of low-energy and high-pT within an EFT framework is useful
even if the EFT validity is not guaranteed. If high-pT provides stronger limits relative to the ones
derived from low-energies, this will also hold in a generic NP model barring tuned cancellations.
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due to rather inclusive kinematics of the analysis. A dedicated future analysis should exploit the
angular dependence in Eq. (4.1) in order to differentiate among operators, and possibly further sup-
press the background. We also recommend separating future data by the lepton charge as a way to
further enhance the signal over background discrimination. For instance, ud-induced monolepton
production is asymmetric in lepton charge unlike cs.

For the ⌧ + ⌫ channel, the reported limits are well compatible with those obtained by naive
rescaling via the Rij ratios in Eq. (4.5) of the ones presented in Ref. [45] (neglecting the interfer-
ence for ✏VL). In principle, this method can be used to estimate the limit on any u

i
! d

j transition.
Finally, the jackknife analysis performed in the supplemental material of [45] suggests that the
most sensitive bins in these types of searches to fall in the range between 1 and 1.5 TeV. This
raises questions about the applicability of the high-pT bounds to the space of possible NP models
modifying charged-current charm transitions, to which we turn next.

4.3 Possible caveats within and beyond the EFT

As shown in section 4.2, most of the limits obtained from high-pT tails are stronger than their low-
energy counterparts. However, one could argue that high-pT limits are not free of caveats, which
would allow certain NP models to evade them while still yielding sizeable low-energy contribu-
tions.

For concreteness, let us first remain within the realm of the SMEFT, where any new degree of
freedom is well above the EW scale. The partonic cross-section for c̄di ! e

↵
⌫̄
↵ scattering in the

presence of dimension-six operators is given in Eq. (4.2). As can be seen from this expression, the
NP-squared piece receives an energy enhancement with respect to both the pure SM contribution
and SM-NP interference. As a result, the limits shown in Table 4 rely on dimension-six squared
contributions. It could be argued that dimension-8 contributions that interfere with the SM are of
the same order in the EFT, so their inclusion might significantly affect our results. To illustrate this
point, let us work in a specific example involving both dimension-6 and dimension-8 operators,
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with the normalization chosen such that ✏(6,8)VL
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where, in the second line, we neglected the dimension-8 squared term. As already mentioned,
the experimental limits in Table 4 are dominated by the |✏

(6)
VL

|
2 term, with a small correction from
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due to rather inclusive kinematics of the analysis. A dedicated future analysis should exploit the
angular dependence in Eq. (4.1) in order to differentiate among operators, and possibly further sup-
press the background. We also recommend separating future data by the lepton charge as a way to
further enhance the signal over background discrimination. For instance, ud-induced monolepton
production is asymmetric in lepton charge unlike cs.
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most sensitive bins in these types of searches to fall in the range between 1 and 1.5 TeV. This
raises questions about the applicability of the high-pT bounds to the space of possible NP models
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presence of dimension-six operators is given in Eq. (4.2). As can be seen from this expression, the
NP-squared piece receives an energy enhancement with respect to both the pure SM contribution
and SM-NP interference. As a result, the limits shown in Table 4 rely on dimension-six squared
contributions. It could be argued that dimension-8 contributions that interfere with the SM are of
the same order in the EFT, so their inclusion might significantly affect our results. To illustrate this
point, let us work in a specific example involving both dimension-6 and dimension-8 operators,
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where, in the second line, we neglected the dimension-8 squared term. As already mentioned,
the experimental limits in Table 4 are dominated by the |✏
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2 term, with a small correction from
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due to rather inclusive kinematics of the analysis. A dedicated future analysis should exploit the
angular dependence in Eq. (4.1) in order to differentiate among operators, and possibly further sup-
press the background. We also recommend separating future data by the lepton charge as a way to
further enhance the signal over background discrimination. For instance, ud-induced monolepton
production is asymmetric in lepton charge unlike cs.

For the ⌧ + ⌫ channel, the reported limits are well compatible with those obtained by naive
rescaling via the Rij ratios in Eq. (4.5) of the ones presented in Ref. [45] (neglecting the interfer-
ence for ✏VL). In principle, this method can be used to estimate the limit on any u
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Finally, the jackknife analysis performed in the supplemental material of [45] suggests that the
most sensitive bins in these types of searches to fall in the range between 1 and 1.5 TeV. This
raises questions about the applicability of the high-pT bounds to the space of possible NP models
modifying charged-current charm transitions, to which we turn next.

4.3 Possible caveats within and beyond the EFT

As shown in section 4.2, most of the limits obtained from high-pT tails are stronger than their low-
energy counterparts. However, one could argue that high-pT limits are not free of caveats, which
would allow certain NP models to evade them while still yielding sizeable low-energy contribu-
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presence of dimension-six operators is given in Eq. (4.2). As can be seen from this expression, the
NP-squared piece receives an energy enhancement with respect to both the pure SM contribution
and SM-NP interference. As a result, the limits shown in Table 4 rely on dimension-six squared
contributions. It could be argued that dimension-8 contributions that interfere with the SM are of
the same order in the EFT, so their inclusion might significantly affect our results. To illustrate this
point, let us work in a specific example involving both dimension-6 and dimension-8 operators,
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with the normalization chosen such that ✏(6,8)VL
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where, in the second line, we neglected the dimension-8 squared term. As already mentioned,
the experimental limits in Table 4 are dominated by the |✏
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due to rather inclusive kinematics of the analysis. A dedicated future analysis should exploit the
angular dependence in Eq. (4.1) in order to differentiate among operators, and possibly further sup-
press the background. We also recommend separating future data by the lepton charge as a way to
further enhance the signal over background discrimination. For instance, ud-induced monolepton
production is asymmetric in lepton charge unlike cs.

For the ⌧ + ⌫ channel, the reported limits are well compatible with those obtained by naive
rescaling via the Rij ratios in Eq. (4.5) of the ones presented in Ref. [45] (neglecting the interfer-
ence for ✏VL). In principle, this method can be used to estimate the limit on any u
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Finally, the jackknife analysis performed in the supplemental material of [45] suggests that the
most sensitive bins in these types of searches to fall in the range between 1 and 1.5 TeV. This
raises questions about the applicability of the high-pT bounds to the space of possible NP models
modifying charged-current charm transitions, to which we turn next.

4.3 Possible caveats within and beyond the EFT

As shown in section 4.2, most of the limits obtained from high-pT tails are stronger than their low-
energy counterparts. However, one could argue that high-pT limits are not free of caveats, which
would allow certain NP models to evade them while still yielding sizeable low-energy contribu-
tions.

For concreteness, let us first remain within the realm of the SMEFT, where any new degree of
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presence of dimension-six operators is given in Eq. (4.2). As can be seen from this expression, the
NP-squared piece receives an energy enhancement with respect to both the pure SM contribution
and SM-NP interference. As a result, the limits shown in Table 4 rely on dimension-six squared
contributions. It could be argued that dimension-8 contributions that interfere with the SM are of
the same order in the EFT, so their inclusion might significantly affect our results. To illustrate this
point, let us work in a specific example involving both dimension-6 and dimension-8 operators,
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with the normalization chosen such that ✏(6,8)VL
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where, in the second line, we neglected the dimension-8 squared term. As already mentioned,
the experimental limits in Table 4 are dominated by the |✏
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due to rather inclusive kinematics of the analysis. A dedicated future analysis should exploit the
angular dependence in Eq. (4.1) in order to differentiate among operators, and possibly further sup-
press the background. We also recommend separating future data by the lepton charge as a way to
further enhance the signal over background discrimination. For instance, ud-induced monolepton
production is asymmetric in lepton charge unlike cs.

For the ⌧ + ⌫ channel, the reported limits are well compatible with those obtained by naive
rescaling via the Rij ratios in Eq. (4.5) of the ones presented in Ref. [45] (neglecting the interfer-
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energy counterparts. However, one could argue that high-pT limits are not free of caveats, which
would allow certain NP models to evade them while still yielding sizeable low-energy contribu-
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presence of dimension-six operators is given in Eq. (4.2). As can be seen from this expression, the
NP-squared piece receives an energy enhancement with respect to both the pure SM contribution
and SM-NP interference. As a result, the limits shown in Table 4 rely on dimension-six squared
contributions. It could be argued that dimension-8 contributions that interfere with the SM are of
the same order in the EFT, so their inclusion might significantly affect our results. To illustrate this
point, let us work in a specific example involving both dimension-6 and dimension-8 operators,
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with the normalization chosen such that ✏(6,8)VL
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due to rather inclusive kinematics of the analysis. A dedicated future analysis should exploit the
angular dependence in Eq. (4.1) in order to differentiate among operators, and possibly further sup-
press the background. We also recommend separating future data by the lepton charge as a way to
further enhance the signal over background discrimination. For instance, ud-induced monolepton
production is asymmetric in lepton charge unlike cs.

For the ⌧ + ⌫ channel, the reported limits are well compatible with those obtained by naive
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For concreteness, let us first remain within the realm of the SMEFT, where any new degree of
freedom is well above the EW scale. The partonic cross-section for c̄di ! e
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⌫̄
↵ scattering in the

presence of dimension-six operators is given in Eq. (4.2). As can be seen from this expression, the
NP-squared piece receives an energy enhancement with respect to both the pure SM contribution
and SM-NP interference. As a result, the limits shown in Table 4 rely on dimension-six squared
contributions. It could be argued that dimension-8 contributions that interfere with the SM are of
the same order in the EFT, so their inclusion might significantly affect our results. To illustrate this
point, let us work in a specific example involving both dimension-6 and dimension-8 operators,
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where, in the second line, we neglected the dimension-8 squared term. As already mentioned,
the experimental limits in Table 4 are dominated by the |✏
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2 term, with a small correction from
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due to rather inclusive kinematics of the analysis. A dedicated future analysis should exploit the
angular dependence in Eq. (4.1) in order to differentiate among operators, and possibly further sup-
press the background. We also recommend separating future data by the lepton charge as a way to
further enhance the signal over background discrimination. For instance, ud-induced monolepton
production is asymmetric in lepton charge unlike cs.

For the ⌧ + ⌫ channel, the reported limits are well compatible with those obtained by naive
rescaling via the Rij ratios in Eq. (4.5) of the ones presented in Ref. [45] (neglecting the interfer-
ence for ✏VL). In principle, this method can be used to estimate the limit on any u

i
! d

j transition.
Finally, the jackknife analysis performed in the supplemental material of [45] suggests that the
most sensitive bins in these types of searches to fall in the range between 1 and 1.5 TeV. This
raises questions about the applicability of the high-pT bounds to the space of possible NP models
modifying charged-current charm transitions, to which we turn next.

4.3 Possible caveats within and beyond the EFT

As shown in section 4.2, most of the limits obtained from high-pT tails are stronger than their low-
energy counterparts. However, one could argue that high-pT limits are not free of caveats, which
would allow certain NP models to evade them while still yielding sizeable low-energy contribu-
tions.

For concreteness, let us first remain within the realm of the SMEFT, where any new degree of
freedom is well above the EW scale. The partonic cross-section for c̄di ! e
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⌫̄
↵ scattering in the

presence of dimension-six operators is given in Eq. (4.2). As can be seen from this expression, the
NP-squared piece receives an energy enhancement with respect to both the pure SM contribution
and SM-NP interference. As a result, the limits shown in Table 4 rely on dimension-six squared
contributions. It could be argued that dimension-8 contributions that interfere with the SM are of
the same order in the EFT, so their inclusion might significantly affect our results. To illustrate this
point, let us work in a specific example involving both dimension-6 and dimension-8 operators,
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with the normalization chosen such that ✏(6,8)VL
are adimensional, and MNP is the NP mass threshold.
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where, in the second line, we neglected the dimension-8 squared term. As already mentioned,
the experimental limits in Table 4 are dominated by the |✏
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2 term, with a small correction from
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due to rather inclusive kinematics of the analysis. A dedicated future analysis should exploit the
angular dependence in Eq. (4.1) in order to differentiate among operators, and possibly further sup-
press the background. We also recommend separating future data by the lepton charge as a way to
further enhance the signal over background discrimination. For instance, ud-induced monolepton
production is asymmetric in lepton charge unlike cs.

For the ⌧ + ⌫ channel, the reported limits are well compatible with those obtained by naive
rescaling via the Rij ratios in Eq. (4.5) of the ones presented in Ref. [45] (neglecting the interfer-
ence for ✏VL). In principle, this method can be used to estimate the limit on any u
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! d

j transition.
Finally, the jackknife analysis performed in the supplemental material of [45] suggests that the
most sensitive bins in these types of searches to fall in the range between 1 and 1.5 TeV. This
raises questions about the applicability of the high-pT bounds to the space of possible NP models
modifying charged-current charm transitions, to which we turn next.

4.3 Possible caveats within and beyond the EFT

As shown in section 4.2, most of the limits obtained from high-pT tails are stronger than their low-
energy counterparts. However, one could argue that high-pT limits are not free of caveats, which
would allow certain NP models to evade them while still yielding sizeable low-energy contribu-
tions.

For concreteness, let us first remain within the realm of the SMEFT, where any new degree of
freedom is well above the EW scale. The partonic cross-section for c̄di ! e

↵
⌫̄
↵ scattering in the

presence of dimension-six operators is given in Eq. (4.2). As can be seen from this expression, the
NP-squared piece receives an energy enhancement with respect to both the pure SM contribution
and SM-NP interference. As a result, the limits shown in Table 4 rely on dimension-six squared
contributions. It could be argued that dimension-8 contributions that interfere with the SM are of
the same order in the EFT, so their inclusion might significantly affect our results. To illustrate this
point, let us work in a specific example involving both dimension-6 and dimension-8 operators,
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with the normalization chosen such that ✏(6,8)VL
are adimensional, and MNP is the NP mass threshold.

The corresponding partonic cross section including both SM and the EFT contributions in Eq. (4.7)
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where, in the second line, we neglected the dimension-8 squared term. As already mentioned,
the experimental limits in Table 4 are dominated by the |✏
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due to rather inclusive kinematics of the analysis. A dedicated future analysis should exploit the
angular dependence in Eq. (4.1) in order to differentiate among operators, and possibly further sup-
press the background. We also recommend separating future data by the lepton charge as a way to
further enhance the signal over background discrimination. For instance, ud-induced monolepton
production is asymmetric in lepton charge unlike cs.

For the ⌧ + ⌫ channel, the reported limits are well compatible with those obtained by naive
rescaling via the Rij ratios in Eq. (4.5) of the ones presented in Ref. [45] (neglecting the interfer-
ence for ✏VL). In principle, this method can be used to estimate the limit on any u
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! d

j transition.
Finally, the jackknife analysis performed in the supplemental material of [45] suggests that the
most sensitive bins in these types of searches to fall in the range between 1 and 1.5 TeV. This
raises questions about the applicability of the high-pT bounds to the space of possible NP models
modifying charged-current charm transitions, to which we turn next.

4.3 Possible caveats within and beyond the EFT

As shown in section 4.2, most of the limits obtained from high-pT tails are stronger than their low-
energy counterparts. However, one could argue that high-pT limits are not free of caveats, which
would allow certain NP models to evade them while still yielding sizeable low-energy contribu-
tions.

For concreteness, let us first remain within the realm of the SMEFT, where any new degree of
freedom is well above the EW scale. The partonic cross-section for c̄di ! e

↵
⌫̄
↵ scattering in the

presence of dimension-six operators is given in Eq. (4.2). As can be seen from this expression, the
NP-squared piece receives an energy enhancement with respect to both the pure SM contribution
and SM-NP interference. As a result, the limits shown in Table 4 rely on dimension-six squared
contributions. It could be argued that dimension-8 contributions that interfere with the SM are of
the same order in the EFT, so their inclusion might significantly affect our results. To illustrate this
point, let us work in a specific example involving both dimension-6 and dimension-8 operators,
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with the normalization chosen such that ✏(6,8)VL
are adimensional, and MNP is the NP mass threshold.

The corresponding partonic cross section including both SM and the EFT contributions in Eq. (4.7)
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where, in the second line, we neglected the dimension-8 squared term. As already mentioned,
the experimental limits in Table 4 are dominated by the |✏
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due to rather inclusive kinematics of the analysis. A dedicated future analysis should exploit the
angular dependence in Eq. (4.1) in order to differentiate among operators, and possibly further sup-
press the background. We also recommend separating future data by the lepton charge as a way to
further enhance the signal over background discrimination. For instance, ud-induced monolepton
production is asymmetric in lepton charge unlike cs.

For the ⌧ + ⌫ channel, the reported limits are well compatible with those obtained by naive
rescaling via the Rij ratios in Eq. (4.5) of the ones presented in Ref. [45] (neglecting the interfer-
ence for ✏VL). In principle, this method can be used to estimate the limit on any u
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! d

j transition.
Finally, the jackknife analysis performed in the supplemental material of [45] suggests that the
most sensitive bins in these types of searches to fall in the range between 1 and 1.5 TeV. This
raises questions about the applicability of the high-pT bounds to the space of possible NP models
modifying charged-current charm transitions, to which we turn next.

4.3 Possible caveats within and beyond the EFT

As shown in section 4.2, most of the limits obtained from high-pT tails are stronger than their low-
energy counterparts. However, one could argue that high-pT limits are not free of caveats, which
would allow certain NP models to evade them while still yielding sizeable low-energy contribu-
tions.

For concreteness, let us first remain within the realm of the SMEFT, where any new degree of
freedom is well above the EW scale. The partonic cross-section for c̄di ! e

↵
⌫̄
↵ scattering in the

presence of dimension-six operators is given in Eq. (4.2). As can be seen from this expression, the
NP-squared piece receives an energy enhancement with respect to both the pure SM contribution
and SM-NP interference. As a result, the limits shown in Table 4 rely on dimension-six squared
contributions. It could be argued that dimension-8 contributions that interfere with the SM are of
the same order in the EFT, so their inclusion might significantly affect our results. To illustrate this
point, let us work in a specific example involving both dimension-6 and dimension-8 operators,
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with the normalization chosen such that ✏(6,8)VL
are adimensional, and MNP is the NP mass threshold.

The corresponding partonic cross section including both SM and the EFT contributions in Eq. (4.7)
is given by

�̂(s) =
G

2
F |Vci|

2

18⇡
s

����
m

2
W

s
� ✏

(6)
VL

�
s

M
2
NP

✏
(8)
VL

����
2

=
G

2
F |Vci|

2

18⇡
s


m

4
W

s2
� 2

m
2
W

s
Re(✏(6)VL

) + |✏
(6)
VL

|
2
� 2

m
2
W

M
2
NP

Re(✏(8)VL
)

�
+O

✓
1

M
6
NP

◆
,

(4.8)

where, in the second line, we neglected the dimension-8 squared term. As already mentioned,
the experimental limits in Table 4 are dominated by the |✏

(6)
VL

|
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the term proportional to Re(✏(6)VL
). The term proportional to Re(✏(8)VL

) is even smaller than the

dimension-6 interference if |Re(✏(8)VL
)|  |Re(✏(6)VL

)|, since M
2
NP > s by construction. To give

an example of explicit UV realization, a single tree-level s-channel resonance exchange predicts
✏
(6)
VL

= ✏
(8)
VL

. A significant cancellation between dimension-6 and 8 contributions would require a
peculiar NP scenario.

Another possible way to evade our limits within the SMEFT regime would consist in including
a semileptonic operator mediating ud̄ ! ē

↵
⌫
↵ transitions which negatively interferes with the

dominant SM background. One could then enforce a tuning between NP contributions to reduce
the number of NP events in the tails. Even with this tuning, the different

p
s dependence of each

contribution would not allow for an exact cancellation between the two.
The EFT is no longer valid if a new mass threshold is at or below the typical energy of the

process. Indeed, inverting the obtained limits on the WCs (v/
p
✏x ⇡ few TeV) and invoking

perturbative unitarity suggests that the largest scales currently probed are at most O(10 TeV) for
strongly coupled theories. Any suppression in the matching, such as loop, weak coupling, or flavor
spurion, brings the actual NP mass scale down. Clearly, the EFT approach has a significantly
reduced scope in the high-pT lepton tails compared to charmed meson decays. Outside the EFT
realm, one may wonder how well our limits approximate the correct values. Charged mediators
responsible for generating charged currents at low energies, cannot be arbitrarily light since they
would be directly produced at colliders by (at least) the EW pair production mechanism. Here, the
signal yield is robustly determined in terms of the particle mass and known SM gauge couplings.
A sizeable effect in low energy transitions also means sizeable decay branching ratio to usual final
state with jets, leptons, etc, that has been searched for. Thus, charged mediators at or below the
EW scale receive strong constraint from direct searches, yielding MNP & O(100GeV).

One could think of possible mediators that satisfy this bound, but still have a mass within the
energy range invalidating the SMEFT, since the energy in the high-pT tails is around the TeV. At
tree-level, there are a finite number of possible mediators, either colorless s-channel or colored t

(u)-channel resonances. In the case of s-channel mediators, the high-pT limits derived in the EFT
are overly conservative, due to the resonance enhancement (see e.g. Figure 5 in [43]). On the other
hand, for t (u)-channel mediators, the EFT limits are typically (slightly) stronger than the real lim-
its, but they serve as a good estimate (see e.g. Figure 3 in [45]). In addition, these latter mediators,
known as leptoquarks, are copiously produced at the LHC by QCD (see e.g. [97]), and direct ex-
clusion limits push their mass above the TeV. One could advocate for tuned scenarios where the
high-pT contributions of a t-channel resonance is cancelled against a very wide s-channel reso-
nance, while still yielding a sizable low-energy contribution (see example in Section 6.1 of [98]).
As in the previous case, this requires a tuning of the NP contributions, and one can only achieve
a partial cancellation. Finally, loop-induced contributions require the NP scale to be significantly
lower (or the NP couplings to be strong) in order to generate the same effects at low energies.
This translates into typically stronger high-pT limits than the ones considered here, either from
non-resonant or from resonant production of the new mediators.

To conclude, the comparison of low-energy and high-pT within an EFT framework is useful
even if the EFT validity is not guaranteed. If high-pT provides stronger limits relative to the ones
derived from low-energies, this will also hold in a generic NP model barring tuned cancellations.
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due to rather inclusive kinematics of the analysis. A dedicated future analysis should exploit the
angular dependence in Eq. (4.1) in order to differentiate among operators, and possibly further sup-
press the background. We also recommend separating future data by the lepton charge as a way to
further enhance the signal over background discrimination. For instance, ud-induced monolepton
production is asymmetric in lepton charge unlike cs.

For the ⌧ + ⌫ channel, the reported limits are well compatible with those obtained by naive
rescaling via the Rij ratios in Eq. (4.5) of the ones presented in Ref. [45] (neglecting the interfer-
ence for ✏VL). In principle, this method can be used to estimate the limit on any u
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j transition.
Finally, the jackknife analysis performed in the supplemental material of [45] suggests that the
most sensitive bins in these types of searches to fall in the range between 1 and 1.5 TeV. This
raises questions about the applicability of the high-pT bounds to the space of possible NP models
modifying charged-current charm transitions, to which we turn next.

4.3 Possible caveats within and beyond the EFT

As shown in section 4.2, most of the limits obtained from high-pT tails are stronger than their low-
energy counterparts. However, one could argue that high-pT limits are not free of caveats, which
would allow certain NP models to evade them while still yielding sizeable low-energy contribu-
tions.

For concreteness, let us first remain within the realm of the SMEFT, where any new degree of
freedom is well above the EW scale. The partonic cross-section for c̄di ! e

↵
⌫̄
↵ scattering in the

presence of dimension-six operators is given in Eq. (4.2). As can be seen from this expression, the
NP-squared piece receives an energy enhancement with respect to both the pure SM contribution
and SM-NP interference. As a result, the limits shown in Table 4 rely on dimension-six squared
contributions. It could be argued that dimension-8 contributions that interfere with the SM are of
the same order in the EFT, so their inclusion might significantly affect our results. To illustrate this
point, let us work in a specific example involving both dimension-6 and dimension-8 operators,
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with the normalization chosen such that ✏(6,8)VL
are adimensional, and MNP is the NP mass threshold.

The corresponding partonic cross section including both SM and the EFT contributions in Eq. (4.7)
is given by
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(4.8)

where, in the second line, we neglected the dimension-8 squared term. As already mentioned,
the experimental limits in Table 4 are dominated by the |✏

(6)
VL

|
2 term, with a small correction from
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• EFT expansion parameter 

MNPTeVGeV

EFT results applicable: Drell-Yan

EFT results applicable: Charm decays

• Inverting the obtained limits on the WCs from Drell-Yan tails

• Perturbative unitarity suggests that the largest scales currently probed are at most 
few x 10 TeV for strongly coupled theories. Any suppression in the matching, such 
as loop, weak coupling, or flavor spurion, brings the actual NP mass scale down.

• The EFT is no longer valid if a new mass threshold is at or below the typical 
energy of the process

vEW

ϵX
∼ 3 TeV

?

s-channel
• EFT bounds are 

overly conservative 

t / u-channel
• EFT bounds are 

a good proxy
LQ, RPV SUSY

Flavourful Z’

Tree-level UV completions

Explicit models

Charged mediators 

the term proportional to Re(✏(6)VL
). The term proportional to Re(✏(8)VL

) is even smaller than the

dimension-6 interference if |Re(✏(8)VL
)|  |Re(✏(6)VL

)|, since M
2
NP > s by construction. To give

an example of explicit UV realization, a single tree-level s-channel resonance exchange predicts
✏
(6)
VL

= ✏
(8)
VL

. A significant cancellation between dimension-6 and 8 contributions would require a
peculiar NP scenario.

Another possible way to evade our limits within the SMEFT regime would consist in including
a semileptonic operator mediating ud̄ ! ē

↵
⌫
↵ transitions which negatively interferes with the

dominant SM background. One could then enforce a tuning between NP contributions to reduce
the number of NP events in the tails. Even with this tuning, the different

p
s dependence of each

contribution would not allow for an exact cancellation between the two.
The EFT is no longer valid if a new mass threshold is at or below the typical energy of the

process. Indeed, inverting the obtained limits on the WCs (v/
p
✏x ⇡ few TeV) and invoking

perturbative unitarity suggests that the largest scales currently probed are at most O(10 TeV) for
strongly coupled theories. Any suppression in the matching, such as loop, weak coupling, or flavor
spurion, brings the actual NP mass scale down. Clearly, the EFT approach has a significantly
reduced scope in the high-pT lepton tails compared to charmed meson decays. Outside the EFT
realm, one may wonder how well our limits approximate the correct values. Charged mediators
responsible for generating charged currents at low energies, cannot be arbitrarily light since they
would be directly produced at colliders by (at least) the EW pair production mechanism. Here, the
signal yield is robustly determined in terms of the particle mass and known SM gauge couplings.
A sizeable effect in low energy transitions also means sizeable decay branching ratio to usual final
state with jets, leptons, etc, that has been searched for. Thus, charged mediators at or below the
EW scale receive strong constraint from direct searches, yielding MNP & O(100GeV).

One could think of possible mediators that satisfy this bound, but still have a mass within the
energy range invalidating the SMEFT, since the energy in the high-pT tails is around the TeV. At
tree-level, there are a finite number of possible mediators, either colorless s-channel or colored t

(u)-channel resonances. In the case of s-channel mediators, the high-pT limits derived in the EFT
are overly conservative, due to the resonance enhancement (see e.g. Figure 5 in [43]). On the other
hand, for t (u)-channel mediators, the EFT limits are typically (slightly) stronger than the real lim-
its, but they serve as a good estimate (see e.g. Figure 3 in [45]). In addition, these latter mediators,
known as leptoquarks, are copiously produced at the LHC by QCD (see e.g. [97]), and direct ex-
clusion limits push their mass above the TeV. One could advocate for tuned scenarios where the
high-pT contributions of a t-channel resonance is cancelled against a very wide s-channel reso-
nance, while still yielding a sizable low-energy contribution (see example in Section 6.1 of [98]).
As in the previous case, this requires a tuning of the NP contributions, and one can only achieve
a partial cancellation. Finally, loop-induced contributions require the NP scale to be significantly
lower (or the NP couplings to be strong) in order to generate the same effects at low energies.
This translates into typically stronger high-pT limits than the ones considered here, either from
non-resonant or from resonant production of the new mediators.

To conclude, the comparison of low-energy and high-pT within an EFT framework is useful
even if the EFT validity is not guaranteed. If high-pT provides stronger limits relative to the ones
derived from low-energies, this will also hold in a generic NP model barring tuned cancellations.
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• To conclude, the comparison of low- and high-pT data within 
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We have assumed that the analogous vertex corrections in the couplings of the W to the leptons are
absent, so the bounds in the different channels can be combined ("Av." in the table). In addition,
for each lepton channel we are assuming that only one of the two possible corrections (left-handed
or right-handed) are active at a time. This is not needed for the muon channels where leptonic
and semileptonic decays lead to comparable limits such that both couplings can be simultaneously
constrained. However for the electron (tau) channel only the bound from the semileptonic (lep-
tonic) decay is relevant and there are blind directions in the corresponding (�gciL , �g

ci
R) planes. It

is remarkable that the combination of charm decays and high-pT monolepton tails leads to a deter-
mination of W vertex corrections competitive to LEP and LHC on-shell W production [99–101].

6 Neutral currents

6.1 Theoretical framework: c ! u e↵ē�

As a rule of thumb, flavor changing neutral currents (FCNC) probe scales far beyond the reach of
current high energy colliders. However, FCNC in charmed meson decays seem to be an exception
to a large extent. In this section, we perform a combined analysis of low- and high-pT data in the
context of c ! u e

↵
ē
� transitions. The relevant dimension-six effective Lagrangian is

LNC =
4GF
p
2
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k + h.c. (6.1)

The most general set of four-fermion operators compatible with SU(3)c ⇥ U(1)em is
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= (ē↵Re
�
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(6.2)

with ↵,� being lepton flavor indices. Note that mixed chirality tensor operators are zero by Lorentz
invariance. The matching to the SMEFT in Eq. (2.1) yields the following relations,
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(6.3)

at the matching scale µ = mW and in the up-quark mass basis. We only consider the four-fermion
operators in the Warsaw basis (see Table 3 of Ref. [50]) and neglect other effects such as the Z-
boson vertex modification. The operators OSLR and OSRL are not generated in the SMEFT due
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see 2003.12421
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Figure 5. Parton luminosity ratios defined in Eq. (6.10) as a function of dilepton invariant mass
p
s.

Finally, a generic NP model correlates �F = 1 operators to flavor non-universal flavor con-
serving q

i
q̄
i
! e

↵
ē
↵ processes, which are the leading signatures if the flavor structure is MFV-

like [42, 43]. In fact, in many explicit models, bb̄ ! ⌧
+
⌧
� dominates over Vcb suppressed

bs̄ ! ⌧
+
⌧
�, see Ref. [42].

7 Constraints from SU(2)L gauge invariance

Imposing SU(2)L gauge invariance yields strong constraints on the WCs entering in charm decays
by relating them to other transitions, such as K, ⇡ or ⌧ decays. We discuss the impact of these
correlated constraints here. To keep the SU(2)L relations as generic as possible, in this section we
use a different flavor basis in which the SU(2)L doublets are defined as
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with the CKM matrix being V = V
†
u Vd, while the right-handed fermions are already in their mass-

eigenstate basis. Furthermore, whenever we do not impose down-quark alignment (Vd ⇡ 1) or
up-quark alignment (Vu ⇡ 1) we assume that both Vu and Vd exhibit the same hierarchies as the
CKM matrix.

7.1 Charged currents

We find the following complementary constraints:
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Figure 5. Parton luminosity ratios defined in Eq. (6.10) as a function of dilepton invariant mass
p
s.
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Imposing SU(2)L gauge invariance yields strong constraints on the WCs entering in charm decays
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with the CKM matrix being V = V
†
u Vd, while the right-handed fermions are already in their mass-

eigenstate basis. Furthermore, whenever we do not impose down-quark alignment (Vd ⇡ 1) or
up-quark alignment (Vu ⇡ 1) we assume that both Vu and Vd exhibit the same hierarchies as the
CKM matrix.
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• Imposing SU(2) gauge invariance yields strong constraints on the WCs entering 
in charm decays by relating them to other transitions, such as K, π or τ decays.
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Figure 5. Parton luminosity ratios defined in Eq. (6.10) as a function of dilepton invariant mass
p
s.
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with the CKM matrix being V = V
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u Vd, while the right-handed fermions are already in their mass-

eigenstate basis. Furthermore, whenever we do not impose down-quark alignment (Vd ⇡ 1) or
up-quark alignment (Vu ⇡ 1) we assume that both Vu and Vd exhibit the same hierarchies as the
CKM matrix.
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µ
e
�
L)(d̄

k
L�µd

l
L)
i
, (7.2)

– 22 –

Figure 5. Parton luminosity ratios defined in Eq. (6.10) as a function of dilepton invariant mass
p
s.
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Imposing SU(2)L gauge invariance yields strong constraints on the WCs entering in charm decays
by relating them to other transitions, such as K, ⇡ or ⌧ decays. We discuss the impact of these
correlated constraints here. To keep the SU(2)L relations as generic as possible, in this section we
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with the CKM matrix being V = V
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u Vd, while the right-handed fermions are already in their mass-

eigenstate basis. Furthermore, whenever we do not impose down-quark alignment (Vd ⇡ 1) or
up-quark alignment (Vu ⇡ 1) we assume that both Vu and Vd exhibit the same hierarchies as the
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k
L�µu

l
L)
i

� V
⇤
d
ik
V

jl
d

h
(⌫̄↵L�

µ
⌫
�
L)(d̄

k
L�µd

l
L)� (ē↵L�
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due to its manifest SU(2)L gauge invariance, this framework allows to establish correlations with
kaon and tau physics.

The next four sections investigate, in steps, charged-current transitions. Namely, starting from
the effective field theory setup in Section 2, we study the set of constraints from charmed meson
decays in Section 3, the production of monoleptons at high-pT LHC in Section 4 and, finally, com-
pare the two in Section 5. The analysis is then repeated for neutral-current transitions in Section 6.
Complementary constraints implied by SU(2)L gauge symmetry are derived in Section 7. We
conclude in Section 8.

2 Theoretical framework: c ! diē↵⌫�

2.1 The high-energy effective theory

We focus on short-distance NP that can affect semileptonic charged-current charm transitions, par-
ticularly when charm number changes by one unit, �C = 1. Under the assumption of no new
degrees of freedom below (or at) the electroweak scale, NP effects can be fully described employ-
ing the SMEFT. The relevant Lagrangian is

LSMEFT �
1

v2

X

k

Ck Ok , (2.1)

where v ⇡ 246 GeV is the SM Higgs vacuum expectation value and the Wilson coefficients (WCs)
scale as Ck / v

2
/⇤2, with ⇤ being the scale of NP. We employ the Warsaw basis [50] for operators

of canonical dimension six, which is particularly suited for flavor physics as covariant derivatives
and field strengths are reduced in favor of fermionic currents using the equations of motion. The
most general set of semileptonic four-fermion SMEFT operators contributing to c ! d

i
ē
↵
⌫
� tran-

sitions are
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(2.2)

with �µ⌫ = i
2 [�

µ
, �

⌫ ], ⌧ I the Pauli matrices, ✏pr the Levi-Civita symbol and {p, r} being SU(2)L
indices.1 The left-handed quark and lepton doublets are denoted by qL and lL, respectively, while
the right-handed singlets are uR, dR and eR. On the other hand, the SMEFT operators that modify
the W couplings to quarks read

O
(3)
�q = (�† i

$
D

I
µ �)(q̄L�

µ
⌧
I
qL) , O�ud = (�̃† iDµ�)(ūR�

µ
dR) , (2.3)

where � is the Higgs field and Dµ its covariant derivative. We neglect the chirality-flipping W

vertices of the type  ̄�µ⌫ �Fµ⌫ . Their effects are subleading relative to the operators in Eq. (2.3)
at low-energies, since they are charm mass suppressed, and to the operators in Eq. (2.2) at high-pT ,
due to their different high-energy behavior discussed in Section 4.1. We also neglect all modifica-
tions to the leptonic W vertices, since they are better probed in purely leptonic transitions.

1The SM extended by a light right-handed neutrino (⌫R) potentially accessible in charm decays would require sup-
plementing the SMEFT with a new set of operators such as (l̄L⌫R)(ūRqL). For the full list see Eq. (2.1) in Ref. [51].
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Figure 5. Parton luminosity ratios defined in Eq. (6.10) as a function of dilepton invariant mass
p
s.
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with the CKM matrix being V = V
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,

with O
↵�i
VL

= O
↵�2i
VL

. Clearly, by imposing SU(2)L invariance, one obtains new operator
structures that lead to additional observables. From Eq. (7.2), we find correlated relations
with the following observables:

i) Charged-current di ! u`⌫ and ⌧ ! diu⌫ transitions (1st line) ,

ii) Neutral-current c ! u``
(0), ⌧ ! `uu decays and µu ! eu conversion (2nd line) ,

iii) Neutral-current s ! d``
(0), s ! d⌫⌫, ⌧ ! `didj decays and µdi ! edi conversion

(3rd line) ,

where ` = e, µ . Adjusting the coefficients of singlet and triplet operators in Eqs. (7.2) and
adopting up- or down-quark alignment, one can in principle avoid some of these correlations.
However, one cannot always escape all of them simultaneously, as we will discuss in the
following.

Assuming the CKM-like structure for Vd, K ! ⇡⌫⌫ decays impose |✏
↵�i
VL

| . 10�4, in-
dependently of the quark and lepton flavors. These bounds are significantly stronger than
both charm and high-pT limits (see Sections 3 and 4.2). However, they can be alleviated by
enforcing the relation C

(3)
lq ⇡ C

(1)
lq , or by assuming down-alignment and a diagonal flavor

structure (nonzero WCs only for i = j). Irrespective of these assumptions, the combination
of K ! ⇡⌫⌫, KL ! eµ and µ� e conversion in nuclei set the robust bound |✏

eµi
VL

| . 10�4.

For the ⌧` channel, LFV tau decays always offer bounds stronger than those from charm
decays or high-pT . To alleviate these, together with those from K ! ⇡⌫⌫, one needs to
enforce C

(3)
lq ⇡ �C

(1)
lq to cancel the contribution to tau decays plus the down-quark aligned

flavor structure described above to avoid the bound from kaon decays. Even in that tuned
scenario, the contribution to ⌧ ! `⇢ remains unsuppressed, and the corresponding bounds
are better than those from charm decays but comparable to the high-pT limits.

For the `` channel, the K ! ⇡⌫⌫ and K ! `` decays give the constraints |✏
eei
VL

| . 10�3,
|✏
µµi
VL

| . 10�4, even if we allow for cancellations between the singlet and triplet operators.
For the c ! s case, it is possible to avoid these constraints by enforcing down alignment
and a diagonal flavor structure with non-zero i = j = 2 entry. In this limit, the bounds from
K ! `⌫ are stronger than charged-current charm decays, and comparable to those from
high-pT monolepton tails. Likewise, for the c ! d decays obtained by demanding down
alignment and a flavor structure with a non-zero i = j = 1 WC, one would enter in conflict
with ⇡ ! `⌫ decays or high pT .

Finally, the only relevant neutral-current constraint for the ⌧⌧ channel is K ! ⇡⌫⌫, which
can be removed by C

(3)
lq ⇡ C

(1)
lq . Still, charged-current ⌧ decays provide comparable limits to

those from charm decays, and can be alleviated with a mild alignment to the up eigenbasis.

• O
↵�i
SR

: The SMEFT operator Oledq decomposes as

[O †
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Example

• Imposing SU(2) gauge invariance yields strong constraints on the WCs entering 
in charm decays by relating them to other transitions, such as K, π or τ decays.
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Constraints from SU(2) gauge invariance

Figure 5. Parton luminosity ratios defined in Eq. (6.10) as a function of dilepton invariant mass
p
s.

Finally, a generic NP model correlates �F = 1 operators to flavor non-universal flavor con-
serving q

i
q̄
i
! e

↵
ē
↵ processes, which are the leading signatures if the flavor structure is MFV-

like [42, 43]. In fact, in many explicit models, bb̄ ! ⌧
+
⌧
� dominates over Vcb suppressed

bs̄ ! ⌧
+
⌧
�, see Ref. [42].

7 Constraints from SU(2)L gauge invariance

Imposing SU(2)L gauge invariance yields strong constraints on the WCs entering in charm decays
by relating them to other transitions, such as K, ⇡ or ⌧ decays. We discuss the impact of these
correlated constraints here. To keep the SU(2)L relations as generic as possible, in this section we
use a different flavor basis in which the SU(2)L doublets are defined as
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with the CKM matrix being V = V
†
u Vd, while the right-handed fermions are already in their mass-

eigenstate basis. Furthermore, whenever we do not impose down-quark alignment (Vd ⇡ 1) or
up-quark alignment (Vu ⇡ 1) we assume that both Vu and Vd exhibit the same hierarchies as the
CKM matrix.

7.1 Charged currents

We find the following complementary constraints:
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Figure 5. Parton luminosity ratios defined in Eq. (6.10) as a function of dilepton invariant mass
p
s.
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7 Constraints from SU(2)L gauge invariance

Imposing SU(2)L gauge invariance yields strong constraints on the WCs entering in charm decays
by relating them to other transitions, such as K, ⇡ or ⌧ decays. We discuss the impact of these
correlated constraints here. To keep the SU(2)L relations as generic as possible, in this section we
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with the CKM matrix being V = V
†
u Vd, while the right-handed fermions are already in their mass-

eigenstate basis. Furthermore, whenever we do not impose down-quark alignment (Vd ⇡ 1) or
up-quark alignment (Vu ⇡ 1) we assume that both Vu and Vd exhibit the same hierarchies as the
CKM matrix.
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We find the following complementary constraints:
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due to its manifest SU(2)L gauge invariance, this framework allows to establish correlations with
kaon and tau physics.

The next four sections investigate, in steps, charged-current transitions. Namely, starting from
the effective field theory setup in Section 2, we study the set of constraints from charmed meson
decays in Section 3, the production of monoleptons at high-pT LHC in Section 4 and, finally, com-
pare the two in Section 5. The analysis is then repeated for neutral-current transitions in Section 6.
Complementary constraints implied by SU(2)L gauge symmetry are derived in Section 7. We
conclude in Section 8.

2 Theoretical framework: c ! diē↵⌫�

2.1 The high-energy effective theory

We focus on short-distance NP that can affect semileptonic charged-current charm transitions, par-
ticularly when charm number changes by one unit, �C = 1. Under the assumption of no new
degrees of freedom below (or at) the electroweak scale, NP effects can be fully described employ-
ing the SMEFT. The relevant Lagrangian is

LSMEFT �
1

v2

X

k

Ck Ok , (2.1)

where v ⇡ 246 GeV is the SM Higgs vacuum expectation value and the Wilson coefficients (WCs)
scale as Ck / v

2
/⇤2, with ⇤ being the scale of NP. We employ the Warsaw basis [50] for operators

of canonical dimension six, which is particularly suited for flavor physics as covariant derivatives
and field strengths are reduced in favor of fermionic currents using the equations of motion. The
most general set of semileptonic four-fermion SMEFT operators contributing to c ! d

i
ē
↵
⌫
� tran-

sitions are

O
(3)
lq = (l̄L�µ⌧

I
lL)(q̄L�

µ
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I
qL) , Oledq = (l̄LeR)(d̄RqL) ,
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lequ = (l̄pLeR)✏pr(q̄

r
LuR) , O

(3)
lequ = (l̄pL�µ⌫eR)✏pr(q̄

r
L�

µ⌫
uR) ,

(2.2)

with �µ⌫ = i
2 [�

µ
, �

⌫ ], ⌧ I the Pauli matrices, ✏pr the Levi-Civita symbol and {p, r} being SU(2)L
indices.1 The left-handed quark and lepton doublets are denoted by qL and lL, respectively, while
the right-handed singlets are uR, dR and eR. On the other hand, the SMEFT operators that modify
the W couplings to quarks read

O
(3)
�q = (�† i

$
D

I
µ �)(q̄L�

µ
⌧
I
qL) , O�ud = (�̃† iDµ�)(ūR�

µ
dR) , (2.3)

where � is the Higgs field and Dµ its covariant derivative. We neglect the chirality-flipping W

vertices of the type  ̄�µ⌫ �Fµ⌫ . Their effects are subleading relative to the operators in Eq. (2.3)
at low-energies, since they are charm mass suppressed, and to the operators in Eq. (2.2) at high-pT ,
due to their different high-energy behavior discussed in Section 4.1. We also neglect all modifica-
tions to the leptonic W vertices, since they are better probed in purely leptonic transitions.

1The SM extended by a light right-handed neutrino (⌫R) potentially accessible in charm decays would require sup-
plementing the SMEFT with a new set of operators such as (l̄L⌫R)(ūRqL). For the full list see Eq. (2.1) in Ref. [51].
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Figure 5. Parton luminosity ratios defined in Eq. (6.10) as a function of dilepton invariant mass
p
s.

Finally, a generic NP model correlates �F = 1 operators to flavor non-universal flavor con-
serving q
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↵ processes, which are the leading signatures if the flavor structure is MFV-

like [42, 43]. In fact, in many explicit models, bb̄ ! ⌧
+
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� dominates over Vcb suppressed

bs̄ ! ⌧
+
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�, see Ref. [42].

7 Constraints from SU(2)L gauge invariance

Imposing SU(2)L gauge invariance yields strong constraints on the WCs entering in charm decays
by relating them to other transitions, such as K, ⇡ or ⌧ decays. We discuss the impact of these
correlated constraints here. To keep the SU(2)L relations as generic as possible, in this section we
use a different flavor basis in which the SU(2)L doublets are defined as
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with the CKM matrix being V = V
†
u Vd, while the right-handed fermions are already in their mass-

eigenstate basis. Furthermore, whenever we do not impose down-quark alignment (Vd ⇡ 1) or
up-quark alignment (Vu ⇡ 1) we assume that both Vu and Vd exhibit the same hierarchies as the
CKM matrix.

7.1 Charged currents

We find the following complementary constraints:
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with O
↵�i
VL

= O
↵�2i
VL

. Clearly, by imposing SU(2)L invariance, one obtains new operator
structures that lead to additional observables. From Eq. (7.2), we find correlated relations
with the following observables:

i) Charged-current di ! u`⌫ and ⌧ ! diu⌫ transitions (1st line) ,

ii) Neutral-current c ! u``
(0), ⌧ ! `uu decays and µu ! eu conversion (2nd line) ,

iii) Neutral-current s ! d``
(0), s ! d⌫⌫, ⌧ ! `didj decays and µdi ! edi conversion

(3rd line) ,

where ` = e, µ . Adjusting the coefficients of singlet and triplet operators in Eqs. (7.2) and
adopting up- or down-quark alignment, one can in principle avoid some of these correlations.
However, one cannot always escape all of them simultaneously, as we will discuss in the
following.

Assuming the CKM-like structure for Vd, K ! ⇡⌫⌫ decays impose |✏
↵�i
VL

| . 10�4, in-
dependently of the quark and lepton flavors. These bounds are significantly stronger than
both charm and high-pT limits (see Sections 3 and 4.2). However, they can be alleviated by
enforcing the relation C

(3)
lq ⇡ C

(1)
lq , or by assuming down-alignment and a diagonal flavor

structure (nonzero WCs only for i = j). Irrespective of these assumptions, the combination
of K ! ⇡⌫⌫, KL ! eµ and µ� e conversion in nuclei set the robust bound |✏

eµi
VL

| . 10�4.

For the ⌧` channel, LFV tau decays always offer bounds stronger than those from charm
decays or high-pT . To alleviate these, together with those from K ! ⇡⌫⌫, one needs to
enforce C

(3)
lq ⇡ �C

(1)
lq to cancel the contribution to tau decays plus the down-quark aligned

flavor structure described above to avoid the bound from kaon decays. Even in that tuned
scenario, the contribution to ⌧ ! `⇢ remains unsuppressed, and the corresponding bounds
are better than those from charm decays but comparable to the high-pT limits.

For the `` channel, the K ! ⇡⌫⌫ and K ! `` decays give the constraints |✏
eei
VL

| . 10�3,
|✏
µµi
VL

| . 10�4, even if we allow for cancellations between the singlet and triplet operators.
For the c ! s case, it is possible to avoid these constraints by enforcing down alignment
and a diagonal flavor structure with non-zero i = j = 2 entry. In this limit, the bounds from
K ! `⌫ are stronger than charged-current charm decays, and comparable to those from
high-pT monolepton tails. Likewise, for the c ! d decays obtained by demanding down
alignment and a flavor structure with a non-zero i = j = 1 WC, one would enter in conflict
with ⇡ ! `⌫ decays or high pT .

Finally, the only relevant neutral-current constraint for the ⌧⌧ channel is K ! ⇡⌫⌫, which
can be removed by C

(3)
lq ⇡ C

(1)
lq . Still, charged-current ⌧ decays provide comparable limits to

those from charm decays, and can be alleviated with a mild alignment to the up eigenbasis.

• O
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: The SMEFT operator Oledq decomposes as
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Example Counterexample
𝒪eu = (ēRγμeR)(ūRγμuR)

• Imposing SU(2) gauge invariance yields strong constraints on the WCs entering 
in charm decays by relating them to other transitions, such as K, π or τ decays.
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Figure 7. Interplay between charm physics, high-pT , and SU(2)L relations for the neutral-current case
(` = e, µ and l = e, µ, ⌧ ). The proximity of the WCs to a particular vertex of the triangle is determined,
approximately, by the relative strength of the corresponding constraints. In purple, those constraints that can
be avoided by a particular flavor structure and/or WC combination.

than high-pT dilepton tails for Oµ⌧, ⌧⌧
SLL

, and comparable to those from neutral charm for Oµµ
SLL

. For
O

↵�
TL

, the SU(2)L-correlated low-energy bounds are not competitive with the ones from high-pT
dilepton tails. However, the analysis of the high-pT monolepton tails produced by ūdi ! e

↵
⌫̄
�

give a marginal improvement compared to those. The O
↵�
SRR

and O
↵�
TR

operators receive correlated
bounds from charged-current charm decays. These are only relevant for the lepton channels involv-
ing the tau flavor, since they are not constrained by the corresponding neutral currents. In this case,
however, high-pT dilepton production offers the best bounds, with the exception of O⌧`

SRR
that is

better constrained by D ! `⌫⌧ . The interplay between charm decays, high-pT dilepton tails, and
SU(2)L related constraints for the neutral-current case is summarized in Figure 7 for µ = 2GeV.

8 Conclusions

Charm is a cornerstone of the SM; a unique arena for QCD and flavor, with a bright experimental
future ahead. But how unique is the charm sector as a probe of new physics within the zoo of flavor
and collider phenomenology? In other words, what is the role of charm in a broader quest for a
microscopic theory beyond the SM?

In this work, we performed a detailed phenomenological analysis of new physics affecting
charm �C = 1 leptonic and semileptonic flavor transitions. We used effective field theory methods
to establish a model-independent interplay between low- and high-energy experimental data, under
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Figure 6. Interplay between charm physics, high-pT LHC, and SU(2)L relations for the charged-current
case (` = e, µ and l = e, µ, ⌧ ). The proximity of the WCs to a particular vertex of the triangle is determined,
approximately, by the relative strength of the corresponding constraints. In purple, those constraints that can
be avoided by a particular flavor structure and/or WC combination.

any lepton flavor from KL ! ⇡⌫⌫̄ decays. This bound, which is considerably stronger than those
from neutral-current charm, can however be alleviated by enforcing down-quark alignment. Even
in this case, the LFV combinations receive better constraints than those from neutral charm decays
(or high-pT dilepton production) by using the correlated bounds from µ � e conversion in nuclei
and LFV tau decays. On the other hand, charm decays and high-pT dilepton tails give stronger
constraints for the lepton-flavor conserving operators with ↵ = � = 1, 2 if down alignment is en-
forced. However, in models producing also the isotriplet SMEFT operator, O(3)

lq , kaon semileptonic
decays can provide similar (muon) or better (electron) bounds compared to charm rare decays.

Similarly, for the O
↵�
VRL

operator, the correlated bounds from µ � e conversion and LFV tau
decays offer the best limits for the LFV channels, independently of the quark flavor assumptions.
For ↵ = � = 1, 2, the related limits from KL ! `

+
`
� yield bounds that are several orders of

magnitude stronger than those from neutral charm decays, unless one imposes down alignment.
On the other hand, the ⌧⌧ channel remains unconstrained at low energies, even when considering
the SU(2)L relations. Finally, no SU(2)L constraint can be derived for O↵�

VLR
since D ! P⌫⌫̄

have not been searched for.
The O

↵�
SLL

and O
↵�
TL

operators are related by SU(2)L invariance to di ! u`⌫ and ⌧ ! udi⌫

transitions. The ordering of indices in the chirality-flipping operator is relevant, since the second
index refers to the left-handed lepton, and thus it is the one connected to the neutrino flavor. The
related constraints are several orders of magnitude stronger than neutral charm for Oe↵

SLL
, stronger
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2 The Standard Model effective field theory setup

We focus on the short-distance new physics that can affect semi-leptonic charm transitions, in
particular, when the charm number changes by one unit, �C = 1. Under the assumption of
no new degrees of freedom below (or at) the electroweak scale, the new physics effects can be
fully described employing the SMEFT. In our analysis, we restrict our attention to semileptonic
dimension-six four-fermion operators,1 which we write generically as

LSMEFT =
1

v2

X

k

Ck Ok + h.c. , (2.1)

where v ⇡ 246 GeV is the SM Higgs vev. We employ the Warsaw basis [1] for the SMEFT op-
erators, which is particularly suited for flavour physics, as covariant derivatives and field strengths
are reduced in favour of fermionic currents using the equations of motion. We also ignore RGE
operator mixing effects from the new physics scale to the electroweak scale.2 The most general set
of semileptonic SMEFT operators contributing to c ! u`` and c ! s(d)`⌫ transitions are

O
(1)
LQ = (L̄�µL)(Q�

µ
Q) , O
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µ
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u) ,
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Q) ,

O
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(2.2)

with ⌧
I the Pauli matrices, and {p, r} being SU(2)L indices. The left-handed quark and lepton

doublets are denoted with Q and L, respectively, while the right-handed singlets are u, d and e.
Also, �µ⌫ = i

2 [�
µ
, �

⌫ ]. Throughout this paper, we work in the up-basis for the SU(2)L multiplets,
where

Q
i
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u
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Vij d
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!
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e
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!
, (2.3)

with V the CKM matrix. In the following, we will use i, j = 1, 2, 3 and ↵,� = 1, 2, 3, to label
quark and lepton flavour indices, respectively. The matching of the SMEFT to weak effective
theory impose "SU(2)L relations" between the operators relevant at low-energies.

2.1 Charged currents

The low-energy effective Lagrangian involving c ! d(s)`⌫ transitions can be written as

LCC = �
4GF
p
2
Vci

h�
1 + ✏
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VL

�
O

↵�
VL

+ ✏
↵�
VR

O
↵�
VR

+ ✏
↵�
SL

O
↵�

SL
+ ✏

↵�
SR

O
↵�
SR
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T

i
+ h.c., (2.4)

1The operators which modify W and Z couplings do not lead to energy-growing effects in high-pT LHC processes
considered here, unlike four-fermion operators. Also, the modifications of these couplings are constrained by LEP and
LHC on-shell vector boson production [? ]. Still, charm decays are important to fully constrain some of these couplings,
such as Vcs and Vcd elements of the CKM []. Thus, combining low- and high-pT data provides a handle to disentangle
different operators. However, we do not attempt to perform the global SMEFT fit in this work.

2In other to generate the same NP effects as for the tree-level mediated contributions, the required NP scale for such
operators should be significantly lower. This translates into stronger high-pT limits than the ones considered here, either
from non-resonant or from resonant production.
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Neutral currents

Charged currents

We systematically went through all options

D(s) decays, high-pT lepton tails and 
SU(2)L relations chart the space of the 
SMEFT affecting semi(leptonic) charm 
flavor transitions.
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