Israeli Joint Particle Physics Meetings

Optimised CP probes of top quark Yukawa at hadron colliders

Jernej F. Kamenik

with D. Faroughy, N. Košnik \& A. Smolkovič, 1909.00007
with B. Bortolato, N. Košnik \& A. Smolkovič, 2005.xxxxx
Institut
"Jožef Stefan"
Ljubljana, Slovenija

Fakulteta za matematiko in fiziko

CPV in quark sector

- CPV has been observed in K (1964,Cronin \& Fitch), B (2002, Belle \& Babar) and D (2019, LHCb) meson sectors \Rightarrow Good concordance with SM (CKM)
- Predicted to be vanishingly small in top sector (absence of significant GIM breaking, short t-lifetime, no neutral longlived bound states)
\Rightarrow "Null test" of SM
Best strategies to probe top CPV BSM?

CPV in the top sector

Parametrise heavy NP with EFT: leading dim-6 operators

$$
\begin{array}{rlrl}
Q_{\phi q, 33}^{(3)} & \equiv\left(\phi^{\dagger} i \stackrel{\leftrightarrow}{D_{\mu}^{a}} \phi\right)\left(\bar{Q}_{L, 3} \gamma^{\mu} \sigma^{a} Q_{L, 3}\right), & & Q_{W d, 33} \\
\equiv \bar{Q}_{L, 3}(\sigma \cdot W) b_{R} \phi, \\
Q_{\phi q, 33}^{(1)} & \equiv\left(\phi^{\dagger} i \stackrel{\leftrightarrow}{D}_{\mu} \phi\right)\left(\bar{Q}_{L, 3} \gamma^{\mu} Q_{L, 3}\right), & & Q_{W u, 33} \equiv \bar{Q}_{L, 3}(\sigma \cdot W) t_{R} \tilde{\phi}, \\
Q_{\phi u, 33} & \equiv\left(\phi^{\dagger} i \stackrel{\leftrightarrow}{D}_{\mu} \phi\right)\left(\bar{t}_{R} \gamma^{\mu} t_{R}\right), & Q_{B u, 33} \equiv \bar{Q}_{L, 3}(\sigma \cdot B) t_{R} \tilde{\phi}, \\
Q_{\phi, 33} & \equiv\left(\tilde{\phi}^{\dagger} i \stackrel{\leftrightarrow}{D}_{\mu} \phi\right)\left(\bar{t}_{R} \gamma^{\mu} b_{R}\right), & & Q_{G u, 33} \equiv \bar{Q}_{L, 3}(\sigma \cdot G) t_{R} \tilde{\phi},
\end{array}
$$

'Z-penguins'
dipoles
yukawas

+ four-fermion ops.

CPV in the top sector

Parametrise heavy NP with EFT: leading dim-6 operators

$$
\begin{aligned}
Q_{\phi q, 33}^{(3)} & \equiv\left(\phi^{\dagger} i \stackrel{\leftrightarrow}{D_{\mu}^{a}} \phi\right)\left(\bar{Q}_{L, 3} \gamma^{\mu} \sigma^{a} Q_{L, 3}\right), & Q_{W d, 33} & \equiv \bar{Q}_{L, 3}(\sigma \cdot W) b_{R} \phi, \\
Q_{\phi q, 33}^{(1)} & \equiv\left(\phi^{\dagger} i \stackrel{\leftrightarrow}{D_{\mu}} \phi\right)\left(\bar{Q}_{L, 3} \gamma^{\mu} Q_{L, 3}\right), & Q_{W u, 33} & \equiv \bar{Q}_{L, 3}(\sigma \cdot W) t_{R} \tilde{\phi}, \\
Q_{\phi u, 33} & \equiv\left(\phi^{\dagger} i \stackrel{\leftrightarrow}{D}_{\mu} \phi\right)\left(\bar{t}_{R} \gamma^{\mu} t_{R}\right), & Q_{B u, 33} & \equiv \bar{Q}_{L, 3}(\sigma \cdot B) t_{R} \tilde{\phi}, \\
& -(\tilde{\phi} \dagger \stackrel{\leftrightarrow}{D} & Q_{G u, 33} & \equiv \bar{Q}_{L, 3}(\sigma \cdot G) t_{R} \tilde{\phi},
\end{aligned}
$$

- Probed directly through (single, pair, associate) top production and decays at LHC
- Important complementarity with low energy indirect probes

CPV in the top sector

Parametrise heavy NP with EFT: leading dim-6 operators

$$
\begin{aligned}
Q_{\phi q, 33}^{(3)} & \equiv\left(\phi^{\dagger} i \stackrel{\leftrightarrow}{D_{\mu}^{a}} \phi\right)\left(\bar{Q}_{L, 3} \gamma^{\mu} \sigma^{a} Q_{L, 3}\right), & & Q_{W d, 33} \equiv \bar{Q}_{L, 3}(\sigma \cdot W) b_{R} \phi, \\
Q_{\phi q, 33}^{(1)} & \equiv\left(\phi^{\dagger} i \stackrel{\leftrightarrow}{D_{\mu}} \phi\right)\left(\bar{Q}_{L, 3} \gamma^{\mu} Q_{L, 3}\right), & & Q_{W u, 33} \equiv \bar{Q}_{L, 3}(\sigma \cdot W) t_{R} \tilde{\phi}, \\
Q_{\phi u, 33} & \equiv\left(\phi^{\dagger} i \stackrel{\leftrightarrow}{D}_{\mu} \phi\right)\left(\bar{t}_{R} \gamma^{\mu} t_{R}\right), & & Q_{B u, 33} \equiv \bar{Q}_{L, 3}(\sigma \cdot B) t_{R} \tilde{\phi}, \\
Q_{\phi, 33} & \equiv\left(\tilde{\phi}^{\dagger} i \stackrel{\leftrightarrow}{D}_{\mu} \phi\right)\left(\bar{t}_{R} \gamma^{\mu} b_{R}\right), & & Q_{G u, 33} \equiv \bar{Q}_{L, 3}(\sigma \cdot G) t_{R} \tilde{\phi},
\end{aligned}
$$

- Probed directly through (single, pair, associate) top production and decays at LHC
- Important complementarity with low energy indirect probes

$$
\operatorname{Im}\left(\Lambda / \sqrt{C_{G u, 33}}\right)_{\mathrm{EDM}}>4.7 \mathrm{TeV}
$$

$$
Q_{H u, 33} \equiv \bar{Q}_{L, 3} t_{R} \tilde{\phi}|\phi|^{2},
$$

CPV in the top sector

Parametrise heavy NP with EFT: leading dim-6 operators
see e.g. J. A. Aguilar-Saavedra, 0904.2387

$$
\begin{array}{rlrl}
Q_{\phi q, 33}^{(3)} & \equiv\left(\phi^{\dagger} i \stackrel{\leftrightarrow}{D_{\mu}^{a}} \phi\right)\left(\bar{Q}_{L, 3} \gamma^{\mu} \sigma^{a} Q_{L, 3}\right), & & Q_{W d, 33} \\
\equiv \bar{Q}_{L, 3}(\sigma \cdot W) b_{R} \phi, \\
Q_{\phi q, 33}^{(1)} & \equiv\left(\phi^{\dagger} i \stackrel{\leftrightarrow}{D}_{\mu} \phi\right)\left(\bar{Q}_{L, 3} \gamma^{\mu} Q_{L, 3}\right), & & Q_{W u, 33} \equiv \bar{Q}_{L, 3}(\sigma \cdot W) t_{R} \tilde{\phi}, \\
Q_{\phi u, 33} \equiv\left(\phi^{\dagger} i \stackrel{\leftrightarrow}{D}_{\mu} \phi\right)\left(\bar{t}_{R} \gamma^{\mu} t_{R}\right), & Q_{B u, 33} \equiv \bar{Q}_{L, 3}(\sigma \cdot B) t_{R} \tilde{\phi}, \\
Q_{\phi, 33} & \equiv\left(\tilde{\phi}^{\dagger} i \stackrel{\leftrightarrow}{D}_{\mu} \phi\right)\left(\bar{t}_{R} \gamma^{\mu} b_{R}\right), & & Q_{G u, 33} \equiv \bar{Q}_{L, 3} t_{R} \tilde{\phi}|\phi|^{2}, \\
L, 3
\end{array}
$$

- After EWSB modifies top-Higgs coupling $-\frac{y_{t}}{\sqrt{2}} \bar{t}\left(\kappa+i \tilde{\kappa} \gamma_{5}\right) t h$
- Currently most sensitive direct probes are CP-even, sensitive to $\tilde{\kappa}^{2}$, e.g.

$$
\sigma(p p \rightarrow t \bar{t} h) \sim A \kappa^{2}+B \tilde{\kappa}^{2}
$$

CPV in the top sector

Parametrise heavy NP with EFT: leading dim-6 operators

$$
\begin{aligned}
& Q_{\phi q, 33}^{(3)} \equiv\left(\phi^{\dagger} i \stackrel{\leftrightarrow}{D}_{\mu}^{a} \phi\right) \\
& Q_{\phi q, 33}^{(1)} \equiv\left(\phi^{\dagger} i \stackrel{\leftrightarrow}{D}_{\mu} \phi\right) \\
& Q_{\phi u, 33} \equiv\left(\phi^{\dagger} i \stackrel{\leftrightarrow}{D}{ }_{\mu} \phi\right) \\
& Q_{\phi, 33} \equiv\left(\tilde{\phi}^{\dagger} i \stackrel{\leftrightarrow}{D}_{\mu} \phi\right) \\
& \text { • After EWS }
\end{aligned}
$$

CPV in the top sector

Parametrise heavy NP with EFT: leading dim-6 operators

see e.g. J. A. Aguilar-Saavedra, 0904.2387

$$
\begin{aligned}
Q_{\phi q, 33}^{(3)} & \equiv\left(\phi^{\dagger} i \stackrel{\leftrightarrow}{D_{\mu}^{a}} \phi\right)\left(\bar{Q}_{L, 3} \gamma^{\mu} \sigma^{a} Q_{L, 3}\right), & & Q_{W d, 33}
\end{aligned} \equiv_{\bar{Q}_{L, 3}(\sigma \cdot W) b_{R} \phi,}\left(Q_{W u, 33} \equiv \bar{Q}_{L, 3}(\sigma \cdot W) t_{R} \tilde{\phi}, \quad Q_{H u, 33} \equiv \bar{Q}_{L, 3} t_{R} \tilde{\phi}|\phi|^{2},\right.
$$

- After EWSB modifies top-Higgs coupling $-\frac{y_{t}}{\sqrt{2}} \bar{t}\left(\kappa+i \tilde{\kappa} \gamma_{5}\right) t h$
- Currently most sensitive direct probes are CP-even, sensitive to $\tilde{\kappa}^{2}$, e.g.

$$
\sigma(p p \rightarrow t \bar{t} h) \sim A \kappa^{2}+B \tilde{\kappa}^{2}
$$

Genuinely CPV probes? CP-odd observables, linear in $\tilde{\kappa}$

Toy example: top-polarisation in th production

"parton level" Wb \rightarrow th scattering - tractable analytically

Polarised cross section $\sim|\mathcal{M}|^{2}=a+b_{\mu} s^{\mu}$

* important spin quantisation axis $s^{\mu}=\left(\frac{\boldsymbol{k} \cdot \hat{s}}{m_{t}}, \hat{s}+\frac{\boldsymbol{k}(\boldsymbol{k} \cdot \hat{\boldsymbol{s}})}{m_{t}\left(E_{t}+m_{t}\right)}\right)$
\Rightarrow optimal for $\hat{\boldsymbol{s}}=\hat{\boldsymbol{k}}_{\|} \times \hat{\boldsymbol{k}}_{\perp}$

$$
|\mathcal{M}|^{2}=A(\tilde{x})+B_{i}(\tilde{x}) \hat{s}_{i}
$$

Probing top polarization in semileptonic top decay

Charged lepton in $t \rightarrow b \ell \nu$ decay close to optimal top-spin

$$
\frac{1}{\Gamma_{t}} \frac{d \Gamma_{t}}{d \cos \tilde{\theta}_{\ell}}=\frac{1}{2}\left(1+B_{i} \hat{s}_{i} \cos \tilde{\theta}_{\ell}\right)
$$

In hadronic production thus

$$
\frac{d^{2} \sigma^{p p \rightarrow t h j}}{d \tilde{x} d \cos \tilde{\theta}_{\ell}} \sim \mathcal{A}(\tilde{x})+\tilde{\kappa} \cos \tilde{\theta}_{\ell} \mathcal{B}_{i}(\tilde{x}) \hat{s}_{i}
$$

\Rightarrow simplest CP-odd observable $O_{\text {simp. }} \equiv\left\langle\cos \tilde{\theta}_{\ell}\right\rangle$

Optimal CPV sensitivity in $p p \rightarrow t h j$

Sensitivity can be optimised by reweighing (by f) over phase-space (\tilde{x}):

$$
f_{\mathrm{opt}}(\tilde{x})=\cos \tilde{\theta}_{\ell} \mathcal{B}_{i}(\tilde{x}) \hat{s}_{i} / \mathcal{A}(\tilde{x})
$$

\Rightarrow optimal CP-odd observable $O_{\text {opt }}=\left\langle\cos \tilde{\theta}_{\ell} \mathcal{B}_{i} \hat{s}_{i} / \mathcal{A}\right\rangle$
米 Optimal weight must be extracted from simulation

Optimal CPV sensitivity in $p p \rightarrow t h j$

Sensitivity can be optimised by reweighing (by f) over phase-space (\tilde{x}):

Marginal improvement of sensitivity compared to $\mathrm{Os}_{\text {simp. }}$.

Realistic analysis?

see e.g. Farina et al., 1211.3736
Including realistic top, Higgs reconstruction, one can project bounds from prospective measurements
\Rightarrow Not relevant at LHC due to tiny
th x-section
Example at HE-LHC:

Realistic analysis?

see e.g. Farina et al., 1211.3736
Including realistic top, Higgs reconstruction, one can project bounds from prospective measurements
\Rightarrow Not relevant at LHC due to tiny
th x-section
Example at HE-LHC:

In practice signal swamped by dominant $t \neq+j e t s$ background

Lessons learned

- top spin only one example (pseudo)vector allowing to construct CP-odd observables
- optimal polarisation axis \Rightarrow maximises "triple product"
- charged leptons good proxies of top spin
- top-Higgs production is puny $\Rightarrow \mathrm{CPV}$ in t th?

CP-odd observables in tth production

Clean dileptonic signature to suppress backgrounds \Rightarrow t\# rest-frames not easily reconstructable

Lab-frame observables built from accessible final-state momenta
\Rightarrow assume Higgs fully reconstructed ($\gamma \gamma, \ldots$) (can be relaxed) [no b-万 (charge) differentiation] see however Boudjema et al., 1501.03157

	\boldsymbol{p}_{h}	$\boldsymbol{p}_{\ell^{-}}+\boldsymbol{p}_{\ell^{+}}$	$\boldsymbol{p}_{\ell^{-}}-\boldsymbol{p}_{\ell^{+}}$	$\boldsymbol{p}_{b}+\boldsymbol{p}_{\bar{b}}$	$\boldsymbol{p}_{\ell^{-}} \times \boldsymbol{p}_{\ell+}$	$\boldsymbol{p}_{b} \times \boldsymbol{p}_{\bar{b}}\left(\boldsymbol{p}_{b}-\boldsymbol{p}_{\bar{b}}\right)$
C	+	+	-	+	-	+
P	-	-	-	-	+	-
$C P$	-	-	+	-	-	-

\Rightarrow Suitable observables: triple-products, double-triple products, etc...

CP-odd observables in tth production

Example: $\quad \omega_{6} \equiv \frac{\left[\left(\boldsymbol{p}_{\ell^{-}} \times \boldsymbol{p}_{\ell^{+}}\right) \cdot\left(\boldsymbol{p}_{b}+\boldsymbol{p}_{\bar{b}}\right)\right]\left[\left(\boldsymbol{p}_{\ell^{-}}-\boldsymbol{p}_{\ell^{+}}\right) \cdot\left(\boldsymbol{p}_{b}+\boldsymbol{p}_{\bar{b}}\right)\right]}{\left|\boldsymbol{p}_{\ell^{-}} \times \boldsymbol{p}_{\ell^{+}}\right|\left|\boldsymbol{p}_{\ell^{-}}-\boldsymbol{p}_{\ell^{+}}\right|\left|\boldsymbol{p}_{b}+\boldsymbol{p}_{\bar{b}}\right|^{2}}$

Differential X-section $\frac{d^{2} \sigma}{d x d \omega} \sim A(x)+\kappa \tilde{\kappa} \gamma(x) \omega \quad x$-kinematical variables
\Rightarrow can define CP-odd observable

$$
\mathcal{O}_{\omega}=\frac{1}{\sigma} \int d x d \omega \frac{d^{2} \sigma}{d x d \omega} f(x) \omega
$$

- Linear in $\tilde{\kappa}$ close to origin
- Tiny effect - can be optimised similar to th?
- $f_{\text {opt. }}$ depends on whole 3-body phase space

- Case for ML...? (see below)

Realistic analysis?

Including realistic reconstruction of signal $p p \rightarrow t \bar{t} h\left(t \rightarrow b \ell^{+} \nu_{\ell}, \bar{t} \rightarrow \bar{b} \ell^{-} \bar{\nu}_{\ell}, h \rightarrow b \bar{b}\right)$ and main background $p p \rightarrow t \bar{t} b \bar{b},\left(t \rightarrow b \ell^{+} \nu_{\ell}, \bar{t} \rightarrow \bar{b} \ell^{-} \bar{\nu}_{\ell}\right)$

Non-trivial bounds or. signals possible at LHC upgrades

Realistic analysis?

Including realistic reconstruction of signal $p p \rightarrow t \bar{t} h\left(t \rightarrow b \ell^{+} \nu_{\ell}, \bar{t} \rightarrow \bar{b} \ell^{-} \bar{\nu}_{\ell}, h \rightarrow b \bar{b}\right)$ and main background $p p \rightarrow t \bar{t} b \bar{b},\left(t \rightarrow b \ell^{+} \nu_{\ell}, \bar{t} \rightarrow \bar{b} \ell^{-} \bar{\nu}_{\ell}\right)$

Can one improve upon this - make (HL)LHC relevant?

Multivariate optimisation of CP observables in tth

Two possible directions:

- phase space optimisation of $\mathrm{O}_{\omega}\left(f_{\text {opt }}\right)$:
- not tractable analytically, highly non-linear dependence on kinematical variables \Rightarrow ML approach using NNs,
- based on th experience, improvements beyond $\mathrm{O}(1)$ not expected
- combining several O_{ω} :
- in the linear regime might improve upon O_{6} by $\mathrm{O}(1)$
- exploration of non-linear regime using NNs.

Multivariate optimisation of CP observables in tth

Two possible directions:

- phase space optimisation of $\mathrm{O}_{\omega}\left(f_{\text {opt }}\right)$:
- not tractable analytically, highly non-linear dependence on kinematical variables \Rightarrow ML approach using NNs,
- based on th experience, improvements beyond $O(1)$ not expected
- combining several O_{ω} :
- in the linear regime might improve upon O_{6} by $\mathrm{O}(1)$
- exploration of non-linear regime using NNs.

Neural network setup

Crucial to define optimization cost function preserving CPodd symmetry of O_{ω},
\checkmark significance on the training/validation dataset

- needs to be odd function of kappa. In general for CP-
even X: $f(x)=C(x)+\tilde{\kappa}^{2} D(x)+\mathcal{O}\left(\tilde{\kappa}^{4}\right)$.

$$
\Rightarrow \mathcal{F}(\boldsymbol{x} ; \boldsymbol{\alpha})=f\left(x^{(i)} ; \boldsymbol{\alpha}\right) \omega_{6}
$$

- Cost function can cannot be evaluated event by event \Rightarrow modification of NN back-propagation.

Neural network optimisation

Size of input layer determined by dimensionality of x :

$$
\begin{aligned}
x^{(i)} \in\{ & \left\{\left(\boldsymbol{p}_{\ell^{+}}+\boldsymbol{p}_{\ell^{-}}\right) \cdot \boldsymbol{p}_{h},\right. \\
& \left(\boldsymbol{p}_{\ell^{+}}+\boldsymbol{p}_{\ell^{-}}\right) \cdot\left(\boldsymbol{p}_{b}+\overline{\boldsymbol{p}_{b}}\right), \\
& \left(\boldsymbol{p}_{b}+\boldsymbol{p}_{\bar{b}}\right) \cdot \boldsymbol{p}_{h}, \\
& \boldsymbol{p}_{\ell^{+}} \cdot \boldsymbol{p}_{\ell^{-}},
\end{aligned}
$$

Number \{0-2\} and size \{1-15\} of hidden layers \& choice of transfer functions \{sigmoid, tanh, ...\} optimised using Hyperopt (also x-checked manually).

Neural network optimisation

Phase-space optimisation of O_{6} on 1 M simulated events (at parton level)

No significant improvement compared to pure ω_{6} !

Combining multiple ω 's

CP-odd optimisation - cost function condition $\mathcal{F}(-\omega)=-\mathcal{F}(\omega)$

- Linear approximation: $\mathcal{F}(\boldsymbol{\omega})=\sum_{j} \alpha_{j} \omega_{j}+\mathcal{O}\left(\omega^{3}\right)$
$\Rightarrow \mathcal{O}_{\alpha}=\left\langle\sum_{j} \alpha_{j} \omega_{j}\right\rangle$.
\Rightarrow Optimisation equations can be solved semi-analytically

$$
\frac{\partial}{\partial \alpha_{j}} \frac{\mathcal{O}_{\alpha}}{\operatorname{std}\left(\mathcal{O}_{\alpha}\right)}=0 \Rightarrow \alpha^{T} M^{(j)} \alpha=0 ; \quad M_{i k}^{(j)}=\left\langle\omega_{i} \omega_{j}\right\rangle\left\langle\omega_{k}\right\rangle-\left\langle\omega_{i} \omega_{k}\right\rangle\left\langle\omega_{j}\right\rangle . \text {. }
$$

Combining multiple ω 's

CP-odd optimisation - cost function condition $\mathcal{F}(-\omega)=-\mathcal{F}(\omega)$

- Linear approximation: $\mathcal{F}(\boldsymbol{\omega})=\sum_{j} \alpha_{j} \omega_{j}+\mathcal{O}\left(\omega^{3}\right)$

$$
\Rightarrow \mathcal{O}_{\alpha}=\left\langle\sum_{j} \alpha_{j} \omega_{j}\right\rangle .
$$

\Rightarrow Optimisation equations can be solved semi-analytically

$$
\frac{\partial}{\partial \alpha_{j}} \frac{\mathcal{O}_{\alpha}}{\operatorname{std}\left(\mathcal{O}_{\alpha}\right)}=0 \Rightarrow \alpha^{T} M^{(j)} \alpha=0 ; \quad M_{i k}^{(j)}=\left\langle\omega_{i} \omega_{j}\right\rangle\left\langle\omega_{k}\right\rangle-\left\langle\omega_{i} \omega_{k}\right\rangle\left\langle\omega_{j}\right\rangle . \text {. }
$$

Parton level results:

- not all w's significant MC uncertainties for 1 M events

Combining multiple ω 's

CP-odd optimisation - cost function condition $\mathcal{F}(-\omega)=-\mathcal{F}(\omega)$

- Linear approximation: $\mathcal{F}(\boldsymbol{\omega})=\sum_{j} \alpha_{j} \omega_{j}+\mathcal{O}\left(\omega^{3}\right)$

$$
\Rightarrow \mathcal{O}_{\alpha}=\left\langle\sum_{j} \alpha_{j} \omega_{j}\right\rangle .
$$

\Rightarrow Optimisation equations can be solved semi-analytically

$$
\frac{\partial}{\partial \alpha_{j}} \frac{\mathcal{O}_{\alpha}}{\operatorname{std}\left(\mathcal{O}_{\alpha}\right)}=0 \Rightarrow \alpha^{T} M^{(j)} \alpha=0 ; \quad M_{i k}^{(j)}=\left\langle\omega_{i} \omega_{j}\right\rangle\left\langle\omega_{k}\right\rangle-\left\langle\omega_{i} \omega_{k}\right\rangle\left\langle\omega_{j}\right\rangle . \text {. }
$$

Parton level results:

- not all w's significant
- robust wrsp energy

Combining multiple ω 's

CP-odd optimisation - cost function condition $\mathcal{F}(-\omega)=-\mathcal{F}(\omega)$

- Linear approximation: $\mathcal{F}(\boldsymbol{\omega})=\sum_{j} \alpha_{j} \omega_{j}+\mathcal{O}\left(\omega^{3}\right)$
$\Rightarrow \mathcal{O}_{\alpha}=\left\langle\sum_{j} \alpha_{j} \omega_{j}\right\rangle$.
\Rightarrow Optimisation equations can be solved semi-analytically

Significant improvement compared to pure ω_{6} !

Combining multiple w's

CP-odd optimisation - cost function condition $\mathcal{F}(-\omega)=-\mathcal{F}(\omega)$

- Linear approximation: $\mathcal{F}(\boldsymbol{\omega})=\sum_{j} \alpha_{j} \omega_{j}+\mathcal{O}\left(\omega^{3}\right)$
- Full nonlinear dependence again via NNs: $\mathcal{F}(\boldsymbol{\alpha}, \boldsymbol{\omega})$

No significant improvement compared to linear regime!

Impact on realistic analyses

How do observables optimised on parton level simulations translate to more realistic analyses including detector \& reconstruction effects?
$\boldsymbol{\sigma}$ Fast simulation based results encouraging

Impact on realistic analyses

How do observables optimised on parton level simulations translate to more realistic analyses including detector \& reconstruction effects?
\Rightarrow Fast simulation based results encouraging
\Rightarrow Substantial improvement of significance, especially at

Conclusions

Top physics offers many important complementary probes of BSM in flavor (\& Higgs) sectors
> Here covered example of CPV

- Practically null-test of SM
- Challenging reconstruction, high-dimensional phasespace
- Linearised CP-odd observables close to optimal probes
- Full exploration of NP sensitivity calls for ambitious new (Tera?) top-factories (HE-LHC, FCC)

Additional material

th reconstruction

Madgraph5 - Pythia8 - Delphes
 - event generation -
 - showering, hadronization -
 - detector simulation -

\section*{| Signal: $p p \rightarrow t(\rightarrow b \ell \nu) h(\rightarrow b \bar{b}) j$ | Background: $p p \rightarrow t \bar{t}$ plus jets |
| :--- | :--- |}

Event selection:

tth reconstruction

Madgraph5 - Pythia8 - Delphes
 - event generation -
 - showering, hadronization -
 - detector simulation -

Signal: $p p \rightarrow t \bar{t} h\left(t \rightarrow b \ell^{+} \nu_{\ell}, \bar{t} \rightarrow \bar{b} \ell^{-} \bar{\nu}_{\ell}, h \rightarrow b \bar{b}\right)$
Background: $p p \rightarrow t \bar{t} b \bar{b},\left(t \rightarrow b \ell^{+} \nu_{\ell}, \bar{t} \rightarrow \bar{b} \ell^{-} \bar{\nu}_{\ell}\right)$
Event selection:

