Event Generators for High-Energy Physics

Gregory Soyez

IPhT, CNRS, CEA Saclay

(e)LHCP 2020, May 25-29 2020

Gregory Soyez Event Generators LHCP 2020 2 / 18

Importance of Event Generators

What do Event Generators provide?

Event Generators

Simulate events using Monte-Carlo techniques

- All-purpose generators simulating a "full event" Pythia, Herwig, Sherpa
- more specific tools (e.g. fixed-order, parton shower)
 e.g. aMC@NLO, POWHEG, Vincia, Dire, ...

Gregory Soyez Event Generators LHCP 2020 3 / 18

What do Event Generators provide?

Event Generators

Simulate events using Monte-Carlo techniques

- All-purpose generators simulating a "full event" Pythia, Herwig, Sherpa
- more specific tools (e.g. fixed-order, parton shower)
 e.g. aMC@NLO, POWHEG, Vincia, Dire, ...

Main advantage: versatility

- "realistic" and very generic aspects of all-purpose generators (including combination with detector simulation)
- broad range of analyses (any phase-space cut, observable, ...)

What do Event Generators provide?

Event Generators

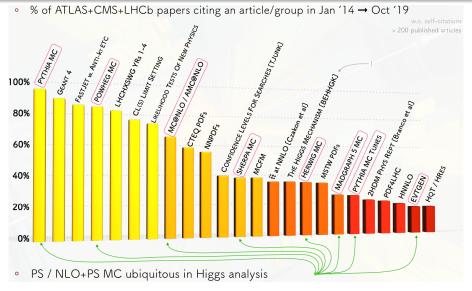
Simulate events using Monte-Carlo techniques

- All-purpose generators simulating a "full event" Pythia, Herwig, Sherpa
- more specific tools (e.g. fixed-order, parton shower)
 e.g. aMC@NLO, POWHEG, Vincia, Dire, ...

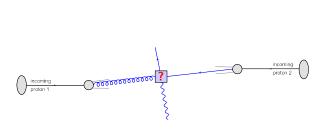

Main advantage: versatility

- "realistic" and very generic aspects of all-purpose generators (including combination with detector simulation)
- broad range of analyses (any phase-space cut, observable, ...)

Beware!

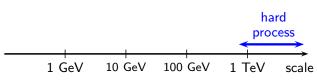

each part/component of the "simulation" has its own capabilities/limitations and its own accuracy

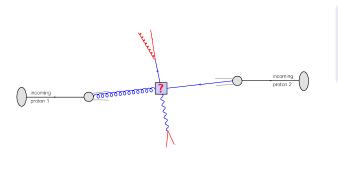
Event Generators are among us!



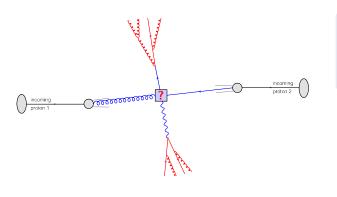
Both "fixed-order" and "parton-shower/all-purpose" generators

Event Generators are among us!

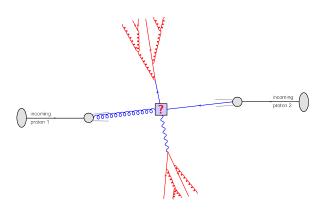


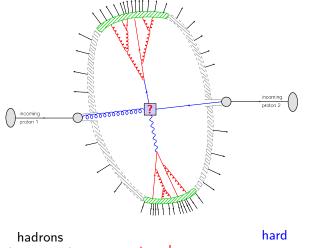

[thanks to Keith Hamilton]

Simulating a high-energy collision requires several ingredients


A hard process




- A hard process
- Parton shower (initial and final-state)



- A hard process
- Parton shower (initial and final-state)

- A hard process
- Parton shower (initial and final-state)
- Hadronisation

hadrons hard process $(\pi, K, p, n, ...)$ 1 GeV 10 GeV 100 GeV 1 TeV scale

Gregory Soyez

- A hard process
- Parton shower (initial and final-state)
- Hadronisation
- Multi-parton interactions
- ...

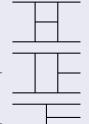
Challenges and progress perturbative physics at the hard scale

Fixed-order generators

Recent progress has been phenomenal

- NLO readily available for all processes we want (with rare exceptions)
- NNLO is the next frontier and progress is good

Gregory Soyez Event Generators LHCP 2020 6 / 18


Fixed-order generators

Recent progress has been phenomenal

- NLO readily available for all processes we want (with rare exceptions)
- NNLO is the next frontier and progress is good

To watch for (in the context of fixed-order event generators)

- NNLO = "2-loop virtual" + "real-virtual" + "double real"
- Subtle cancellation of IR singularities (beyond capabilities to calculate the 2-loop part)
 Still room for improvement
- Processes with coloured final-states more delicate
- NNLO is computationally (very) CPU-hungry

Matching/merging

Main idea

Connect fixed-order ((N)(N)LO, Hard scales) with parton shower ("intermediate scales")

 $Q\equiv \mathcal{O}(100~ ext{GeV}\ -1~ ext{TeV})$

Recent progress:

- NNLO matching for colour-singlet production
 - MiNNLO_{PS}: POWHEG framework, no reweighting [Monni,Nason,Re,Wiesemann,Zanderighi,19]
 - GenEvA: SCET-based [Bauer, Tackmann, Thaler, 08]
 - UNLOPS: SHERPA framework [Höche, Prestel, 14]
- uncertainty assessment: e.g. [Gellersen, Prestel, 20]

 $Q\gg\mu_{
m NP}$

 $\mu_{\mathsf{NP}} \sim 1 \; \mathsf{GeV}$

Challenges: *pp* processes with light jets

Challenges and progress perturbative physics of parton showers

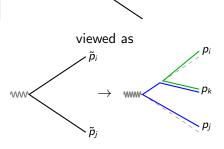
Dipole/Antenna showers

Many showers (Pythia, Sherpa, Vincia, Dire, ...) are dipole/antenna showers (main exception: Herwig)

Gregory Soyez Event Generators LHCP 2020 8 / 18

Dipole/Antenna showers

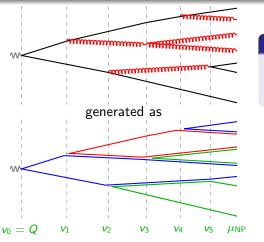
Many showers (Pythia, Sherpa, Vincia, Dire, ...) are dipole/antenna showers (main exception: Herwig)


Idea #1:

gluon emission \equiv dipole splitting

$$(ij) \rightarrow (ik)(kj)$$

- captures the soft/collinear limits
- key ingredient: mapping


$$\underbrace{\tilde{p}_i, \tilde{p}_j}_{\text{before split}} \rightarrow \underbrace{p_i, p_j, p_k}_{\text{after split}}$$

8 / 18

Dipole/Antenna showers

Many showers (Pythia, Sherpa, Vincia, Dire, ...) are dipole/antenna showers (main exception: Herwig)

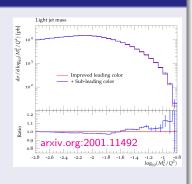
Idea #2:

iterate dipole splittings (populate the full phase space with multiple emissions)

Several challenges:

- ordering variable
- beyond large/leading- N_c
- treat recoil properly
- assess/improve accuracy

Beyond leading colour


Challenges

- most showers (except Herwig) are leading colour (even at leading-log)
 (see e.g. [Dasgupta, Dreyer, Hamilton, Monni, Salam, 18])
- very complex structure for multiple soft-gluon emissions

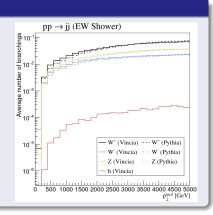
Recent progress

- Amplitude-level showers

 in contrast to approached based
 on squared matrix-elements
 see e.g. [Forshaw, Holguin, Plätzer, 19]
- Beyond leading-N_c/full colour see e.g. [Nagy,Soper,12], [Höche,Reichelt,20], [Forshaw,Holguin,Plätzer,20]

Electroweak showers

Main challenges


- Splitting functions more involved than standard Altarelli-Parisi
- Explicit dependence on chirality/spin^(*)

Recent progress

Implementation in Vincia, based on the spinor-helicity formalism

[Kleiss, Verheyen, 20]

phenomenological relevance at large p_t

(*) Technically, this is also the case for QCD showers

Challenges: parton-shower accuracy

WHAT DOES ACCURACY MEAN?

- parton showers are anchored in perturbative QCD
- disparate scales $Q \gg \Lambda_{\rm QCD} \implies \log$ resummed to all orders
- accuracy means logarithmic accuracy well-defined and systematically improvable

Challenges: parton-shower accuracy

WHAT DOES ACCURACY MEAN?

- parton showers are anchored in perturbative QCD
- disparate scales $Q \gg \Lambda_{\rm QCD} \implies \log$ resummed to all orders
- accuracy means logarithmic accuracy well-defined and systematically improvable

(Cumulative) distributions can (often) be written as (L = log(v))

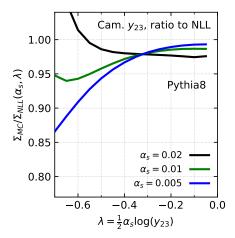
$$\Sigma(v) = \exp \left[\underbrace{g_1(\alpha_s L)L}_{\text{leading log}(LL)} + \underbrace{g_2(\alpha_s L)}_{\text{next-to-leading log}(NLL)} + \underbrace{g_3(\alpha_s L)\alpha_s}_{NNLL} + \dots \right]$$

Idea for testing: NLL accuracy requires

$$\frac{\sum_{MC}(\lambda=\alpha_sL,\alpha_s)}{\sum_{NLL}(\lambda=\alpha_sL,\alpha_s)} \stackrel{\alpha_s \to 0}{\longrightarrow} 1$$

at fixed
$$\lambda = \alpha_s L$$

LHCP 2020


[M.Dasgupta, F.Dreyer, K.Hamilton, P.Monni, G.Salam, GS, 20]

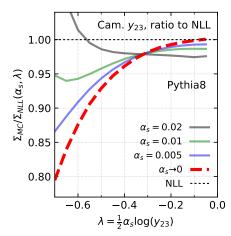
Example: Cambridge/Aachem(C/A) y23

- e^+e^- event
- cluster with C/A (angular-ordered)
- keep clustering with maximum (relative) transverse momentum: $\sqrt{y_{23}} = \max_i k_{ti}$

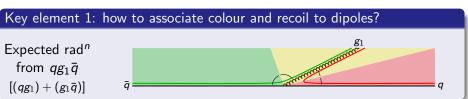
Study

$$\frac{\sum_{\textit{MC}} (\lambda = \alpha_{\textit{s}} \textit{L}, \alpha_{\textit{s}})}{\sum_{\textit{NLL}} (\lambda = \alpha_{\textit{s}} \textit{L}, \alpha_{\textit{s}})} \text{ for } \alpha_{\textit{s}} \rightarrow 0.$$

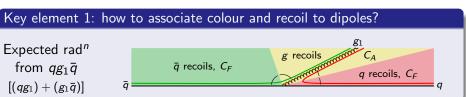
[M. Dasgupta, F. Dreyer, K. Hamilton, P. Monni, G. Salam, GS, 20]

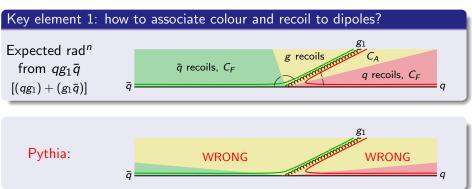

Example: Cambridge/Aachem(C/A) y23

- e^+e^- event
- cluster with C/A (angular-ordered)
- keep clustering with maximum (relative) transverse momentum: $\sqrt{y_{23}} = \max_i k_{ti}$

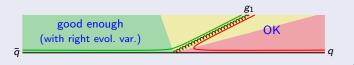

Study

$$\frac{\sum_{\textit{MC}} (\lambda = \alpha_{\textit{s}} \textit{L}, \alpha_{\textit{s}})}{\sum_{\textit{NLL}} (\lambda = \alpha_{\textit{s}} \textit{L}, \alpha_{\textit{s}})} \text{ for } \alpha_{\textit{s}} \rightarrow 0.$$


× Pythia8 deviates from NLL


[M. Dasgupta, F. Dreyer, K. Hamilton, P. Monni, G. Salam, GS, 20]

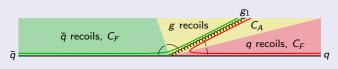
[M. Dasgupta, F. Dreyer, K. Hamilton, P. Monni, G. Salam, GS, 20]


[M. Dasgupta, F. Dreyer, K. Hamilton, P. Monni, G. Salam, GS, 20]

[M. Dasgupta, F. Dreyer, K. Hamilton, P. Monni, G. Salam, GS, 20]

Key element 1: how to associate colour and recoil to dipoles? Expected rad^n from $qg_1\bar{q}$ \bar{q} recoils, C_F q recoils, C_F q

PanScales:



13 / 18

[M.Dasgupta, F.Dreyer, K.Hamilton, P.Monni, G.Salam, GS, 20]

Key element 1: how to associate colour and recoil to dipoles?

Expected radⁿ from $qg_1\bar{q}$ $[(qg_1) + (g_1\bar{q})]$

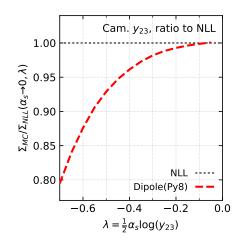
PanScales:

Key element 2: choice of evolution variable

$$v \sim k_{t,ik} heta_{ik}^{eta}$$

$$(0 < \beta < 1)$$

Idea: emissions with commensurate k_t radiated with successively smaller angles [M.Dasgupta, F.Dreyer, K.Hamilton, P.Monni, G.Salam, GS, 20]


Example:
$$C/A y_{23}$$

$$\sqrt{y_{23}} = \max_i k_{ti}$$

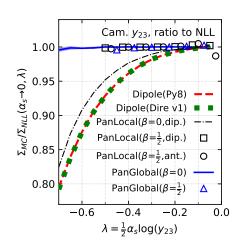
Study

$$\frac{\sum_{MC}(\lambda=\alpha_{s}L,\alpha_{s})}{\sum_{NLL}(\lambda=\alpha_{s}L,\alpha_{s})} \text{ for } \alpha_{s} \to 0.$$

× Pythia8 deviates from NLL

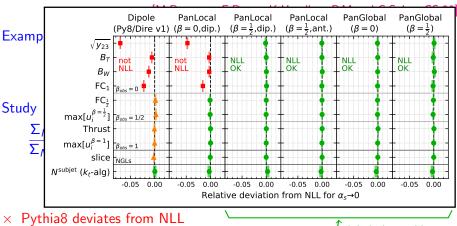
14 / 18

[M.Dasgupta, F.Dreyer, K.Hamilton, P.Monni, G.Salam, GS, 20]


Example:
$$C/A y_{23}$$

$$\sqrt{y_{23}} = \max_i k_{ti}$$

Study


$$\frac{\sum_{MC}(\lambda=\alpha_{s}L,\alpha_{s})}{\sum_{NLL}(\lambda=\alpha_{s}L,\alpha_{s})} \text{ for } \alpha_{s} \to 0.$$

- × Pythia8 deviates from NLL
- ✓ PanLocal($0 < \beta < 1$) OK
- \checkmark PanGlobal(0 $< \beta < 1$) OK

14 / 18

Assessing accuracy

- PanLocal($0 < \beta < 1$) OK
- PanGlobal($0 < \beta < 1$) OK

global observables non-global observables multiplicities

Tested against a series of observables (expected 0)

(green: OK at NLL; orange: issues at fixed order; red issues at fixed and all orders)

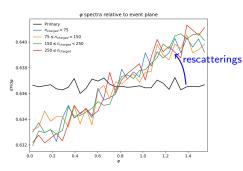
Challenges and progress non-perturbative physics at the soft scales

Watch out

BASIC TAKE-HOME MESSAGE

Outside the reach of perturbative QCD

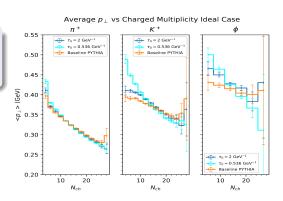
- Model parameters have to be "tuned" (mostly to data)
 e.g. LEP data strongly constrain hadronisation
 Dedicated LHC (and Tevatron) measurements for MPI
- Can try to develop theoretical frameworks, use lattice QCD, ...
- Open question: Systematic way of assessing uncertainty?


Gregory Soyez Event Generators LHCP 2020 15 / 18

[Sjostrand, Utheim, 20]

framework for hadron rescatterings in Pythia

- main impact: various "flows" of hadrons
- Possible applications to pA and AA collisions (e.g. via Angantyr


[Bierlich, Gustafson, Lönnblad, Shah, 18])

[Hunt-Smith, Skands, 20]

Lund string fragmentation with time-dependent tension (Pythia)

- motivated by lattice considerations
- main impact: larger p_t & more strangeness

Summary

MCs used everywhere! Immensely relied upon at the LHC

Full event simulation requires coverage of a wide range of scales

Scale	Realm	Progress	Challenges
Hard	Fixed-order (LO,NLO,NNLO,) Matching/merging	Towards NNLO subtraction methods MiNNLO	More complex colour ampl $ ightarrow d\sigma/dX$ CPU cost?
Parton shower	All-orders (LL,,NLL,NNLL,)	Assessing accuracy NLL-accurate showers Improved colour electroweak showers	new (N)NLL showers better uncertainties
Soft	Non-perturbative models	more realistic models "collectivity" (cf. AA)	How far can one go? Assess uncertainties?

Common effort needed in the quest towards precision

Gregory Sovez

Event Generators

LHCP 2020 18 / 18