More Axions from Strings

Marco Gorghetto

WEIZMANN INSTITUTE OF SCIENCE

with E.Hardy and G.Villadoro

[1806.04677 + 2007.04990]

Axion Cosmology

The PQ Phase Transition

$$\phi = |\phi| e^{i\frac{d}{f_a}}$$

Similarly if:

 $H_I \gtrsim f_a$

after PQ breaking axion field has random fluctuations over the observable universe

The Post-Inflationary scenario

Post-inflationary: $f_a \lesssim H_I, T_R$

no free parameters in the initial conditions

prediction for f_a !

Axion Strings

The Scaling Solution

free strings

$$\rho_{\rm free} \propto \frac{1}{R^2(t)} = \frac{1}{t}$$

string recombination

scaling solution

$$\rho_s = \xi \frac{\mu}{t^2}$$

 $\xi = (\# \text{ strings}) / (\text{Hubble Patch})$

Axion Domain Walls

@ $H \sim m_a (T \sim \Lambda_{\text{QCD}})$

N ~ 4000

- a few lattice points per string core
- a few Hubble patches

A Less Ambitious Goal: a Lower Bound

axion energy density spectrum

1) The Number of Strings per Hubble Volume

$$\xi \equiv \frac{N_{\rm strings}}{H^{-3}}$$

string length in one Hubble volume in units of H^{-1}

different initial conditions

1) The Number of Strings per Hubble Volume

Scaling Violation

2) The Axion Spectrum

 $rac{\partial
ho_a}{\partial k \partial t}$ energy spectrum of axions emitted

Theoretical expectation

- natural cut-offs at H and m_r
- peak at H because strings have curvature of O(H)
- in between an approximate power law:

• in principle q could be time-dependent, $q = q(\log)$

3) Axion waves through the nonlinear regime

 $H = m_a \equiv H_\star \iff \log \sim 70$

$$\rho_a \sim \frac{\xi \mu}{t^2} \sim 10^3 \begin{bmatrix} 15 & 70 \\ \uparrow & \uparrow \\ \frac{\xi \log}{10^3} \end{bmatrix} H^2 f_a^2$$

$$\rho_a \sim (\nabla a)^2 + V(a)$$
reglibile @ H.

$$\xi \log H^2 f_a^2 \sim m_a^2 f_a^2 \implies m_a \sim \sqrt{\xi \log H}$$

$$n_a \sim \frac{\rho_a}{m_a} \sim \left(\sqrt{\xi \log H f_a^2}\right) \sim \sqrt{\xi \log n_a^{\text{mis}}}$$

$$\gg m_a^2 f_a^2 \sim
ho_{
m mis} \sim V(a)$$
 = $m_a^2 f_a^2 (1 - \cos(rac{a}{f_a}))$

3) Axion waves through the nonlinear regime \mathbb{Q} H_{\star}

$$\rho_a \sim (\nabla a)^2 \sim H^2 a^2 \sim \xi \log H^2 f_a^2 \longrightarrow \frac{a}{2\pi f_a} \sim \sqrt{\xi \log} = O(10)$$

3) Axion waves through the nonlinear regime

A Lower Bound on the Axion Mass

Conclusions

1) The system of axion strings is driven towards an attractor solution

- evidence of logarithmic violations in ξ and q
- most conservative extrapolation implies More Axions from Strings

2) The Axions from Strings experience nonlinear evolution at the QCD transition

• a period of relativistic redshfit:

A) partially reduces the number density

B) makes the spectrum more UV

Thank you

Backup

$$\theta = 0 \div \pi$$

$$\ddot{a} + 3H\dot{a} + m_a^2 a = 0$$

$$\int_{u_1}^{u_2} \int_{-2\pi}^{u_2} \int_{-\pi}^{\pi} \int_{-\pi$$

Scenario #1: $(T, H) < f_a$

 $a(t_0)$

Domain Walls

Loop Distribution

Boost Factors

Increase in Higher Boosts:

Radial Energy and Axion Emission

 $\log(m_r/H)$

Effective String Tension

$$\mu_{\rm th} = \langle \gamma \rangle \pi f_a^2 \log \left(\frac{m_r \eta}{H \sqrt{\xi}} \right)$$

Instantaneous Spectrum (1)

Instantaneous Spectrum (2)

x

Radial Spectrum

Lattice Spacing and Finite Volume Effects on q

Range of fitted momenta for q

Circular Loops Bounce More

End of the Scaling regime: $H = m_a \equiv H_*$

k/H

Relativistic Regime and Nonlinear Transient

 H_{\star}/H

 H_{\star}/H

Axion Number Density after the transient

$$Q(t_{\ell}) \equiv \frac{n_{a}^{\text{str}}(t_{\ell})}{n_{a}^{\text{mis},\theta_{0}=1}(t_{\ell})} = \frac{c_{n}}{c_{n}'} c_{V} \left[\frac{W_{-1} \left(-\frac{c_{V}(1+\frac{2}{\alpha+2})}{4\pi\xi_{\star}\log_{\star}} \left(\frac{x_{0}}{c_{m}} \right)^{2\left(1+\frac{2}{\alpha+2}\right)} \right)}{-\frac{c_{V}(1+\frac{2}{\alpha+2})}{4\pi\xi_{\star}\log_{\star}}} \right]^{\frac{1}{2}\left(1+\frac{2}{\alpha+4}\right)} = \frac{c_{n}}{c_{n}'} c_{V} \left[\frac{4\pi\xi_{\star}\log_{\star}}{c_{V}} \left[1-\frac{2}{\alpha+4} \right] \log \left(\frac{4\pi\xi_{\star}\log_{\star}}{c_{V}} \left[1-\frac{2}{\alpha+4} \right] \left[\frac{c_{m}}{x_{0}} \right]^{2\left(1+\frac{2}{\alpha+2}\right)} \log(\ldots) \right) \right]^{\frac{1}{2}\left(1+\frac{2}{\alpha+4}\right)}.$$
(36)

Radial Mode Decoupling

Axions Waves in a String Background

Local Strings

These also seem to have a log increase in $\xi(t)$ even though tension is constant

Emission to heavy modes not so suppressed, but mysterious where log is coming from?!

Lattice Spacing

Finite Volume

Finite Volume

Strings Screening

Dependence on the Initial Conditions

Misalignment Relic Density

