

LHCP 2020, Paris (virtually) 27 May 2020

Higgs sector / 2 "What we would like to know"

Giovanni Petrucciani (CERN) on behalf of the ATLAS and CMS Collaborations

Outline

- Part I: Higgs boson self-coupling
- Part II: Rare decays and beyond standard model physics
- Part III: Very brief outlook towards HL-LHC

In this talk I will focus only on a selection of the more recent results.

However, a very comprehensive set of studies on all these topics has been done by both collaborations on the early LHC Run 2 data from 2016 in the past. Results are available from the links below:

All CMS Higgs results: papers, preliminary results

More info in the parallels: Daniel and Stefano (HH, Thursday), Andrey (2nd gen, <u>Thursday</u>), Adam and Renje (BSM, Wednesday), Mariia (DM, Friday)

ERN

Part I: Higgs boson self-coupling

• An essential component of electroweak symmetry breaking

HH production in the SM: gluon fusion

• Dominant HH production mode in the SM is gluon fusion, driven by on self-coupling λ and Higgs-top couplings λ_{t} $-\sigma_{SM}(ggHH) = 31 \text{ fb } [~~1/1500 \text{ of } \sigma(ggH)!]$

2

3

• Currently, the most stringent constraints on HH production are still the ones from the analysis of early LHC Run 2 (2016) data

- Observed and expected upper limits on $\sigma(HH)/\sigma_{SM}(HH)$ **ATLAS obs. 6.9 (exp. 10) CMS obs 22.2 (exp. 12.8)**

– Driven by the 3 most sensitive modes: **bb** $\tau\tau$, **bb** $\gamma\gamma$, **bb bb**

Differences across experiments for the same channel mainly driven by different level of complexity of the analyses.

Beyond 2016 data: HH \rightarrow bb $W_{\ell\nu}W_{\ell\nu}$

- First HH \rightarrow bb $\ell \nu \ell \nu$ analysis at ATLAS
- Multiclass DNN to separate HH from 3 main backgrounds: tt, Z(ll), Z(ττ)
 - Inputs are individual leptons, jets, E_T^{miss} , high-level variables (e.g. $\Delta R_{\ell\ell}$, $m_{T_2}^{bb}$)
 - Output $d_{HH} := \ln(p_{HH} / \Sigma p_{bkg})$

Aug 2019

Giovanni Petrucciani (CERN)

- Signal regions defined by d_{HH} cuts
- ×8/×3 better sensitivity than old
 36 fb⁻¹ analyses from ATLAS^[*]/CMS:
 - Set limit at σ_{HH} < 40×SM (exp.: 29×SM)</p>

[*] older analysis was for the $H \rightarrow WW \rightarrow \ell \nu qq$, qqqq decays

HH production: vector boson fusion

- VBF is the second production mode, with σ_{SM} = 1.72 fb ~1/20 of ggHH, ~1/2000 of VBF H
- Receives contributions from self-coupling HHH, HVV coupling (κ_ν, well measured in single Higgs), and HHVV quartic vertex (κ_{2ν}).
 - $\kappa_{2V} = \kappa_{V}^{2}$ if H is part of a SU(2)_L doublet, as in the SM or the SMEFT.
 - Otherwise, large increase in σ_{VBF} possible: $V_L V_L \rightarrow H H$ would violate unitary

$VBF HH \rightarrow 4b$

Jan 2020

- Target the more extreme kinematic of $\kappa_{2v} \neq 1$ – Tight cut-based VBF cuts: $m_{ii} > 1$ TeV, $|\Delta \eta_{ij}| > 5$
- Largely based on earlier $HH \rightarrow 4b$ search on 36 fb⁻¹ dataset [JHEP 01 (2019) 030]
 - Same strategy used for HH \rightarrow 4b selection: ΔR_{hh} cuts dependent on m_{4b} , elliptic signal region in the plane of the two m_{2b} masses
 - Same estimation of main QCD multi-jet and tt background: from events with 2 b-tags, with weights derived in mass sideband
- New b-jet energy regression using a BDT
 - ~10% better b-jet energy resolution

8

$VBF HH \rightarrow 4b$

- Use m(4b) as final discriminating variable Searching also for resonant VBF X \rightarrow HH
- Focus on probing anomalous κ_{2V}

Jan 2020

- Set $\kappa_V = 1$, $\kappa_\lambda = 1$
- SM ggHH negligible with present sensitivity
- Set limit -0.56 < κ_{2V} < 2.89 @ 95% CL (expected limit -0.67 < κ_{2V} < 3.10)
 - First constraints on κ_{2V} at LHC !
 - But still far from sensitivity to SM VBF HH. Set upper limit $\sigma/\sigma_{SM} < 840$ (exp. 540)

2

-2

CERN

Constraining self-coupling from single H

- At NLO, single Higgs observables are sensitive to Higgs boson self-coupling
 - O(1%) corrections to $\sigma_{\rm H}$ and BRs for $\Delta \kappa_{\lambda}$ = 1 Largest effect inclusively is ~3.5% on $\sigma_{\rm ttH}$
 - Use of kinematic information, e.g. $p_T(H)$, can enhance the effect further (~×2-3)

Constraining self-coupling from single H

- Explored by both ATLAS & CMS in the latest single-H combinations

 ATLAS also including some kinematic information via STXS in VH & VBF prod.
- Constraints comparable to HH searches but only under tight mode assumptions
 - All other couplings fixed to SM, or only floating κ_V or only κ_f
- ATLAS: also combined H + HH fit*
 - Tighter constraint in κ_λ -only fit
 - Allow more general model with floating individual κ 's and also κ_λ
 - *: $ttH(\gamma\gamma)$ dropped from H inputs due to large overlap with HH(bb $\gamma\gamma$)

LHCP 2020, 25-30 May 2020 Phys. Rev. Lett. 122 (2019) 121803 ATLAS-CONF-2019-049 12 Phys. Lett. B 800 (2020) 135103 CMS PAS HIG-19-015

Overall summary of 95% CL limits on κ_{λ}

		ATLAS		CMS	
inputs	model.	ATLAS	(expected)	CMS	(expected)
Single H	only κ_{λ}	-3.2, 11.9	-6.2, 14.4	-3.5, 14.5	-5.1, 13.7
нн	only κ_{λ}	-5.0, 12.0	-5.8, 12.0	-11.8, 18.8	-7.1, 13.6
H + HH	only κ_{λ}	-2.3, 10.3	-5.1, 11.2		
H + HH	κ's & κ _λ	-3.7, 11.5	-6.2, 11.6	More info i	n talks by Daniel
				and Stefar	no on Thursday

Disclaimer: these are still rather ad-hoc models; still a lot of work ahead for both theorists and experimentalists before we can have a more sounded global fit with full NLO SMEFT or HEFT

Part II: rare, forbidden and BSM

A selection, with higlights on new results from 2020

- $H \rightarrow \mu\mu$, cc
- $H \rightarrow Z \rho/\phi$
- $H \rightarrow Z \gamma$
- $H \rightarrow e \mu^{[b]}$
- $H \rightarrow invis^{[a]}$, Z invis^[b]
- $H \rightarrow Z a, a a, Z_{(D)} Z_D$
- Higgs-coupled dark matter or dark sector Light BSM particles coupled to the Higgs • Heavy $H \rightarrow \tau \tau$ Extended Higgs sector, esp. MSSM

2nd gen fermion couplings

enhanced light flavour couplings

SU(2) structure of heavy BSM physics

^[a] in "Dark Matter" plenary talk by Katherine ^[b] in the backup slides

lepton flavour violation

More info in the parallels: Andrey (2nd gen, Thursday), Adam and Renje (BSM, Wednesday)

Jul 2019 Giovanni Petrucciani (CERN)

LHCP 2020, 25-30 May 2020

 $H \rightarrow \mu\mu$

- BR_{SM}(H \rightarrow µµ) ~ 2.2 × 10⁻⁴, and large irreducible DY $\rightarrow \mu\mu$ background – S/B ~ 0.1% for inclusive events at 125 GeV
- Improvements to increase sensitivity:
 - Improved MVA categorization to select events at high S/B, e.g. from VBF
 - New FSR recovery to improve $\sigma(m_{\mu\mu})$ Improved rejection of jets from pileup
- Signal extraction from m_{uu} fit
 - Improved background parametrization: inclusive "core" pdf + per-category empirical transfer function (with less free parameters)

Signal strength: $\mu = 0.5 \pm 0.7$ Significance: 0.8 obs. (1.5 exp.) Upper limit on μ : 1.7 obs. (1.3 exp.)

Also older CMS H $\rightarrow \mu\mu$ result, 36 fb⁻¹ + Run 1 [PRL 122 (2019) 021801] CMS/ μ = 1.0 ± 1.0 ^(stat) ± 0.1 ^(syst), significance 0.9 σ (expected 1.0 σ)

Giovanni Petrucciani (CERN)

$H \rightarrow c\bar{c}$

• $BR_{SM}(H \rightarrow c\bar{c}) = 2.9\% \sim 1/20 \text{ of } BR(H \rightarrow b\bar{b})$

Jul 2019

- Target VH with V = Z $\rightarrow \ell \ell$, W $\rightarrow \ell \nu$, Z $\rightarrow \nu \nu$, with the combination of two strategies:
 - Resolved analysis: based on VH(bb) analysis, but with charm tagging. Signal extraction from fit to BDT
 - **Boosted analysis:** use anti- $k_T(R=1.2)$ jets with advanced H \rightarrow cc DNN tag (flavour + substructure), Signal extraction from groomed jet mass
- Multiple control regions to normalize in data the main backgrounds, i.e. V + jets and tt
- Set limits $\sigma \times BR(H \rightarrow c\bar{c}) < 70 \times SM (exp. 37 \times SM)$

Also older ATLAS VH($c\bar{c}$), 36 fb⁻¹, only Z $\rightarrow \ell\ell$ channel and simpler analysis, Observed upper limit 110 × SM (expected 150 × SM) [PRL 120 (2018) 211802]

Giovanni Petrucciani (CERN)

LHCP 2020, 25-30 May 2020

CMS PAS HIG-19-012

- SM BR mainly via $H \rightarrow Z Z/\gamma^* \rightarrow Z V$, but $H \rightarrow qq$ channel may have large enhancement in some BSM models
- Target $\rho \to \pi^{\scriptscriptstyle +} \pi^{\scriptscriptstyle -}$ and $\phi \to K^{\scriptscriptstyle +} K^{\scriptscriptstyle -}$
 - Select pairs of opposite-charge tracks, ΔR < 0.1 and p_T^{lead} > 10 GeV
 - 2. Require di-track pair to be isolated
 - 3. Select window in di-track mass

16

🗍 Giovanni Petrucciani (CERN)

NEW FOR LHCP 2020 LHCP 2

LHCP 2020, 25-30 May 2020

 $H \rightarrow Z + \rho/\phi$

- Fit m(llππ) or m(llKK) to extract signal
 - Agnostic background model, a la H $\rightarrow \gamma \gamma$
- Set upper limits in the 0.3 2 % range
 - Acceptance depends on polarization, limits provided for different scenarios
 - Corresponding to ~ 860 1350 × SM BR

Also older ATLAS $H \rightarrow \gamma \rho/\phi$ with 36 fb⁻¹ Set BR limits at 52 / 208 × SM for ρ / ϕ [JHEP 07 (2018) 127]

17

LHCP 2020, 25-30 May 2020

Giovanni Petrucciani (CERN)

New (May 2020) $H \rightarrow Z \gamma$

- $SU(2)_1$ symmetry ties together the HWW, HZZ, Hyy, HZy interactions
 - If heavy new physics respects $SU(2)_1$, correlated effects across the four
- BR(H \rightarrow Z $\gamma \rightarrow \ell \ell \gamma$) = 0.5 \cdot 10⁻⁴
 - Similar BR to $H \rightarrow 4\ell$, but larger background from Z y production
- As in $H \rightarrow \mu\mu$, key ingredients are:
 - Improve signal mass resolution: FSR recovery, kinematic refit of $Z \rightarrow \ell \ell$
 - Improve S/B via categorization: BDT targeting VBF production; p_{T} and p_{T+}

$H \rightarrow Z \gamma$: fit and results

Fit results by category and combined

Category	μ	Significance
VBF-enriched	$0.5^{+1.9}_{-1.7}\;(1.0^{+2.0}_{-1.6})$	0.3 (0.6)
High relative $p_{\rm T}$	$1.6^{+1.7}_{-1.6} \ (1.0^{+1.7}_{-1.6})$	1.0 (0.6)
High $p_{\mathrm{T}t} \ ee$	$4.7^{+3.0}_{-2.7}\ (1.0^{+2.7}_{-2.6})$	1.7 (0.4)
Low $p_{\mathrm{T}t} \ ee$	$3.9^{+2.8}_{-2.7} \ (1.0^{+2.7}_{-2.6})$	1.5 (0.4)
High $p_{\mathrm{T}t} \ \mu\mu$	$2.9^{+3.0}_{-2.8}\ (1.0^{+2.8}_{-2.7})$	1.0 (0.4)
Low $p_{\mathrm{T}t} \ \mu\mu$	$0.8^{+2.6}_{-2.6} \ (1.0^{+2.6}_{-2.5})$	0.3 (0.4)
Combined	$2.0^{+1.0}_{-0.9} \ (1.0^{+0.9}_{-0.9})$	2.2 (1.2)

We may be starting to see the first hints of the signal LHCP 2020, 25-30 May 2020

= 139 fb⁻¹

ö

/ Bkgd

 $H \rightarrow Z a \rightarrow \ell \ell j$

- Search for pseudoscalar "a" – e.g. in NMSSM or 2HDM+S models
- Target inclusive hadronic decays
 a → jet, for m_a < 4 GeV
 - **1. MLP regression** to estimate a mass from jet substructure information
 - MLP discriminator vs Z + jets bkg (using MLP regression as input)
 - Define signal region by cutting on m(llj) and discriminator output
- Estimate backgrounds from data:
 - "ABCD" method with sidebands in m(llj)
 & MLP discriminant (+ corrections)

LHCP 2020, 25-30 May 2020

New (Apr 2020) LHCP 2020,

Giovanni Petrucciani (CERN)

- Search for pseudoscalar "a"
- Target inclusive hadronic decays $a \rightarrow jet$, for $m_a < 4 \text{ GeV}$
- Good agreement found between data and background predictions in signal region and validation regions
- Set upper limits on $\sigma \cdot BR(H \rightarrow Za)$
 - Interpreted separately for $a \rightarrow gg / s\bar{s}$ (different efficiency of MLP discr. cut)
 - Also set upper limits on BR(H \rightarrow Z $\eta_c)$ and BR(H \rightarrow Z J/ ψ), but at BR ~ 200%

21

NEW FOR LHCP2020

LHCP 2020, 25-30 May 2020

LM.

To tau muon reconstruction

arXiv:2005.08694, sub. to JHEP

20

m_a (GeV)

18

 $H \rightarrow a_{\mu\mu} a_{\tau\tau} at low m_a$

- Dedicated τ reco. for overlapping decay products of a $\rightarrow \tau_{\mu} \tau_{h}$ - Gain +50% efficiency at low m_a
- $L = 36 \text{ fb}^{-1}$ Jet To HPS reconstruction τ_{μ} 1-prong + 1 π⁰ τ_{had} (13 TeV) 0.6 $\mathfrak{r}_{\mu}\mathfrak{r}_{h}$ reconstruction efficiency CMS Simulation 0.5 0.4 0.3 0.2 $\tau_{\mu}\tau_{\mu}$ HPS τ_{h} HPSe.... m_H = 125 GeV m_u = 125 GeV m, = 300 GeV m., = 300 GeV

6

8

10

HPS (Hadrons Plus Strips) is the CMS algorithm for hadronic τ reconstruction using Particle Flow

12

14

16

NEW FOR LHCP2020

0.2 GeV

Events /

1D projections from 2D fit

$$H \rightarrow a_{\mu\mu} a_{\tau\tau} at low m_a$$

- Dedicated τ reco. for overlapping decay products of a $\rightarrow \tau_{\mu}\,\tau_{h}$
- 2D fit in m($\mu\mu$) × m($\mu\mu\tau_{\mu}\tau_{h}$) plane
 - Fit separately in 3 m($\mu\mu$) ranges, to reduce correlations with m($\mu\mu\tau_{\mu}\tau_{h}$)
 - Control regions included to constrain the continuum and $\psi_{(2S)}$ and Y peaks
- Set model-independent limits on BR(H \rightarrow aa \rightarrow µµ $\tau\tau$) ~ 0.02–0.08%
 - And in 2HDM+S benchmark models
 - Also demonstrate potential for $H_{Heavy} \rightarrow aa using m_{H} = 300 \text{ GeV}$

LHCP 2020, 25-30 May 2020

= 36 fb⁻¹

 $H \rightarrow a_{b\bar{b}} a_{b\bar{b}}$ at low m_a

NEW FOR LHCP2020

- Rely on $Z_{\ell\ell}$ H associated production
- Recluster jets with anti- $k_T(R=0.8)$
 - One ak8 jet for each a \rightarrow b5 candidate
- Tag ak8 jets relying on substructure and b-tagging information from associated tracks and sec. vertices
 - Trained vs jets that contain a single b quark
 - ×100/×30 rejection of b-jets from tt & Z+jets at a → bb̄ signal efficiency of ~ 25% / 30%
- Select events with kinematic compatible with $H \rightarrow aa$ decay
 - Separately each m_a mass hypothesis

NEW FOR LHCP2020 LHCP 2020, 25-30 May 2020

 $H \rightarrow a_{bb} a_{bb}$ at low m_a

- Define signal and control regions depending on m_{ll} and number of loose (LP) & tight (HP) ak8 tags
 - Constrain dominant backgrouds from Z+jets and ttbar
- Set limits on $\sigma_{ZH} \times BR(H \rightarrow aa \rightarrow 4b)$ for m_a in 15–30 GeV range
 - Best sensitivity at $m_a = 20 \text{ GeV}$ Set limit at $80\% \times \sigma_{ZH}^{SM}$ (exp. $60\% \times \sigma_{ZH}^{SM}$)
 - at large m_a , sensitivity taken over by older $H \rightarrow aa \rightarrow 4b$ "resolved" analysis [JHEP 10 (2018) 031]

Giovanni Petrucciani (CERN)

NEW FOR LHCP2020 LHCP 2020, 25-30 May 2020

15

L = 137 fb⁻¹

- Search for dark photons or ALPs
- Based on $H \rightarrow Z Z^* \rightarrow 4\ell$ analysis – objects, background estimation, ...
- 1. $H \rightarrow Z X \rightarrow 4\ell$ search:

- m_{Z1} > 40 GeV, 118 < m_{4l} < 130 GeV

- Scan m_{Z2} distribution with window of size 4% / 10% for X $\rightarrow \mu\mu$ / ee
- Set limits for X $\rightarrow \ell \ell$, $\mu \mu$, ee

🗍 Giovanni Petrucciani (CERN)

NEW FOR LHCP 2020 LHCP 2

LHCP 2020, 25-30 May 2020

CMS PAS HIG-19-007 27

LHCP 2020, 25-30 May 2020

$MSSM \; A/H \to \tau\tau$

• Flagship mode at high tan(β) – Enhanced BR(A/H $\rightarrow \tau\tau$) and

Feb 2020

- Enhanced BR(A/H $\rightarrow \tau \tau$) bbH production
- Main backgrounds:
 - Reducible jet $\rightarrow \tau_h$: from data using fake rate methods
 - Irreducible Z $\rightarrow \tau \tau$, tt: estimated from MC, plus CR at high $m_T^{\ell \nu}$ for tt
- Final discriminating variable

$$m_T^{tot} = \sqrt{\left(p_T^{\tau 1} + p_T^{\tau 2} + E_T^{miss}\right)^2 - \left(\overline{p_T^{\tau 1}} + \overline{p_T^{\tau 2}} + \overline{E_T^{miss}}\right)^2}$$

Giovanni Petrucciani (CERN) Feb 2020

MSSM A/H $\rightarrow \tau \tau$

- Interpretation as limits on σ×BR for generic scalar φ
 - Provide 1D and 2D limits and likelihoods vs m_{ϕ} , σ_{ggF} , σ_{bbH}
 - Largest excess at m $_{\phi}$ ~ 400 GeV, local significance ~ 2 σ

MSSM A/H $\rightarrow \tau \tau$

- Interpretation as limits on σ×BR for generic scalar φ
 - Provide 1D and 2D limits and likelihoods vs m_{ϕ} , σ_{ggF} , σ_{bbH}
 - Largest excess at m $_{\phi}$ ~ 400 GeV, local significance ~ 2 σ
- MSSM interpretations
 - New M_h^{125} benchmark scenarios e.g. tan(β) < 8 at 1 TeV (expected: < 10)
 - hMSSM, to compare with old result

Also older CMS result on 36 fb⁻¹ [<u>JHEP 09 (2018)007</u>] M_h^{125} limits, e.g. tan(β) < 15 at 1 TeV (expected: < 16)

30

31

Part III: brief outlook at HL-LHC

- Sensitivity for Higgs boson physics at HL-LHC evaluated back in 2018 in the context of the European Strategy update
 - Mostly based on knowledge from early LHC run 2 analyses (2016 data)
- Single Higgs boson observables: can reach few-percent precision

Part II: brief outlook at HL-LHC

- HH production: ~4 σ evidence, measure κ_{λ} with ~ ±50% uncertainty
 - Projections based on a combination of extrapolations from Run 2 analyses and new analyses designed for HL-LHC

Conclusions & outlook

- The quest for the Higgs boson self coupling goes on
 - Started probing new couplings in VBF HH, and deploying more advanced analysis methods to improve on past results
 - Expect strong results when LHC Run 2 data fully analysed!
 - and in the longer future, HH observation at HL-LHC
- Many new searches probing into the unknown:
 - Higgs boson decays into new yet unobserved particles
 - Rare decays that could be largely enhanced by new physics
 - Additional Higgs bosons from extensions of the standard model
 - ... and still many more to try, with Run 2 data and beyond

34

BACKUP

FIXME: this still needs work, of course....

Lepton flavour violating decays

 Probe for H → eµ: direct test for LFV y_{eu} Yukawa coupling

Sep 2019

- Very stringent limits from $\mu \rightarrow e\gamma$ and electron EDM, but depend on yet unobserved y_{ee} and y_{µµ}
- Categorize by p_T^{ℓ} , $|\eta_{\ell}|$, $p_T^{\ell\ell}$
 - Select events with higher S/B or better dilepton mass resolution
- Set upper limit BR_{eµ} < 6.2 × 10⁻⁵
 Factor ~6 better than Run 1 limit
- Also set BR(H \rightarrow ee) < 3.6 × 10⁻⁴
 - $BR_{SM} \sim 5 \times 10^{-9}$ well out of reach

Also older 36 fb⁻¹ from CMS [<u>JHEP 06 (2018) 001</u>] and ATLAS [<u>PLB 800 (2020) 135069</u>] setting limits on BR(H \rightarrow et) and BR(H \rightarrow µt) in the 0.25% – 0.6% range

 Z/γ^*

$H \rightarrow \gamma + invisible$

- Probe e.g. for $H \rightarrow \gamma \gamma_D$ (dark photon)
- Rely on Z(ll) H associated production
 - Require high- $p_T Z_{\ell\ell}$, back-to-back and balanced with $\gamma + E_T^{miss}$ vector
- Dominant background: WZ $\rightarrow 3\ell\nu$
 - With electron mis-id as photon, or genuine γ from ISR/FSR and a lost l
- Transverse mass m_T of γ + E_T^{miss} system used to look for a signal

 Control regions for WZ, tt/WW, ZZ
- Set limits **BR(H** $\rightarrow \gamma$ + inv.) < 4.6%
 - Tiny $BR_{SM}(H \rightarrow Z \gamma \rightarrow \nu \nu \gamma) \sim 3 \times 10^{-4}$

36

126 fb⁻¹

$VBF HH \rightarrow 4b$

- Target the more extreme kinematic of $\kappa_{2v} \neq 1$ - Tight cut-based VBF cuts: $m_{ii} > 1$ TeV, $|\Delta \eta_{ii}| > 5$
- Largely based on earlier $HH \rightarrow 4b$ search on 36 fb⁻¹ dataset [JHEP 01 (2019) 030]
 - Same strategy used for HH \rightarrow 4b selection: ΔR_{hh} cuts dependent on m_{4b} , elliptic signal region in the plane of the two m_{2b} masses
 - Same estimation of main QCD multi-jet and tt background: from events with 2 b-tags, with weights derived in mass sideband
- New b-jet energy regression using a BDT
 - ~10% better b-jet energy resolution

$VBF HH \rightarrow 4b$

- Target the more extreme kinematic of κ_{2V} ≠ 1

 Tight cut-based VBF cuts: m_{jj} > 1 TeV, |Δη_{jj}| > 5
- Largely based on earlier HH \rightarrow 4b search on 36 fb⁻¹ dataset [JHEP 01 (2019) 030]
 - Same strategy used for HH \rightarrow 4b selection: ΔR_{bb} cuts dependent on m_{4b} , elliptic **signal region** in the plane of the two m_{2b} masses
 - Same estimation of main QCD multi-jet and tt background: from events with 2 b-tags, with weights derived in **mass sideband**
- New b-jet energy regression using a BDT
 - ~10% better b-jet energy resolution

m_{2b} [GeV]

Beyond 2016 data: HH \rightarrow bb $W_{\ell\nu}W_{\ell\nu}$

- Multiclass DNN to separate HH from 3 main backgrounds: tt, Z(ll), Z(ττ)
 - Inputs are individual leptons, jets, E_T^{miss} , high-level variables (e.g. $\Delta R_{\ell\ell}$, $m_{T_2}^{bb}$)
 - Output $d_{HH} := \ln(p_{HH} / \Sigma p_{bkg})$

d_{HH}

Events / 1

Pred.

Data

Beyond 2016 data: HH \rightarrow bb $W_{\rho_{y}}W_{\rho_{y}}$

- Multiclass DNN to separate HH from 3 main backgrounds: $t\bar{t}$, $Z(\ell\ell)$, $Z(\tau\tau)$
 - Inputs are individual leptons, jets, E_T^{miss} , high-level variables (e.g. $\Delta R_{\ell\ell}$, $m_{T_2}^{bb}$)
 - Output $d_{HH} := \ln(p_{HH} / \Sigma p_{bkg})$
- Signal regions defined by d_{HH}, split by lep. flavour: SF(ee+ $\mu\mu$), DF(e μ)

LHCP 2020, 25-30 May 2020

- Multiclass DNN to separate HH from 3 main backgrounds: tt, Z(ll), Z(ττ)
 - Inputs are individual leptons, jets, E_T^{miss} , high-level variables (e.g. $\Delta R_{\ell\ell}$, $m_{T_2}^{bb}$)
 - Output $d_{HH} := \ln(p_{HH} / \Sigma p_{bkg})$
- Signal regions defined by d_{HH}, split by lep. flavour: SF(ee+μμ), DF(eμ)
- Control regions inverting m_{ll} and m_{bb} cuts for Z + heavy flavour jets and tt
- ×8/×3 better sensitivity than older 36 fb⁻¹ analyses from ATLAS/CMS:

– Set limit at σ_{HH} < 40×SM (exp.: 29×SM)</p>

 $H \rightarrow a_{\mu\mu} a_{\tau\tau} at low m_a$

• Dedicated τ reco. for overlapping decay products of a $\rightarrow \tau_{\mu} \tau_{h}$ – Gain +50% efficiency at low m_a

HPS (Hadrons Plus Strips) is the CMS algorithm for hadronic τ reconstruction using Particle Flow

$H \rightarrow a_{\mu\mu} a_{\tau\tau} at low m_a$

- 2D fit in m($\mu\mu$) × m($\mu\mu\tau_{\mu}\tau_{h}$) plane
 - Fit separately in 3 m($\mu\mu$) ranges, to reduce correlations with m($\mu\mu\tau_{\mu}\tau_{h}$)
 - Sideband with anti-isolated τ_h to constrain background, with transfer factor measured in $Z_{\mu\mu}$ + jet data
 - Additional 1D dimuon control region to constrain better $\psi_{(2S)}$ and Y peaks

Giovanni Petrucciani (CERN)

→ aa)

 $\frac{\sigma_{H}}{\sigma_{SM}}B(H$ -

 $H \rightarrow a_{\mu\mu} \,\, a_{\tau\tau} \,at \, low \, m_{_{\!\!\!\!A}}$

- Dedicated τ reco. for overlapping decay products of a $\rightarrow \tau_{\mu}\,\tau_{h}$
- 2D fit in m($\mu\mu$) × m($\mu\mu\tau_{\mu}\tau_{h}$) plane
- Set model-independent limits on BR(H \rightarrow aa \rightarrow µµ $\tau\tau$) ~ 0.02–0.08%
 - plus interpretations in different
 2HDM+S benchmark models
- Showcase power of dedicated τ reco. also for heavier bosons
 - Demonstrated using a Higgs boson of mass 300 GeV as example

VBF $H \rightarrow invisible$

- Search for Higgs boson decays to Dark Matter $(m_{DM} < m_{H}/2)$
- VBF offers the best balance of cross section & purity
- Dominant backgrounds from
 - $Z \rightarrow \nu \nu$ and $W \rightarrow \ell \nu$ (with lost ℓ)
 - Estimated from simultaneous fit using CRs of Z $\rightarrow \ell\ell$ and W $\rightarrow \ell\nu$
 - Further data-driven estimates for QCD multijet background in SR and in W \rightarrow ev CR

$\mathsf{VBF}\:\mathsf{H}\to\mathsf{invisible}$

- Several improvements compared to older 36 fb⁻¹ ATLAS result
 - Improved acceptance & include events with 3rd jet from ISR/FSR
 - Finer SR binning in m_{jj} , $\Delta \phi_{jj}$, n_{Jet}
 - Improved lepton selections (less W $\rightarrow \ell_{lost} \nu$, more Z $\rightarrow \ell \ell$ in CR)
 - Reduced MC stat. uncertainties (better filters, event weights, ...)
- Sets world's best upper limit:
 BR(H→inv) < 0.13 (exp. 0.13) @ 95% CL
 - $-(\sigma_{\text{WIMP}}, m_{\text{WIMP}})$ limit interpretation

Also older 36 fb⁻¹ + Run 1 combinations from CMS [PLB 793 (2019) 520] and ATLAS [PRL 122 (2019) 231801] BR(H \rightarrow invis) upper limits: CMS 0.19 (expected 0.15), ATLAS 0.26 (expected 0.17)

Giovanni Petrucciani (CERN) New (May 2020)

LHCP 2020, 25-30 May 2020

arXiv:2005.05832, sub. to PLB

$H \to Z \ \gamma$: the missing diboson decay

- SU(2)_L symmetry ties together the HWW, HZZ, Hγγ, HZγ interactions
 - If heavy new physics respects SU(2), correlated effects across the four
- BR(H \rightarrow Z $\gamma \rightarrow \ell \ell \gamma$) = 0.5 · 10⁻⁴
 - Similar BR to $H \rightarrow 4\ell$, but larger background from Z γ production
- As in $H \to \mu \mu$, key ingredients are:
 - Improve signal mass resolution: FSR recovery, kinematic refit of $Z \rightarrow \ell \ell$
 - Improve S/B via categorization: BDT targeting VBF production; p_T and p_{Tt}

Event display of VBF H \rightarrow Z $\gamma \rightarrow \mu\mu\gamma$ candidate

CERN

$H \rightarrow Z \gamma$: VBF BDT

$H \rightarrow Z \gamma$: fit and results

Fit results by category and combined

Category	μ	Significance
VBF-enriched	$0.5^{+1.9}_{-1.7}\;(1.0^{+2.0}_{-1.6})$	0.3 (0.6)
High relative $p_{\rm T}$	$1.6^{+1.7}_{-1.6} \ (1.0^{+1.7}_{-1.6})$	1.0 (0.6)
High $p_{\mathrm{T}t} \ ee$	$4.7^{+3.0}_{-2.7}\ (1.0^{+2.7}_{-2.6})$	1.7 (0.4)
Low $p_{\mathrm{T}t} \ ee$	$3.9^{+2.8}_{-2.7}\;(1.0^{+2.7}_{-2.6})$	1.5 (0.4)
High $p_{\mathrm{T}t} \ \mu\mu$	$2.9^{+3.0}_{-2.8}\;(1.0^{+2.8}_{-2.7})$	1.0 (0.4)
Low $p_{\mathrm{T}t} \ \mu\mu$	$0.8^{+2.6}_{-2.6}\ (1.0^{+2.6}_{-2.5})$	0.3 (0.4)
Combined	$2.0^{+1.0}_{-0.9} \ (1.0^{+0.9}_{-0.9})$	2.2 (1.2)

We may be starting to see the first hints of the signal