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• CPV has been observed in K (1964,Cronin & Fitch), B 
(2002, Belle & Babar) and D (2019, LHCb) meson sectors 
⇒ Good concordance with SM (CKM) 

• Predicted to be vanishingly small in top sector (absence of 
significant GIM breaking, short t-lifetime, no neutral long-
lived bound states)                                                          
⇒ “Null test” of SM 

Best strategies to probe top CPV BSM? 

CPV in quark sector
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Parametrise heavy NP with EFT: leading dim-6 operators 

CPV in the top sector

dipoles yukawas

+ four-fermion ops.
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‘Z-penguins’

see e.g. J. A. Aguilar-Saavedra, 0904.2387
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• Probed directly through (single, 
pair, associate) top production 
and decays at LHC 

• Important complementarity with 
low energy indirect probes

see e.g. J. A. Aguilar-Saavedra, 0904.2387
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Figure 6: Same as Fig. 4, showing the 90% C.L. allowed regions in the v2cWb � v2c̃Wb (left
panel) and v2cg � v2c̃g (center panel) and v2cY � v2c̃Y (right panel) planes, but now assuming
central values for the relevant nuclear and hadronic matrix elements. Both the allowed regions
in the single coupling case (solid lines) and marginalized case (dashed lines) are shown.

indirect observables, and to test the robustness of the strong EDM bounds discussed in Section
9.1.

The large theoretical uncertainties of the hadronic and nuclear matrix elements entering the
mercury EDM cause the bound from dHg to e↵ectively disappear in the R-fit approach, reducing
the number of CP-odd observables to four (electron and neutron EDMs, ACP in b ! s�, and
the phase �� in top decays). As we investigate five anomalous couplings, this gives rise to
free directions for the imaginary parts leading to unbound c̃↵ for all ↵ apart from c̃Wt which
remains constrained by the W helicity fractions discussed in Section 4.1.4. This situation is
certainly unrealistic and requires an unmotivated cancellation between various couplings and
matrix elements. Furthermore, the free directions can be removed by including less sensitive
observables which we have neglected so far, or by including dimension-eight e↵ects such as
contributions of c̃↵ to CPC total cross sections and decay rates, which become relevant for
v2c̃↵ ⇠ O(1) (of course, this does not protect us from further cancellations against possible
dimension-eight BSM operators). The latter possibility is, however, at the limit of validity of
our assumption that the leading e↵ects of BSM physics are captured by non-renormalizable
operators of lowest canonical dimension. Finally, future EDM measurements on systems such
as the proton, deuteron, or radium can also remove unconstrained directions [48].

In the rest of this Section we study one case in which the C↵ can be bound, that is if we neglect
theoretical uncertainties in the hadronic and nuclear matrix elements entering dn, dHg and ACP .
Although this might seem rather wishful at the moment, relatively modest improvements from
both lattice QCD and nuclear many-body theory regarding various matrix elements (see the
discussion in Ref. [48]) would be su�cient to make this a realistic scenario.

9.2.1 Global analysis: central values of the hadronic matrix elements

Figs. 5 - 6 show the marginalized constraints as well as those resulting from the single-coupling
analysis (at 90% C.L.), using the central procedure in both cases. We immediately notice
that the limits on c̃↵ weaken considerably because the imaginary parts of the couplings are
strongly correlated. The bounds on v2c̃� and v2c̃Wt deteriorate from the few permil level to
about 40%. This can be understood from the fact that the electron EDM, which provides the

36
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sensitive to      , e.g. 
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Motivation
● The only O(1) Yukawa in the SM → LHC

● SM + dim. 6 operator                 can induce:

●       -even quantities are sensitive to

● Can we find observables with linear sensitivity to    ? 

Polarization observables in 

Lab. frame observables in

J. A. Aguilar-Saavedra., 
Nucl. Phys. B821
(2009) 215 [0904.2387]

SM: 
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Figure 2: Distribution of reconstructed primary top quark mass versus reconstructed Higgs boson mass in the data
events. The right panels show the projections onto the Higgs boson mass and primary top quark mass axes. In
the upper panel, the fitted continuum background (blue), the total background including non-tt̄H/tH Higgs boson
production (green), and the total fitted signal plus background (red) are shown. The error bars on data are statistical.

The combination analysis is repeated without the tt̄H and tH inputs and this result is used to constrain
g and �. The impact on g and � of removing input tt̄H and tH analyses from the combination is
small. Correlation of the systematic uncertainties between the Higgs boson coupling combination and
this analysis is neglected. The correlation has a small impact on ↵, and a similar e�ect on t as on signal
strength reported in Ref. [74]. This analysis is insensitive to the potential modifications of ggF kinematics
due to CP-mixing, which is therefore neglected. The results of the fit for t cos(↵) and t sin(↵) are shown
as contours in Figure 3. A limit on ↵ is set without prior constraint on t in the fit: |↵ | > 43� is excluded at
95% CL. The expected exclusion is |↵ | > 63� under the CP-even hypothesis. A value of ↵ = 90 (180)� is
excluded at 3.9� (2.5�). A comparable study from the CMS experiment excluded ↵ = 90� at 3.2� [3].
If � and g are parameterized using ↵ and t [11], the observed (expected) exclusion is |↵ | > 43 (56)�
without prior constraint on t in the fit. The impact of the systematic uncertainties is negligible.
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Figure 3: Two-dimensional likelihood contours for t cos(↵) and t sin(↵) with ggF and H ! �� constrained by the
Higgs boson coupling combination.

In summary, the production rate of the Higgs boson in association with top quarks is measured and the
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• After EWSB modifies top-Higgs coupling 

• Currently most sensitive direct probes are CP-even, 
sensitive to      , e.g. 
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Motivation
● The only O(1) Yukawa in the SM → LHC

● SM + dim. 6 operator                 can induce:

●       -even quantities are sensitive to

● Can we find observables with linear sensitivity to    ? 

Polarization observables in 

Lab. frame observables in

J. A. Aguilar-Saavedra., 
Nucl. Phys. B821
(2009) 215 [0904.2387]

SM: 

̃2
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● The only O(1) Yukawa in the SM → LHC

● SM + dim. 6 operator                 can induce:

●       -even quantities are sensitive to

● Can we find observables with linear sensitivity to    ? 

Polarization observables in 

Lab. frame observables in

J. A. Aguilar-Saavedra., 
Nucl. Phys. B821
(2009) 215 [0904.2387]

SM: 

Genuinely CPV probes? CP-odd observables, linear in ̃
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“parton level”                scattering - tractable analytically 

Polarised cross section ~  
❊ important spin quantisation axis 
⇒ optimal for                     

Toy example: top-polarisation in th production
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Polarization observables in   

Polarized cross section Optimal top pol. vector

Top always forward:

“Parton” level analyisis:

“beam” (z)
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Polarization observables in   

Polarized cross section Optimal top pol. vector

Top always forward:

“Parton” level analyisis:

“beam” (z)

top
 m

om
en

tum

beam direction

|M|2 = A(x̃) +Bi(x̃)ŝi
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Charged lepton in              decay close to optimal top-spin 
analyser - directions (almost) 100% correlated 

In hadronic production thus 

⇒ simplest CP-odd observable

Probing top polarization in semileptonic top decay

  

4
Semileptonic top decay:

Hadronic process 
           D. Atwood and A. Soni, 

Phys. Rev. D45 (1992) 2405

[1205.0264, hep-ph/0403035, ...]

weight can be extracted from MC
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⇣
1 +Biŝi cos ✓̃`
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Sensitivity can be optimised by reweighing (by   ) over 
phase-space (  ): 

⇒ optimal CP-odd observable 
❊ Optimal weight must be extracted from simulation 

Optimal CPV sensitivity in

  

4
Semileptonic top decay:

Hadronic process 
           D. Atwood and A. Soni, 

Phys. Rev. D45 (1992) 2405

[1205.0264, hep-ph/0403035, ...]

weight can be extracted from MC

fopt(x̃) = cos ✓̃`Bi(x̃)ŝi/A(x̃)
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Sensitivity can be optimised by reweighing (by   ) over 
phase-space (  ): 

Marginal improvement of sensitivity compared to Osimp.

Optimal CPV sensitivity in

  

4
Semileptonic top decay:

Hadronic process 
           D. Atwood and A. Soni, 

Phys. Rev. D45 (1992) 2405

[1205.0264, hep-ph/0403035, ...]

weight can be extracted from MC

x̃
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Including realistic top, Higgs 
reconstruction, one can project 
bounds from prospective 
measurements 
⇒ Not relevant at LHC due to tiny 
th x-section 
Example at HE-LHC: 

Realistic analysis?

  

9

… but signal is completely swamped by              background

see e.g. Farina et al., 1211.3736
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Including realistic top, Higgs 
reconstruction, one can project 
bounds from prospective 
measurements 
⇒ Not relevant at LHC due to tiny 
th x-section 
Example at HE-LHC: 

Realistic analysis?

  

9

… but signal is completely swamped by              background

In practice signal swamped by dominant tt+jets background_

see e.g. Farina et al., 1211.3736
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• top spin only one example 
(pseudo)vector allowing to 
construct CP-odd observables 

• optimal polarisation axis          
⇒ maximises “triple product” 

• charged leptons good proxies 
of top spin 

• top-Higgs production is puny    
⇒ CPV in tth? 

Lessons learned

_
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CP-odd observables in tth production

Clean dileptonic signature to suppress backgrounds            
⇒ tt rest-frames not easily reconstructable 

Lab-frame observables built from accessible final-state 
momenta  
⇒ assume Higgs fully reconstructed (γγ,…) (can be relaxed) 

 [no b - b  (charge) differentiation] 

⇒ Suitable observables: triple-products, double-triple 
products, etc…

  

10
Lab. frame observables in 

        and     -odd observables, built from accessible final-state momenta

Higgs and semi-leptonic top decay final state momenta:

E.g.:

+ many more..

Similar approaches: F. Boudjema et al., Phys. Rev. D92 (2015)
W. Bernreuther et al., Phys. Rev. D49 (1994)

no        differentiation

_

_

_
see however Boudjema et al., 1501.03157

see also Bernreuther et al., Phys. Rev. D49 (1994) 16



CP-odd observables in tth production

Example: 

Differential x-section 

⇒ can define CP-odd observable 

• Linear in     close to origin 
• Tiny effect - can be optimised similar to th?  
•         depends on whole 3-body phase space 
• Case for ML…? (see below)
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Figure 5: Bounds in the (, ̃) plane using the optimized observable for the single-top associated production
with a Higgs boson. The blue shaded region corresponds to the 2� (�2 > 6.18) exclusion zone assuming the
measurement of the SM at the HE-LHC (15 ab�1). The dashed line shows the 2� exclusion zone for a 2� positive
fluctuation at the HE-LHC (see text for details).

ph p`� + p`+ p`� � p`+ pb + pb̄ p`� ⇥ p`+ pb ⇥ pb̄ (pb � pb̄)

C + + � + � +

P � � � � + �

CP � � + � � �

Table I: Momenta with well-defined C and P eigenvalues. The b, b̄, `+ and `� are the top decay products. The
last column is a rank-2 tensor – a direct product of an axial and a polar vector.

A. Laboratory frame CP -odd observables

We denote the 3-momenta of the leptons and b-jets originating from t and t̄ with p`+ , p`� , pb and
p
b̄
, respectively, and the Higgs 3-momentum with ph. The C and P transformation properties of six

independent combinations of these momenta are given in Tab. I. We focus only on combinations that
are nontrivial under C, P (i.e., we omit scalars products) and are accessible in a realistic experimental
environment. For example we consider pb + p

b̄
, but not pb � p

b̄
as di↵erentiating between b and b̄ is

di�cult experimentally (see Refs. [34, 35] for recent attempts in extracting the charge of the b-jet). The
six combinations of momenta in Tab. I are taken as a basis for constructing P - and CP -odd variables !.
This is achieved by contracting (anti)symmetrically the momentum tensors such that the resulting ! is
C even and P odd. i.e. a pseudoscalar. The resulting spectrum is then linear in the pseudoscalar ! with
the coe�cient in front linear in ̃, analogous to expression (21). At leading order in ̃ we find:

d2�

dxd!
⇠ A(x) + ̃�(x)!. (22)

In Eq. (22) we have parameterized the phase space with the pseudoscalar variable !, while all other
variables are collectively denoted by x. Now we can again exctract ̃ with the statistically optimal weight
function, which in this case is given by fopt. ⇠ �(x)/A(x), while the associated observable is

O! =
1

�

Z
dx d!

d2�

dxd!
f(x)! =

1

N

NX

i=1

f(x(i))!(i). (23)

f(x) = 1
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Realistic analysis?

Including realistic reconstruction of signal  
                                                 and main background 

Non-trivial bounds or. signals possible at LHC upgrades

  

12Event reconstruction analysis

Madgraph5          Pythia8          Delphes 

Signal:               

         - event generation -               - showering, hadronization -        - detector simulation -

Background:                    

Event selection:         

Highest                   assumed 
to originate from tops

1

2

3

4
or more

At least 3    - tagged 
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15positive fluctuation – asymmetric bounds
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Realistic analysis?

Including realistic reconstruction of signal  
                                                 and main background 

Can one improve upon this - make (HL)LHC relevant?

  

12Event reconstruction analysis

Madgraph5          Pythia8          Delphes 

Signal:               

         - event generation -               - showering, hadronization -        - detector simulation -

Background:                    

Event selection:         

Highest                   assumed 
to originate from tops

1

2

3

4
or more

At least 3    - tagged 
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Multivariate optimisation of CP observables in tth

Two possible directions: 
‣ phase space optimisation of Oω (fopt):  

• not tractable analytically, highly non-linear 
dependence on kinematical variables                       
⇒ ML approach using NNs,  

• based on th experience, improvements beyond O(1) 
not expected 

‣ combining several Oω:  
• in the linear regime might improve upon O6 by O(1)  
• exploration of non-linear regime using NNs.

_
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Neural network setup

Crucial to define optimization cost function preserving CP-
odd symmetry of Oω,  
✓significance on the training/validation dataset 

• needs to be odd function of kappa. In general for CP-
even x: 

⇒ 

• Cost function can cannot be evaluated event by event  
⇒ modification of NN back-propagation.  

stated otherwise the results are shown for events at 14 TeV. We randomly initialize the

neural network weights using the Glorot uniform initializer and use the Adam optimizer

with a custom varying learning rate. We train the network using the cost function

cost(↵) =

✓
mean(F(x;↵))

std(F(x;↵))/
p
N

◆�2

, (1.3)

which is defined as the squared inverse of the significance of the observable F(x;↵) with

N being the size of the sample on which we are learning, ↵ are the free parameters and x

are the CP -even and/or CP -odd phase space variables. We avoid over-fitting by stopping

the training when at least 30 epochs have passed and one of the two criteria is satisfied:

either the running average of 20 training losses saturates to 0.5% or the running average

of 20 validation losses increases for 5 sequential epochs. In either case we keep a model

history and in the end choose the best model in terms of the validation loss.

Next we consider a manifestly CP -odd (C-even and P -odd) observable completely

parameterized by a neural network. A non negligible improvement can be be achieved,

however due to concerns about the stability with respect to the choice of initial random

weights we turn to a first order approximation of this observable. Such an approximation

can be considered without the need of ML techniques and we show that it is equally as

capable as the full fledged neural network. We further simplify this observable for each

energy separately by estimating the significance of each term in the linear expansion and

keeping only the most significant terms. We use this optimized observables in Section 3 to

produce limits in the � ̃ plane at HL-LHC, HE-LHC and FCC-hh.

2 The optimization of observables

We denote the CP -even phase space variables with x and the CP -odd ones with !. Using

this notation we can write the di↵erential cross section as

d�

dxd!
= A(x, |!|) + ̃B(x,!). (2.1)

where A is manifestly CP -even and B a CP -odd function of !. We use a set of easily

accessible CP -even Mandelstam variables

x(i) 2
�
(p`+ + p`�) · ph,

(p`+ + p`�) · (pb + p̄b),

(pb + pb̄) · ph,

p`+ · p`� ,

pb · pb̄

 
.

2.1 Phase space optimization of !6

In this Section we study the optimization based on phase-space averaging of the !6 variable

(1.2). Our goal is to find the optimal CP -even weight function f(x(i)) which should be

– 2 –

used as a weight in calculating the average of !6. The function f takes as inputs CP -even

quantities and we expect its dependence on ̃ to be of the form

f(x) = C(x) + ̃2D(x) +O(̃4). (2.2)

Using (2.1) we can now express the observable as

hf(x)!i =

Z
d�

dxd!
f(x)!dxd!

= ̃

Z
B(x,!)C(x)!dxd! + ̃3

Z
B(x,!)D(x)dxd! +O(̃5).

(2.3)

The observable is hence CP -odd. Large dimensionality of the phase space suggests to

parametrise the function f(x(i)) using a neural network. In terms of the cost function (1.3)

we have in the current case F(x;↵) = f(x(i);↵) !6.

In order to choose an appropriate architecture we first employ the Hyperopt library

via the Hyperas wrapper. The input layer has 5 nodes (one per each x(i)), we use one

hidden layer of 3 nodes and one node as the output layer. We always use at least one

hidden layer. We allow the Tree of Parzen Estimators (TPE) algorithm to choose between

0, 1 or 2 additional hidden layers. The number of nodes in each hidden layer is chosen

between 1 and 15. There is one output node, resulting in a scalar f(x(i)). The activation

function is allowed to be chosen between relu, tanh and sigmoid, however the algorithm

always prefers relu.

We find that the algorithm has a tendency to choose a larger network, though the

resulting validation losses are only marginally better than those given by smaller networks.

Moreover we find that in all cases there is no noticable improvement over plain !6. Here

we choose a model for illustration purposes.

TODO: add the chosen model...

We train the model with 100 random weight initializations and show the results on

Fig. 1. We find this approach gives a wide range of convergence as can be seen from the

spread in the box plot.

Figure 1. The phase space optimised (box plot) and the plain !6 model (blue) comparison.

To test if we might have missed a portion of the phase space by considering only

5 variables, we also include the absolute value of all the !s into the list of phase space
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hidden layer of 3 nodes and one node as the output layer. We always use at least one

hidden layer. We allow the Tree of Parzen Estimators (TPE) algorithm to choose between

0, 1 or 2 additional hidden layers. The number of nodes in each hidden layer is chosen

between 1 and 15. There is one output node, resulting in a scalar f(x(i)). The activation

function is allowed to be chosen between relu, tanh and sigmoid, however the algorithm

always prefers relu.

We find that the algorithm has a tendency to choose a larger network, though the

resulting validation losses are only marginally better than those given by smaller networks.

Moreover we find that in all cases there is no noticable improvement over plain !6. Here

we choose a model for illustration purposes.

TODO: add the chosen model...

We train the model with 100 random weight initializations and show the results on

Fig. 1. We find this approach gives a wide range of convergence as can be seen from the

spread in the box plot.

Figure 1. The phase space optimised (box plot) and the plain !6 model (blue) comparison.

To test if we might have missed a portion of the phase space by considering only

5 variables, we also include the absolute value of all the !s into the list of phase space
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Neural network optimisation

Size of input layer determined by dimensionality of x: 

Number {0-2} and size {1-15} of hidden layers & choice of 
transfer functions {sigmoid, tanh, …} optimised using 
Hyperopt  (also x-checked manually).  

stated otherwise the results are shown for events at 14 TeV. We randomly initialize the
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◆�2
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.
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Neural network optimisation

Phase-space optimisation of O6 on 1M simulated events    
(at parton level) 

No significant improvement compared to pure ω6!
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between 1 and 15. There is one output node, resulting in a scalar f(x(i)). The activation
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Moreover we find that in all cases there is no noticable improvement over plain !6. Here
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TODO: add the chosen model...

We train the model with 100 random weight initializations and show the results on

Fig. 1. We find this approach gives a wide range of convergence as can be seen from the

spread in the box plot.

Figure 1. The phase space optimised (box plot) and the plain !6 model (blue) comparison.

To test if we might have missed a portion of the phase space by considering only

5 variables, we also include the absolute value of all the !s into the list of phase space

– 3 –

Si
gn

ifi
ca

nc
e pure O6

NN dependence 
on initial α’s

PRELIM
INARY



Combining multiple ω’s

CP-odd optimisation - cost function condition 
• Linear approximation: 

⇒ 

⇒ Optimisation equations can be solved semi-analytically

Figure 3. Optimal weights, constant case.

This is why we try to approximate this model with a leading order approximation in the

next subsection.

2.3 First order approximation of F (!)

As we found the neural network architecture to be arbitrary to a certain degree, while also

noticing significant stability issues in terms of di↵erent random weight initializations, we

build a first order approximation in the form of F (!) =
P

j ↵j!j+O(!3) for j 2 {1, . . . , 14}.

The approximation is also justifiable in terms of a Taylor expansion, as most of the events

have |wj | ⌧ 1. The observable is then simply

O↵ = h

X

j

↵j!ji . (2.4)
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We can solve for ↵j by maximizing the significance

@

@↵j

O↵

std(O↵)
= 0. (2.5)

Doing so we obtain a system of 14 quadratic equations 2

↵TM (j)↵ = 0 (2.6)

where ↵ = [↵, . . . ,↵14]T and 14⇥ 14 matrices M (j) are given by

M (j)
ik = h!i!jih!ki � h!i!kih!ji. (2.7)

We use this approach to extract the optimal weights ↵j from 107 events generated with

̃ = 1 at energies 14, 27, and 100 TeV. We estimate the uncertainty associated with

optimal weights in the following way. The statistical spread of the significance obtained

with optimal ↵j is first estimated. Next we allow ↵j to float in the intervals [↵j��j ,↵j+�j ].

These intervals are chosen such that the decrease of significance due to the change in ↵j

corresponds to the statistical spread of the significance. We use the sample with 107 events

and perform a scan around the optimal ↵ in its 14-dimensional neighborhood. In order to

e�ciently sample this portion of the ↵-space we use the spherical coordinates to trivially

fulfill the normalization constraint
P

j ↵
2
j = 1. We approximate the significance with a

quadratic function around the extremum to find independent, uncorrelated directions in

the ↵-space. With this procedure we determine how sharply the optimal ↵j are defined.

Clearly the errors of �j are smaller for larger samples. The results of this approach are

shown on Fig. 3, where the upper panel shows significances of each ↵j , gauging their

importance at three di↵erent energies. In the next step we choose a minimal set of most

important ↵’s at each energy that result in optimal significance (2.5) within the expected

statistical fluctuations. This minimal set of optimal ↵’s with their errors is shown on the

lower panel of Eq. 3.

A comparison of this approximation using the central values of ↵j to the full F (!)

results are shown in Fig. 4. We reach the same level of improvement with significantly less

parameters.

We can further simplify the final observable by considering only the most significant

contributions to O↵ (2.4). For each energy separately we choose ...

3 Bounds in the (, ̃) plane

We produce the bounds in the (, ̃) plane by including showering and hadronization using

Pythia8 and detector e↵ects using Delphes with the default ATLAS card. The main

irreducible background is pp ! tt̄bb̄ with both tops decaying semileptonically. We use the

same event selection requirements as in [1], where the results of using plain !6 are shown.

We update those bounds for HL- and HE-LHC and produce bounds for FCC-hh for the first

2Notice that the same problem can be solved using one neuron with 14 inputs and one output without

activation function or bias term.
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‣ not all w’s significant 

Figure 3. Optimal weights, constant case.

This is why we try to approximate this model with a leading order approximation in the

next subsection.
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Combining multiple ω’s

CP-odd optimisation - cost function condition 
• Linear approximation: 

⇒ 

⇒ Optimisation equations can be solved semi-analytically 

‣ not all w’s significant 
‣ robust wrsp energy

Figure 3. Optimal weights, constant case.

This is why we try to approximate this model with a leading order approximation in the

next subsection.

2.3 First order approximation of F (!)

As we found the neural network architecture to be arbitrary to a certain degree, while also

noticing significant stability issues in terms of di↵erent random weight initializations, we

build a first order approximation in the form of F (!) =
P

j ↵j!j+O(!3) for j 2 {1, . . . , 14}.

The approximation is also justifiable in terms of a Taylor expansion, as most of the events

have |wj | ⌧ 1. The observable is then simply

O↵ = h

X

j

↵j!ji . (2.4)

– 5 –

We can solve for ↵j by maximizing the significance

@

@↵j

O↵

std(O↵)
= 0. (2.5)

Doing so we obtain a system of 14 quadratic equations 2

↵TM (j)↵ = 0 (2.6)

where ↵ = [↵, . . . ,↵14]T and 14⇥ 14 matrices M (j) are given by

M (j)
ik = h!i!jih!ki � h!i!kih!ji. (2.7)

We use this approach to extract the optimal weights ↵j from 107 events generated with

̃ = 1 at energies 14, 27, and 100 TeV. We estimate the uncertainty associated with

optimal weights in the following way. The statistical spread of the significance obtained

with optimal ↵j is first estimated. Next we allow ↵j to float in the intervals [↵j��j ,↵j+�j ].

These intervals are chosen such that the decrease of significance due to the change in ↵j

corresponds to the statistical spread of the significance. We use the sample with 107 events

and perform a scan around the optimal ↵ in its 14-dimensional neighborhood. In order to

e�ciently sample this portion of the ↵-space we use the spherical coordinates to trivially

fulfill the normalization constraint
P

j ↵
2
j = 1. We approximate the significance with a

quadratic function around the extremum to find independent, uncorrelated directions in

the ↵-space. With this procedure we determine how sharply the optimal ↵j are defined.

Clearly the errors of �j are smaller for larger samples. The results of this approach are

shown on Fig. 3, where the upper panel shows significances of each ↵j , gauging their

importance at three di↵erent energies. In the next step we choose a minimal set of most

important ↵’s at each energy that result in optimal significance (2.5) within the expected

statistical fluctuations. This minimal set of optimal ↵’s with their errors is shown on the

lower panel of Eq. 3.

A comparison of this approximation using the central values of ↵j to the full F (!)

results are shown in Fig. 4. We reach the same level of improvement with significantly less

parameters.

We can further simplify the final observable by considering only the most significant

contributions to O↵ (2.4). For each energy separately we choose ...
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Parton level results:



Combining multiple ω’s

CP-odd optimisation - cost function condition 
• Linear approximation: 

⇒ 

⇒ Optimisation equations can be solved semi-analytically 

‣ not all w’s significant 
‣ robust wrsp energy

Figure 3. Optimal weights, constant case.

This is why we try to approximate this model with a leading order approximation in the

next subsection.

2.3 First order approximation of F (!)

As we found the neural network architecture to be arbitrary to a certain degree, while also

noticing significant stability issues in terms of di↵erent random weight initializations, we

build a first order approximation in the form of F (!) =
P

j ↵j!j+O(!3) for j 2 {1, . . . , 14}.

The approximation is also justifiable in terms of a Taylor expansion, as most of the events

have |wj | ⌧ 1. The observable is then simply

O↵ = h

X

j

↵j!ji . (2.4)
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Significant improvement compared to pure ω6!
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Combining multiple ω’s

CP-odd optimisation - cost function condition 
• Linear approximation: 

• Full nonlinear dependence again via NNs:
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No significant improvement compared to linear regime!
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Impact on realistic analyses

How do observables optimised on parton level simulations 
translate to more realistic analyses including detector & 
reconstruction effects? 
➡ Fast simulation based results encouraging
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optimised on parton-events,  
applied to reconstruction level



Impact on realistic analyses

How do observables optimised on parton level simulations 
translate to more realistic analyses including detector & 
reconstruction effects? 
➡ Fast simulation based results encouraging 
➡ Substantial improvement of significance, especially at 

(HL)LHC 
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Figure 5. The 2� exclusion zones in the �̃ plane by assuming a null result at HL-LHC, HE-LHC
and FCC-hh. The optimized observable (2.4) is shown in black, while the plain !6 results are shown
in dashed red.
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Conclusions

Top physics offers many important complementary probes 
of BSM in flavor (& Higgs) sectors 

➤ Here covered example of CPV 
• Practically null-test of SM 
• Challenging reconstruction, high-dimensional phase-

space 
• Linearised CP-odd observables close to optimal probes 
• Full exploration of NP sensitivity calls for ambitious new 

(Tera?) top-factories (HE-LHC, FCC) 
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Additional material



th reconstruction

  

8Event reconstruction analysis

Madgraph5          Pythia8          Delphes 
         - event generation -               - showering, hadronization -        - detector simulation -

Event selection:         

Signal:                 Background:               plus jets

Farina et al., 
JHEP 05 (2013) 022

1

2

3

courtesy A. Smolkovic
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tth reconstruction

  

12Event reconstruction analysis

Madgraph5          Pythia8          Delphes 

Signal:               

         - event generation -               - showering, hadronization -        - detector simulation -

Background:                    

Event selection:         

Highest                   assumed 
to originate from tops

1

2

3

4
or more

At least 3    - tagged 

_
courtesy A. Smolkovic
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