

Highlights and perspectives from the LHCb experiment

Mat Charles (Sorbonne Université/LPNHE) representing the LHCb collaboration

Thank you to the organisers

- I know it's not the same as an in-person conference in Paris*, but this is an important event for our community.
- Really, a big thank-you to the organisers. This can't have been easy to prepare.
- ... and good luck for LHCP 2021, which I look forward to attending in person.

* e.g. less traffic

Highlights and perspectives

- It's been a rough few months, but I'm pleased to say that LHCb has some nice new results to report.
- These include some that are brand new for this conference.
 No spoilers here: you'll have to go to the talks to find out more.
- First, a few words on our status and the ongoing upgrade.

Reminder: LHC schedule (as of 2019)

Shutdown/Technical stop
Protons physics
Commissioning
Ions

From: https://lhc-commissioning.web.cern.ch/schedule/lhc-long-term.htm

- Clearly, details will change (especially for 2021).
 - See this morning's talk by Jose.
 - See also talk by F. Bordry on 5 May (<u>Indico</u>, <u>slides</u>)
- But looking at the big picture...

In Run I +2, we accumulated about 9/fb of data. Most LHCb physics scales with $\sigma(b\bar{b})$ or $\sigma(c\bar{c})$, which is roughly linear in the CM energy. In units of "one Run I", the data sample is about:

I Run I for Run I

4 Run I for Run 2

=> total: 5 Run I units so far.

During LS2, we've been doing a major upgrade to the LHCb

detector.

- All subdetectors updated, and:
- Many subdetectors overhauled or replaced.
- Completely new trigger strategy: all-software.
- Big jump in instantaneous lumi and in trigger efficiency => much higher signal rates
- Increase in output bandwidth, but smarter computing model to swallow it.

Few words on current status shortly.

With the new trigger and higher lumi, we expect to take data at a higher rate with a higher efficiency with better alignment and calibration (real-time analysis)

Original assumption: 5/fb per year after upgrade, total of 50/fb. With a crude factor of 2 for removing the hardware trigger, this means:

Run3: about 15-20/fb => about 20-25 Run1 units (total 25-30)

Run4: about $20-25/\text{fb} => \text{about } 30-35 \text{ Run I units (total } \sim 60)$

Run2 multiplied previous (Run1) stats by about 5. Run3 will multiply prev. (Run1-2) stats by about 5. Run4 will double previous (Run1-3) stats.

Keep lumi doubling time short => plan for a second upgrade in LS4, perhaps with some parts pre-installed to take advantage of longer LS3. Currently preparing a framework TDR.

Goal: 300/fb by Run 6 (i.e. 5x Run I - 4 stats)

Ongoing upgrade work

- COVID 19* situation has caused, and is still causing, delays.
 - Assembly work at CERN halted during shutdown.
 - But also delays to work at other labs worldwide, and to transport of components, and to movement of experts to/from CERN.
- Work is now resuming, starting with pilot projects.
 Scope will increase as CERN re-opens.
- We do not yet know what the overall impact will be.
- For more on the LHCb upgrades, see <u>talk by Mark Tobin</u> this afternoon.
- Next slides: a few illustrations of restarted work.
- First, new news: decision made that the initial online reconstruction will be done with a farm of GPU systems (ALLEN project). Some key work done right here in Paris!

Ongoing upgrade work

Ongoing upgrade work

Photos courtesy of Rolf Linder

together with Didier,

Antonino and Giovanni

LHCb at LHCP

A probably incomplete list of talks by LHCb speakers:

- Vava Gligorov: Triggering and online calibration with machine learning techniques*
- Charlotte Barbara Van Hulse: Soft QCD and Exclusive processes with LHCb
- Sook Hyun Lee: Charged hadron production in Z-tagged jets (fragmentation of light quarks)
- Jana Crkovská: Multiplicity dependent production of X(3872)
- Dorothea Vom Bruch: Performance of the real-time reconstruction, alignment, and calibration in Run 3 at LHCb
- Alex Seuthe: PID performance in Run2 at LHCb
- Renata Kopecna: Tracking and vertexing performance and developments over Run2 at LHCb
- Benjamin Audurier: Recent results on heavy flavor in small and large systems from LHCb (Wed, Heavy ions)
- Mirco Dorigo: CKM metrology and B decays
- Guillaume Pietrzyk: CP-violation in charm
- Jinlin Fu: CP violation in B decays
- Miriam Lucio Martinez: Lepton flavour violation and universality tests at LHCb
- Jacco de Vries: Electroweak penguin decays
- Marcin Kucharczyk: Search for long-lived particles in LHCb
- Constantin Weisser: <u>Search for dark photon in LHCb</u> (Fri, Dark sectors & BSM)
- Menglin Xu: EWK physics: Measurements and prospects from LHCb
- Nicola Neri: Physics perspectives for LHCb beyond Run4
- Christopher Betancourt: Timing at LHCb post LS4
- Liupan An: CINCO: <u>Study of exotic states</u>* (Fri, joint QCD+Flavour)
- Mark Tobin: LHCb upgrades
- Mark Whitehead: CPV in B-Hadron decays*
- Maurizio Martinelli: Charm physics*
- William Barter: Precision QCD measurements*

New since LHCP 2019...

LHCb-PAPER-2019-023: Observation of the $\Lambda_b^0 \to \chi_{c1}(3872)pK^-$ decay **LHCb-PAPER-2019-024:** Measurement of the $\eta_c(1S)$ production cross-section in pp collisions at $\sqrt{s} = 13$ TeV **LHCb-PAPER-2019-025:** Observation of new resonances in the $\Lambda_b^0 \pi^+ \pi^-$ system **LHCb-PAPER-2019-027:** Determination of quantum numbers for several excited charmed mesons observed in $B^- \to D^{*+} \pi^- \pi^-$ decays **LHCb-PAPER-2019-028:** Search for CP violation and observation of P violation in $\Lambda_b^0 \to p\pi^-\pi^+\pi^-$ decays **LHCb-PAPER-2019-029:** Search for the doubly charmed baryon Ξ_{cc}^+ **LHCb-PAPER-2019-030:** Measurement of the shape of the $B_s^0 \to D_s^* \mu \nu_\mu$ differential distribution **LHCb-PAPER-2019-031:** Search for $A' \to \mu^+ \mu^-$ decays **LHCb-PAPER-2019-032:** Updated measurement of decay-time-dependent CP asymmetries in $D^0 \to K^+K^-$ and $D^0 \to \pi^+\pi^-$ decays **LHCb-PAPER-2019-033:** Measurement of the B_c^- production fraction and asymmetry in 7 and 13 TeV pp collisions **LHCb-PAPER-2019-034:** Observation of the semileptonic decay $B^+ \to p\bar{p}\mu^+\nu_\mu$ **LHCb-PAPER-2019-035:** Measurement of Ξ_{cc}^{++} production in pp collisions at $\sqrt{s} = 13$ TeV **LHCb-PAPER-2019-036:** Measurement of CP violation in $B^0 \to D^{*\pm}D^{\mp}$ decays **LHCb-PAPER-2019-037:** Precision measurement of the Ξ_{cc}^{++} mass **LHCb-PAPER-2019-038:** Strong constraints on the $K_S^0 \to \mu^+ \mu^-$ branching fraction **LHCb-PAPER-2019-039:** Isospin amplitudes in $\Lambda_h^0 \to J/\psi \Lambda(\Sigma^0)$ and $\Xi_h^0 \to J/\psi \Xi^0(\Lambda)$ decays **LHCb-PAPER-2019-040:** Test of lepton universality with $\Lambda_b^0 \to pK^-\ell^+\ell^-$ decays **LHCb-PAPER-2019-041:** Measurement of $|V_{cb}|$ with $B_s^0 \to D_s^{(*)-} \mu^+ \nu_\mu$ decays **LHCb-PAPER-2019-042:** First observation of excited Ω_b^- states **LHCb-PAPER-2019-043:** Search for the lepton flavour violating decay $B^+ \to K^+ \mu^- \tau^+$ using B_{s2}^{*0} decays **LHCb-PAPER-2019-044:** Measurement of CP observables in $B^{\pm} \to DK^{\pm}$ and $B^{\pm} \to D\pi^{\pm}$ with $D \to K_S^0 K \pi$ decays **LHCb-PAPER-2019-045:** Observation of a new baryon state in the $\Lambda_b^0 \pi^+ \pi^-$ mass spectrum **LHCb-PAPER-2019-046:** Measurement of the shape of the $B_s^0 \to D_s^{*-} \mu^+ \nu_\mu$ differential decay rate **LHCb-PAPER-2020-001:** Search for the rare decays $B_s^0 \to e^+e^-$ and $B^0 \to e^+e^-$ **LHCb-PAPER-2020-002:** Measurement of CP-averaged observables in the $B^0 \to K^{*0} \mu^+ \mu^-$ decay **LHCb-PAPER-2020-003:** Precise measurement of the B_c^+ meson mass **LHCb-PAPER-2020-004:** Observation of new Ξ_c^0 baryons decaying to $\Lambda_c^+ K^-$ **LHCb-PAPER-2020-005:** Measurement of the $\Lambda_h^0 \to J/\psi \Lambda$ angular distribution and the Λ_h^0 polarisation in pp collisions

LHCb-CONF-2019-005: Multiplicity-dependent modification of $\chi_{c1}(3872)$ and $\psi(2S)$ production in pp collisions at $\sqrt{s} = 8$ TeV

LHCb-CONF-2019-003: Measurement of the Z production cross-sections in pPb collisions at $\sqrt{=8}$ TeV

LHCb-CONF-2019-004: Study of prompt D^0 meson production in pPb at $\sqrt{s_{NN}} = 8.16$ TeV at LHCb

Rare & electroweak penguin decays

```
<u>arXiv:2003.04831</u>: Measurement of CP-averaged observables in the B^0 \to K^{*0} \mu^+ \mu^- decay <u>arXiv:2003.03999</u>: Search for the rare decays B_s^0 \to e^+ e^- and B^0 \to e^+ e^- arXiv:2001.10354: Strong constraints on the K_S^0 \to \mu^+ \mu^- branching fraction <u>JHEP 2020, 40 (2020)</u>: Test of lepton universality with \Lambda_b^0 \to pK^- \ell^+ \ell^- decays
```

Why rare decays?

- Look at processes where NP could plausibly enter.
- If suppressed in the SM: NP could enter at a rate that's comparable.
 - If NP smaller but not vastly smaller, can show up in interference effects
- If forbidden in the SM: immediate smoking gun
- Focus particularly on processes that are theoretically and experimentally clean.
 - no good if uncertainty on SM prediction > experimental precision

$$B^0_{(s)} \rightarrow e^+e^-$$

- Classic rare decays for which the SM predicted BF is very small
 any signal would be a sign of NP.
- ullet Conceptually similar to, but more suppressed than, $B_{\scriptscriptstyle S}^0
 ightarrow \mu^+ \mu^-$
- Let's start with $B_{(s)}^0 \rightarrow e^+e^-...$

$$B^0_{(s)} \rightarrow e^+e^-$$

- Apply reconstruction (incl. brem. recovery), selection
- Simultaneous fit by dataset, bremsstrahlung category
- No signal => set upper limit (CL_s) at 95% CL:

Similar story for B⁰: $\mathcal{B}(B^0 \to e^+e^-) < 2.5 (3.0) \times 10^{-9}$

$K_{\rm S}^0 \rightarrow \mu^+ \mu^-$

- $K_S^0 \to \mu^+ \mu^-$ is even cleaner, and we make a lot of K_S
- Veto background from material interactions in VELO
- Simultaneous fit across bins of BDT, trigger category:

 $\mathcal{B}(K_S^0 \to \mu^+ \mu^-) < 2.1 \times 10^{-10}$ at 90% CL (world-best)

Room for NP: 10^2 from SM prediction: $(5.18 \pm 1.50 \pm 0.02) \times 10^{-12}$

D'Ambrosio & Kitahara, PRL 119, 201802 (2017)

The anomalies

- Various curious effects seen in electroweak penguin decays
 - and in semileptonic decays; not discussed here
- First showed up in angular and q^2 distributions of $b \to s \mu^+ \mu^-$ decays -- but these have significant theory uncertainties.
 - Solution 1: look at ratios of lepton flavours, e.g. $B \to K \mu^+ \mu^- / B \to K e^+ e^-$
 - Solution 2: develop optimised observables to reduce theory errors
- No single result is significant -- but we keep seeing small effects, mostly $2-3\sigma$.
 - And these days, even $2-3\sigma$ effects represent hope
- Will cover one recent result from each class.
- Work ongoing to update other measurements.

$$R_{PK} (\Lambda_b^0 \to pK^-\ell^+\ell^-)$$

Giacomo Fedi, Fri 18:00, plenary Jacco De Vries, Tue 15:03, Flavour Miriam Lucio Martinez, Tue 15:21, Flavour

Measure double ratio to suppress detector effects:

$$R_{pK}^{-1} = \frac{\mathcal{B}(\Lambda_b^0 \to pK^- e^+ e^-)}{\mathcal{B}(\Lambda_b^0 \to pK^- J/\psi(\to e^+ e^-))} / \frac{\mathcal{B}(\Lambda_b^0 \to pK^- \mu^+ \mu^-)}{\mathcal{B}(\Lambda_b^0 \to pK^- J/\psi(\to \mu^+ \mu^-))}$$

Double ratio R_{pK}^{-1} cancels many systematic effects.

Powerful crosscheck: measure efficiency-corrected ratio of J/ψ yields, which doesn't benefit from this cancellation.

 J/ψ $r_{J/w}^{-1} = 0.96 \pm 0.05$

Rare mode $(0.1 < q^2 < 6.0 \text{ GeV}^2)$

$$R_{pK}^{-1} = 1.17_{-0.16}^{+0.18} \pm 0.07$$

$$(R_{pK} = 0.86^{+0.14}_{-0.11} \pm 0.05 < 1)$$

JHEP 2020, 40 (2020): Test of lepton universality with $\Lambda_b^0 \to pK^-\ell^+\ell^-$ decays

$B^0 \to K^{*0} \mu^+ \mu^-$ angular analysis

Giacomo Fedi, Fri 18:00, plenary Jacco De Vries, Tue 15:03, Flavour Miriam Lucio Martinez, Tue 15:21, Flavour

- Look at angular observables vs q²
 - Use "optimised" variables to help cancel hadronic effects, e.g. P'5
- To pull the information together, use Wilson coefficients:

$$\mathcal{H}_{\mathrm{eff}} = -\frac{4G_F}{\sqrt{2}} V_{\mathrm{tb}} V_{\mathrm{ts}}^* \frac{e^2}{16\pi^2} \sum_i \mathcal{C}_i \mathcal{O}_i \qquad \Delta \mathcal{H}_{\mathrm{NP}} = \frac{\mathcal{K}_{\mathrm{NP}}}{\Lambda_{\mathrm{NP}}^2} \mathcal{O}_i$$
 Wilson coefficient ("effective coupling")

- Main interest in EW penguin operators: C₉, C'₉, C₁₀, C'₁₀
- New this March: Run I + 2016 update with $B^0 \to K^{*0} \mu^+ \mu^-$

Optimised variables: Descotes-Genon et al, <u>JHEP, 1301:048, 2013</u>, <u>JHEP, 1305:137, 2013</u>

$B^0 o K^{*0} \mu^+ \mu^-$ angular analysis

- ullet Fit to angular distribution in bins of q^2
 - Work with two different parameterisations
 - Correct for efficiency
 - ullet Model background, incl. S-wave under the K^{*0}
- Fit results to full set of angular observables in paper. Illustrating with just one:

... but one observable alone is not the full story. What is the overall picture?

 $m(K^+\pi^-\mu^+\mu^-) [\text{MeV}/c^2]$

$B^0 o K^{*0} \mu^+ \mu^-$ angular analysis

• "What is the overall picture?"

Giacomo Fedi, Fri 18:00, plenary Jacco De Vries, Tue 15:03, Flavour Miriam Lucio Martinez, Tue 15:21, Flavour

Caution:

- Depends on your "SM" model and its theory uncertainties
- Depends on what variations you consider (what degrees of freedom).

-- Run 1 Disclaimer: 2016-only contours are 35 2016 for illustration purposes and contains Run 1 + 2016no systematic uncertainties or bias 30 and coverage corrections 25 15 10 LHCb flavio v2.0.0 -1.00.0 $\Delta \mathcal{R}e(C_9)$

Varying $Re(C_9)$ and $Re(C_{10})$

Varying only $Re(C_9)$: 3.3σ (or 2.7σ if excluding $6 < q^2 < 8 \, \mathrm{GeV}/c^2$)

CKM & CPV

• Key idea: differential decay rate goes like:

$$\frac{\mathrm{d}^{4}\Gamma(B \to D^{*}\mu\nu)}{\mathrm{d}w\,\mathrm{d}\cos\theta_{\mu}\,\mathrm{d}\cos\theta_{D}\,\mathrm{d}\chi} = \frac{3m_{B}^{3}m_{D^{*}}^{2}G_{F}^{2}}{16(4\pi)^{4}}\eta_{\mathrm{EW}}^{2} |V_{cb}|^{2} |\mathcal{A}(w,\theta_{\mu},\theta_{D},\chi)|^{2}$$

- ullet Decay amplitude can be expressed as sum of helicity amplitudes $H_{+,-,0,t}$
- ullet ... which can be expressed in terms of form factors that depend on q^2 (or w)
- ... whose evolution can be parameterised (CLN, BGL).
- ullet So: assume FF parameterisation, fit yield as function of q^2 or w, deduce $|V_{cb}|$
 - ullet in practice, measure relative to control modes $B^0 o D^{(*)-} \mu^+
 u_\mu$
- Problem: $q^2 = m^2 (\mu^+ \nu_\mu)$ and w can't be measured directly.
- Solution: measure instead $p_{\perp}(D_{(s)})$: fully reconstructed and correlated with w

$$V_{cb}$$
 in $B_s^0 o D_s^{(*)} - \mu^+
u_{\mu}^{ ext{Mark Whitehead, Fri 17:30, plenary Mirco Dorigo, Thu 15:25, Flavour}}$

Multidimensional fit to $p_{\perp}(D_{(s)})$ and corrected mass m_{corr}

CLN:
$$|V_{cb}| = (41.4 \pm 0.6 \pm 0.9 \pm 1.2) \times 10^{-3}$$

BGL:
$$|V_{cb}| = (42.3 \pm 0.8 \pm 0.9 \pm 1.2) \times 10^{-3}$$

- ullet First measurement of $|V_{cb}|$ with B_s^0 decays
- Novel method (use of p_{\perp}) can be applied more broadly, esp. to measure $|V_{cb}|$ in $B^{0,+}$ decays.

Spectroscopy

PRL 124, 082002 (2020): First observation of excited Ω_b^- states

<u>arXiv:2003.13649</u>: Observation of new Ξ_c^0 baryons decaying to $\Lambda_c^+K^-$

Excited $\Omega_b^- \to \Xi_b^0 K^-$

- Reconstruct $\Xi_b^0 \to \Xi_c^+ \pi^-, \; \Xi_c^+ \to p K^- \pi^+$
- Study $m(\Xi_b^0 K^-) m(\Xi_b^0)$ mass spectrum, identify several peaks
- Common fit to WS, RS samples to constrain background shape
- Accounting for LEE, two peaks have significance above 5σ
- All peaks narrow (Γ < 3.1 MeV at 90% CL)

$\overline{\text{Peak of } \delta M}$	Width	Signal	Signific	$ances [\sigma]$
$[\mathrm{MeV}]$	[MeV]	yield	Local	Global
523.74 ± 0.31	$0.00^{+0.7}_{-0.0}$	15^{+6}_{-5}	3.6	2.1
538.40 ± 0.28	$0.00^{+0.4}_{-0.0}$	18^{+6}_{-5}	3.7	2.6
547.81 ± 0.26	$0.47^{+0.6}_{-0.5}$	47^{+11}_{-10}	7.2	6.7
557.98 ± 0.35	$1.4^{+1.0}_{-0.8}$	57^{+14}_{-13}	7.0	6.2

Excited Ω_h^-

400

- Note qualitative similarity: Ω_b^- spectrum in $m(\Xi_b^0 K^-)$ and Ω_c^0 spectrum in $m(\Xi_c^+K^-)$.
- Properties consistent with lowlying L=I resonances (but TBC)

Excited $\Xi_c^0 \to \Lambda_c^+ K^-$

- Three states observed with high significance
- First two (2923, 2939) could be resolved peaks of $\Xi_c(2930)^0$ structure previously reported by BABAR (PRD 77:031101, 2008), Belle (EPJC 78, 252 (2018))... but needs further study.
- Third (2965) likely related to $\Xi_c(2970)$ previously reported by BABAR & Belle, but mass & width in tension; needs further study.

Excited $\Xi_c^0 \to \Lambda_c^+ K^-$

- Also some curious structure at lower mass, ~100 MeV (red).
- Could be additional feed-downs; could be additional state(s).
- Described by empirical model (single Gaussian); effects on other peaks in the fit are small & included as systematic uncertainties.

Last words

- Upgrade work has been paused, but is now ramping back up.
- Analysis work continuing
- Results presented in several areas:
 - Searches for NP with rare & electroweak penguin decays
 - Precision CKM & CPV studies
 - Spectroscopy
- ... and there is much more I did not have time for
 - ... heavy ions, electroweak, dark photon searches, isospin, ...
- Anomalies are still there, still tantalising, still not close to 5σ for individual tests of the SM.
- More details in LHCb talks throughout the conference!

Excited $\Lambda_b^0 \to \Lambda_b^0 \pi^+ \pi^-$

- Selection is key. Separate BDT classifiers for studying low-mass and high-mass regions.
 - Train with MC as signal, same-sign data as background
 - Also require $p_t(\pi^+\pi^-) > 250 \,\mathrm{MeV}$ in high-mass region
- Low-mass region is straightforward. Simultaneous fit to 6 spectra:

See also PRL 109, 172003 (2012)

Known $\Lambda_b(5912)^0$ and $\Lambda_b(5920)^0$ observed, properties remeasured.

Natural widths of both states consistent with zero.

```
\begin{array}{ll} m_{\Lambda_{\rm b}(5912)^0} & = & 5912.21 \pm 0.03 \pm 0.01 \pm 0.21 \, {\rm MeV} \\ m_{\Lambda_{\rm b}(5920)^0} & = & 5920.11 \pm 0.02 \pm 0.01 \pm 0.21 \, {\rm MeV} \\ m_{\Lambda_{\rm b}(5920)^0} - m_{\Lambda_{\rm b}(5912)^0} & = 7.896 \pm 0.034 \, {\rm MeV} \end{array}
```

 $\Gamma_{\Lambda_{\rm b}(5920)^0}$ < 0.19 (0.20) MeV

 $[\]Gamma_{\Lambda_{\rm b}(5912)^0}$ < 0.25 (0.28) MeV

Excited $\Lambda_b^0 \to \Lambda_b^0 \pi^+ \pi^-$

• Now the high-mass region:

 $p_t(\pi^+\pi^-) > 250 \,\mathrm{MeV}$ cut suppresses events at low mass

Broad Λ_b^{**0} structure interpreted as $\Lambda_b(2S)^0$ resonance.

$$\Delta m_{\Lambda_{\rm b}^{**0}} = 452.7 \pm 2.9 \pm 0.5 \,\text{MeV}$$
 $\Gamma_{\Lambda_{\rm b}^{**0}} = 72 \pm 11 \pm 2 \,\text{MeV}$
 $m_{\Lambda_{\rm b}^{**0}} = 6072.3 \pm 2.9 \pm 0.6 \pm 0.2 \,\text{MeV}$

Excited $\Lambda_b^0 \to \Lambda_b^0 \pi^+ \pi^-$

• Nice coincidence: on the same day* that this analysis was shown as a preliminary result (22 Jan 2020, Bormio), a related study by CMS appeared on the arXiv (PLB 803 (2020) 135345).

CMS results

$$M(\Lambda_{\rm b}(5912)^0) = 5912.32 \pm 0.12 \pm 0.01 \pm 0.17 \,{
m MeV}$$

 $M(\Lambda_{\rm b}(5920)^0) = 5920.16 \pm 0.07 \pm 0.01 \pm 0.17 \,{
m MeV}$

$$M(\Lambda_{\rm b}(6146)^0) = 6146.5 \pm 1.9 \pm 0.8 \pm 0.2 \,{
m MeV}$$

 $M(\Lambda_{\rm b}(6152)^0) = 6152.7 \pm 1.1 \pm 0.4 \pm 0.2 \,{
m MeV}$

In addition, a broad excess of events is observed in the region 6040–6100 MeV, not present in the same-sign $\Lambda_b^0\pi^\pm\pi^\pm$ distribution. If it is fit with a single Breit-Wigner function, the returned mass and width are 6073 \pm 5 (stat) MeV and 55 \pm 11 (stat) MeV. However, it is not excluded that this enhancement is an overlap of more than one state with close masses or is created by the partially reconstructed decays of higher-mass states. More data are needed to elucidate the nature of this excess.

the model used to estimate the systematic uncertainties, as detailed in Section 6. The broad enhancement has a local statistical significance of about 4σ . Resonances with masses between 6200 and 6400 MeV have been also considered in the fit model and no significant excess was

... i.e. CMS also sees excess with local significance of 4σ

CPV observables in $B^{\pm} \to DK^{\pm}$ and $B^{\pm} \to D\pi^{\pm}$ with $D \to K_{\rm S}^0 K^{\pm} \pi^{\mp}$

Mark Whitehead, Fri 17:30, plenary Mirco Dorigo, Thu 15:25, Flavour

- ullet Uses CLEO model-independent input for $D o K_{\mathrm{S}}^0 K^\pm \pi^\mp$
- ullet Reports several inputs for γ measurements
 - ullet ... but not enough constraints in this analysis alone to get useful value of γ
- Several disjoint subsamples of events, splitting like:
 - $B \to DK$ vs $B \to D\pi$
 - $\bullet B^+ \text{ vs } B^-$
 - Same-sign $B \to D(K_S^0 K^{\pm} \pi^{\mp}) \pi^{\pm}$ vs opposite-sign $B \to D(K_S^0 K^{\mp} \pi^{\pm}) \pi^{\pm}$
 - $m(K_S^0\pi)$ inside or outside K^{*+} region (±100 MeV around K^{*+} mass)
 - $K_{\rm S}^0$ reconstructed from long vs downstream tracks

$B^{\pm} \to D(K/\pi)^{\pm}$ with $D \to K_{\varsigma}^{0}K^{\pm}\pi^{\mp}$

Yields (summed over charge)

	$non-K^{*+}$ region	K^{*+} region
$N_{ m SS}^{DK^\pm}$	266 ± 27	715 ± 37
$N_{ m OS}^{DK^\pm}$	336 ± 27	217 ± 22
$N_{ m SS}^{D\pi^\pm}$	3304 ± 73	8977 ± 106
$N_{ m OS}^{D\pi^{\pm}}$	4686 ± 76	3471 ± 66

Measured observables, compared to SM expectations (from world-avg inputs) for K^{*+} region

Mark Whitehead, Fri 17:30, plenary Mirco Dorigo, Thu 15:25, Flavour

$B^{\pm} o D(K/\pi)^{\pm} ext{ with } D o K_{ ext{SMirco Dorigo, Thu 15:25, Flavour Mark Whitehead, Fri 17:30, plenary}}$

ullet Examples (just a subset!) for same-sign decays; fits inside K^{*+} region

