

Soft probes at the LHC: medium properties and hadronization

Livio Bianchi *
Università & INFN Torino

Why soft probes in HI collisions?

1st OBJECTIVE OF THIS TALK

Demonstrate that the study of soft probes allows to characterize with high precision the hot and dense medium (QGP) produced in heavy-ion collisions

Soft probes in heavy-ion collisions useful to:

- Study collective phenomena
- Test statistical limit of particle production
- Disentangle hadronic phase effects

...and extension to small colliding systems

aris (**1**

2nd OBJECTIVE OF THIS TALK

Show how exploiting small colliding systems we can have deeper insight on collective effects observed in A-A collisions

High energy hadronic interactions are far from being «elementary»:

V. Zaccolo 26 May, 18:00

- Multi Parton Interactions (MPI) needed to explain multiplicity
- MPI cross-talk needed to explain p_T spectra at LHC (e.g. Color Reconnection)
- Initial state parton density fluctuations can lead to final-state phenomena

Questions:

- How can we use small systems to better interpret large systems observations?
- Do the observations in small colliding systems imply QGP formation there?

THIS IS NOT A "SMALL SYSTEMS" TALK

Z. Khabanova 28 May, 15:03

Hadron abundancies in the search for $T_{\rm ch}$

Hadrochemistry in central A-A collisions at the LHC

Production of light flavor hadrons fit over 9 orders of magnitude by Statistical Hadronization Model (SHM) in its Grand Canonical Ensemble (GCE) formulation

Hadron abundancies can be described as emerging from a hot Hadron-Resonance Gas in thermal equilibrium

At LHC: $\mu_B \sim 0$ $T_{ch} \sim 153$ MeV COMPATIBLE WITH CHIRAL CROSSOVER

TRANSITION TEMPERATURE FROM LQCD

Production of light flavor hadrons fit over 9 orders of magnitude by Statistical Hadronization Model (SHM) in its Grand Canonical Ensemble (GCE) formulation

Hadron abundancies can be described as emerging from a hot Hadron-Resonance Gas in thermal equilibrium

At LHC: $\mu_{B} \sim 0$ $T_{ch} \sim 153$ MeV

COMPATIBLE WITH CHIRAL CROSSOVER TRANSITION TEMPERATURE FROM LQCD

Short-living resonances not described (influence of hadronic phase)*

Friction with p being addressed through S-matrix approach (π -N interactions)

Other approaches try to solve p & Ξ issues with flavor-dependent $T_{\rm ch}$

Loosely bound (anti-)nuclei reproduced by SHM (snowballs in hell)

^{*}Not included in fit

Hadrochemistry in central A-A collisions at the LHC

Production of light flavor hadrons fit over 9 orders of magnitude by Statistical Hadronization Model (SHM) in its Grand Canonical Ensemble (GCE) formulation

Hadron abundancies can be described as emerging from a hot Hadron-Resonance Gas in thermal equilibrium

At LHC: $\mu_B \sim 0$ $T_{ch} \sim 153$ MeV

COMPATIBLE WITH CHIRAL CROSSOVER TRANSITION TEMPERATURE FROM LQCD

How do these yields compare to those measured in smaller colliding systems?

Short-living resonances not described (influence of hadronic phase)*

Friction with p being addressed through S-matrix approach (π -N interactions)

Other approaches try to solve p & Ξ issues with flavor-dependent $T_{\rm ch}$

Loosely bound (anti-)nuclei reproduced by SHM (snowballs in hell)

^{*}Not included in fit

 h/π smoothly evolves across multiplicity reaching thermal values in Pb-Pb at the LHC

Hadrochemistry modification

 h/π smoothly evolves across multiplicity reaching thermal values in Pb-Pb at the LHC

No \sqrt{s} (down to RHIC) or colliding system dependence

Livio Bianchi

LHCP 2020

Paris (🏠)

Hadrochemistry modification

 h/π smoothly evolves across multiplicity reaching thermal values in Pb-Pb at the LHC

No \sqrt{s} (down to RHIC) or colliding system dependence

Evolution depends on the hadron: the stranger the steeper

High-multiplicity pp: ~ same hadrochemistry as in a fully thermalized system

Livio Bianchi

LHCP 2020

Paris (🏠)

Hadrochemistry modification

h/ π smoothly evolves across multiplicity reaching thermal values in Pb-Pb at the LHC

No \sqrt{s} (down to RHIC) or colliding system dependence

Evolution depends on the hadron: the stranger the steeper

High-multiplicity pp: ~ same hadrochemistry as in a fully thermalized system

How can this trend be interpreted?

Adapting SHM: canonical suppression, γ_s , ...

Canonical Statistical Model:

as multiplicity decreases quantum numbers (Q,B,S) are forced to be conserved in smaller and smaller volumes

Qualitatively describes Ξ and Ω , but big issues with p (B conservation) and ϕ (Q conservation for π)

LHCP 2020 Paris (🏠)

Adapting SHM: canonical suppression, γ_s , ...

Canonical Statistical Model:

as multiplicity decreases quantum numbers (Q,B,S) are forced to be conserved in smaller and smaller volumes

Qualitatively describes Ξ and Ω , but big issues with p (B conservation) and ϕ (Q conservation for π)

Introducing undersaturation parameter γ_s (incomplete equilibration of S) and fitting also T_{ch} and dV/dy in all systems: better agreement, but still problems with p, K and ϕ

Models starting from small systems

Models traditionally applied in pp can qualitatively reproduce the data if they introduce **color ropes** (densely-packed strings → higher string tension)

...but ropes seem not to be the dominant contribution for $low-p_T$ yields at high multiplicity

LHCP 2020

Paris (🏠)

Two-component models (core-corona)

Models implementing a double-regime scenario (EPOS, DCCI, ...):

- Core: high density, QGP formation, thermal hadronization h/π values flat
- Corona: low density, jets, hadronization in vacuum

- VS dN_{ch}/dη

- String

fragmentation

Models implementing a double-regime scenario (EPOS, DCCI, ...):

- **Core**: high density, QGP formation, thermal hadronization
- **Corona**: low density, jets, hadronization in vacuum

Grand-Canonical

 h/π evolution explained by core-to-corona ratio changing in events with different finalstate multiplicity

K. Werner, Phys. Rev. Lett. 98, 152301 (2007) Y. Kanakubo at al., Phys. Rev. C 101, 024912 (2020)

Hadron production VS $R_{\rm T}$ in small systems (I)

Topological classification of pp events, identifying:

- Toward region (triggering jet) + Away region (recoiling jet)
- Transverse region (Underlying Event UE)

The jet direction is the direction of the highest- $p_{\rm T}$ hadron ($p_{\rm T}^{\rm leading} > 5~{\rm GeV}/c$)

V. Zaccolo 26 May, 18:00

A. Caliva 28 May, 15:03

Hadron production VS $R_{\rm T}$ in small systems (I)

Topological classification of pp events, identifying:

- Toward region (triggering jet) + Away region (recoiling jet)
- Transverse region (Underlying Event UE)

The jet direction is the direction of the highest- $p_{\rm T}$ hadron ($p_{\rm T}^{\rm leading} > 5~{\rm GeV}/c$)

In transverse region the average multiplicity does not change much for $p_{\rm T}^{\rm leading} > 5~{\rm GeV/}c$!

Measurement of hadron production in the three regions, as a function of R_T :

- Is the ratio-to-pion similar in all topological regions?
- How does this ratio evolve with R_T ?

Hadron production VS $R_{\rm T}$ in small systems (II)

Core-corona models may explain this as different Ξ/π ratios in jets (vacuum hadronization) and in the UE (core, statistical hadronization)

Need more measurements to draw firm conclusions: strange-hadron correlations, in- and out- full-reconstructed jet productions, etc.

Nuclei production from small to large systems

d, ³He and ³H significantly enhanced throughout multiplicity!

What causes this enhancement? Lifting of canonical suppression? Coalescence probability at kinetic freeze-out?

Qualitative agreement with Thermal Canonical Statistical Model and coalescence model.

Collective flow

Collectivity in a nutshell

According to hydro picture, the QGP is expected to develop:

Radial flow

- Common expansion velocity of partons
- Translates into p_T spectra modification

Anisotropic flow

- Initial spatial anisotropy → final momentum anisotropy
- Measured through Fourier expansion coefficients of the p_{τ} distribution

Medium properties affect the values of flow coefficients: low bulk and shear viscosities → large radial and anisotropic flows

$$E\frac{d^3N}{dp^3} \approx \frac{1}{2\pi} \frac{d^2N}{p_T dp_T d\eta} \left[1 + 2 \sum_{n=1}^{\infty} v_n \cos[n(\phi - \Psi_n)] \right]$$

NOTE: initial anisotropies come from:

- geometry
- parton density fluctuations in the initial state

Spectral modification from large ...

Spectra get harder

- $\langle p_T \rangle$ increases (higher particle mass \rightarrow steeper increase)
- Can be seen in «baryon/meson» ratios (e.g. Λ/K_S^0)
- Interpreted as radial flow: higher mass \rightarrow higher p_T boost
- Well reproduced by hydro calculations at low-p_T

ALICE Collaboration, Phys. Rev. C 101, 044907 (2020)

 $p_{_{\!\scriptscriptstyle T}}\left({\rm GeV}/c\right)$

Hardening of spectra observed in small systems as well (e.g. pp)

... to small systems

Λ/K_S^0 enhancement present in all collision systems at the LHC:

• The larger the colliding system, the larger the effect

LHCP 2020 Paris (**()**

... to small systems

Λ/K_S^0 enhancement present in all collision systems at the LHC:

- The larger the colliding system, the larger the effect
- Smooth evolution with multiplicity when selecting specific p_T intervals
- Radial flow in small systems?

Application of hydro far from equilibrium under study

PYTHIA with CR can describe the low- p_T trend observed in pp

Z. Khabanova28 May, 15:03

Spectral modification in- and out-of-jets

→ Inclusive

☐ Sys.Error

10

 $p_{\tau}(\text{GeV/c})$

- In jet

-In UE

Spectra modification mostly happening outside the jet!

In two-component models this would be linked to the presence of radial flow in core (UE?) and of vacuum hadronization in jets

LHCP 2020

Striking similarities between light and heavy flavors in small systems

Intriguing observation:

- Hydro for charm? Hard to believe! Not supported by A-A observations:
 - \hookrightarrow low- $p_{\rm T}$ hierarchy $v_2^h > v_2^c > v_2^{cc}$
 - $\hookrightarrow \Lambda/K_S^0 > \Lambda_c/D_0$
 - ⇒ Challenges hydro hypothesis for light flavors in pp
- Coalescence at intermediate p_T with same net effect for light and heavy flavors?
- Color Reconnection in the final state?

Need to extend Λ_c/D_0 at lower p_T and with larger statistics

Anisotropic flow and hydro calculations

v_n ≠ 0 observed at RHIC and LHC.
 More important in semi-peripheral collisions (large eccentricity)

Hydrodynamic models reproduce v_n at low- p_T in all centralities by means of an "almost" perfect fluid: $\eta/s=0.2$

v₂ for identified particles at LHC

v₂ for identified particles at LHC

The ϕ meson groups to protons at low- p_T (same mass) and to mesons at intermediate- p_T (same n_q)

v₂ for identified particles at LHC

The ϕ meson groups to protons at low- p_T (same mass) and to mesons at intermediate- p_T (same n_q)

Observation confirmed up to ³He at the LHC!

v₂ in small systems at LHC

$v_2 > v_3 > v_4 \neq 0$ in all colliding systems:

- $v_2{4}_{3-sub}=v_2{6}$ in pp: small influence of non-flow
- v₂ higher in A-A (eccentricity evolution), almost flat in pp and p-Pb
- v₃ & v₄ similar across systems (larger sensitivity to parton density anisotropy)

No model can quantitatively describe the data over the full multiplicity range

Magnetic fields and polarization

Livio Bianchi **LHCP 2020** Paris (🏠)

ALICE Collaboration, arXiv:1910.14408

ALICE

- Semi-central collisions
 - \hookrightarrow extreme \vec{B} generated by spectator nucleons (10²¹ revolutions/s)

- \vec{B} quickly decays, but \vec{L} conserved
- ρ_{00} : probability of finding a vector meson in $S_z = 0$ with respect to the normal to the event plane (B direction) *

 ρ_{00} below 1/3 for low-p_T and mid-central collisions: **3σ(2σ) for K* (ф)**

Consistent with hadronisation through recombination of q and \bar{q} from the QGP (Polarized plasma → polarized vector mesons) **

No effect observed for K_s^0 and in pp collisions

^{*} Yang et al., Phys. Rev. C 97, 034917 (2018)

^{**} Liang et al., Phys. Lett. B 629 20-26 (2005)

Determining QGP properties with global fits

Medium properties: from qualitative to quantitative (I)

Trying to describe in a unified picture (IC+hydro+Hadronization+afterburner) several measurements from the experiments

- 15 parameters (e.g. parametrization of shear and bulk viscosity, initial conditions, ...)
- Bayesian fit to yields, $\langle p_T \rangle$, $\langle p_T \rangle$ fluctuations and v_2 , v_3 , v_4 from LHC experiments
- Posterior parameter PDFs and correlations estimated

J. E. Bernhard at al., Nat. Phys. 15, 1113–1117(2019)

Medium properties: from qualitative to quantitative (II)

Posterior distributions describe LHC data at the 10% level

Medium properties: from qualitative to quantitative (II)

Posterior distributions describe LHC data at the 10% level

Medium properties: from qualitative to quantitative (III)

 η /s mildly dependent on the temperature and near to the lowest allowed value (from AdS/CFT):

almost perfect fluid!

- J. E. Bernhard at al., Phys. Rev. C 94, 024907 (2016)
- J. E. Bernhard at al., Nat. Phys. 15, 1113-1117(2019)
- J. E. Bernhard at al., Phys. Rev. C 101, 024911 (2020)

Conclusions and outlook

Study of soft probes in heavy-ion collisions:

- system produced at the LHC: color-deconfined thermalized medium
- Almost perfect fluid ($\eta/s \approx 0.2$ mildly dependent on T) which expands hydrodynamically leading to radial and anisotropic flow of the produced particles
- The medium undergoes chemical freeze out at $T_{ch} \approx 150-160 \text{ MeV}$
- Nucleosynthesis from large medium is consistent with thermal production

Study of soft probes in small colliding systems:

- Propedeutical to a deeper understanding of QGP phenomena in A-A
- Hadrochemistry and collectivity at high-multiplicity match what observed in A-A (for variables not strongly connected to collision geometry)
- Description is very challenging for any theoretical model.
 Two-component scenario seems favored

More questions? Private discussion?

Topic: LHCP_HIplenary_SoftProbes Time: May 27, 2020 02:00 PM Zurich

Join Zoom Meeting: <u>link</u> Meeting ID: 944 5644 3177

Password: same as this session's

Backup

$^{3}_{\Lambda}H$ lifetime: the (no) puzzle

Expectation: ${}^{3}_{\Lambda}H$ lifetime $\sim \Lambda$ lifetime (loosely bound object)

World average 2 years ago: significantly lower

New results from ALICE: more precise than world average. Full compatibility with Λ lifetime

 \dots yet loosely bound and compatible with thermal production (at T_{ch}) makes this exotic state pivotal in understanding nucleosythesis

Nuclei inelastic cross-section

Anti-nuclei production as a probe of dark matter annihilation in the universe*

Background: secondary production from ordinary matter collisions (pp, p-A with small Z...)

Anti-nuclei inelastic cross-section in matter known precisely for \bar{p} only

LHC: equal amount of matter and antimatter at mid rapidity

Nuclei and anti-nuclei have different inelastic cross-section in the detector material

* K. Blum et al., 10.1103/PhysRevD.96.103021 F.Donato et al.,10.1103/PhysRevD.62.043003

LHCP 2020

Resonance production and the hadronic phase

Resonances are powerful tools to probe the hadronic phase after chemical freeze-out

