New ideas for TeV-scale model building

Elina Fuchs Fermilab & UChicago

LHCP 2020 May 28, 2020 BSM-1 (TeV scale) Plenary session VII

Elina Fuchs (Fermilab&UChicago) – TeV-scale BSM models

LHCP, 05/28/2020

Challenges for naturalness ~TeV scale

LHCP, 05/28/2020

Outline

Extended Higgs sectors

- Adding singlets
- Z₂ symmetry
- Role for e.w. phase transition

Relaxion framework

- Rolling and stopping
- Relaxion-Higgs mixing
- Relaxion vs any (pseudo)scalar

New sources of CP violation

- Time-varying phases
- CPV in Dark Sector
- Complex Yukawas in EFT

Disclaimer/strategy

• Picked complementary BSM models

No claim for completeness \rightarrow Claim for incompleteness

• BSM at TeV scale can also have effects at lower energies

LHCP, 05/28/2020

I. EXTENDED HIGGS SECTORS WITH SINGLETS

Non-minimal Higgs sectors

• Why more scalars?

- SM with 1 Higgs just minimal solution
- Different Higgses for up-/down-type masses?
- Scalar potential needs to be modified to enable first-order electroweak phase transition
- More parameter space
- Why scalar singlets?
 - Interact with SM particles via the Higgs
 - Minimal extensions with rich phenomenology
 - Can help with phase transition
 - Adding singlets to doublet models (\rightarrow N2HDM, NMSSM): can relax mass constraint of h₁₂₅

SM+S

- Well studied model with different scenarios:
 - Z₂ conserved or explicitly broken
 - S can be heavier or lighter than h₁₂₅

SM+S with spontaneous Z_2

M. Carena, Z. Liu, Y. Wang '19

- Modification of e.w. phase transition challenging
 - modifications occur only at loop level due to cancellations by Z₂
- Light singlet S, possibly <S>~TeV at T=0
- Upper bound on singlet Higgs mixing quartic $\lambda_{hS} \Phi^\dagger \Phi S^2$
 - Need almost degenerate minima at T=0
- phase transition enhanced: **strongly 1**st **order possible**

$SM+SZ_2$: phase transition + collider

• 1- or 2-step phase transition

Signatures: h→ SS decay, Higgs precision coupling measurements, Higgs self-coupling, gravitational waves

LHCP, 05/28/2020

→ talk by T. Stefaniak

Robens, Stefaniak, Wittbrodt '19

• 2 real singlets S_{ii} 1 doublet Φ of $SU(2)_L$

$$V = \mu_{\Phi}^2 \Phi^{\dagger} \Phi + \lambda_{\Phi} (\Phi^{\dagger} \Phi)^2 + \lambda_{12} S_1^2 S_2^2 + \sum_{i=1,2} \mu_i^2 S_i^2 + \lambda_i S_i^4 + \lambda_{\Phi,i} \Phi^{\dagger} \Phi S_i^2$$

SM+2S with Z₂

- Described by 3 masses, 3 vevs, 3 mixing angles \rightarrow $h_{1,2,3}$
- Perturbative unitarity constraints, boundedness of V
- Sub-case of general 1 complex singlet extension
- $h_a \rightarrow h_b h_c$ decays:
 - cascades, multi-Higgs final states
 - rich (so far overlooked) signatures

II. RELAXION MECHANISM

LHCP, 05/28/2020

LHCP, 05/28/2020

LHCP, 05/28/2020

LHCP, 05/28/2020

Various relaxion models 🐠 🖤 📀

Not a complete list!

- Minimal model: QCD (rel)axion
- Non-QCD strong sector
- Double-field mechanism (ϕ, σ) Espinosa, Grojean, Pomarol, Pujolas, Servant '15
- Familon (pNGB of spontaneously broken flavor symmetry) Gupta, Komargodski, Perez, Ubaldi '15

$$\begin{split} V(H) &= \mu^2(\phi) H^\dagger H + \lambda (H^\dagger H)^2 \\ V(\phi) &= rg\Lambda^3 \phi + \dots \end{split}$$

Backreaction sector and scale Λ_{br} model-dependent

LHCP, 05/28/2020

Models for relaxion stopping

- Standard: during inflation
- Alternative: friction via particle production $\frac{\phi}{f}V\tilde{V}$ Hook, Marques-Tavares '16
 - Relaxation mechanism independent of inflation
 - Friction from dark gauge boson production Choi, Kim Sekiguchi '16
- New proposal: **self-stopping** relaxion Fonseca, Morgante, Sato, Servant '19
 - Also independent of inflation
 - Relaxion quantum fluctuations \rightarrow grow \rightarrow relaxion production

What the relaxion can do for you

• DM

- With particle production Fonseca, Morgante '18
- Coherent oscillations of very light DM → earth/sun halo
 Banerjee, Kim, Perez '18; Banerjee, Budker, Eby, Kim, Perez '19
- Baryogenesis Abel, Gupta, Scholtz '18
 - CPT violation during slow-roll

Can be realized for same masses $\sim 10^{-10} - 10^{-5} \text{ eV}$

• "hierarchion"/ Nelson-Barr relaxion: ew, strong CP, flavor hierarchies

Davidi, Gupta, Perez, Redigolo, Shalit '17 '18

 \bullet "All-in-one relaxion": m_H naturalness, DM, baryon asymmetry, m_v and strong CP

Gupta, Reiness, Spannowsky '19

Relaxion-Higgs mixing

Flacke, Frugiuele, EF, Gupta, Perez '16; Choi, Im '16

LHCP, 05/28/2020

Relaxion vs SM+S

$$\mathcal{L}_{\text{scalar}} = V_{\phi} + \mu^2(\phi)H^{\dagger}H + \lambda_h \left(H^{\dagger}H\right)^2$$

General singlet

$$V_{\phi} = \frac{1}{2}m_0^2\phi^2 + \frac{a_{\phi}}{3}\phi^3 + \frac{\lambda_{\phi}}{4}\phi^4$$
$$\mu^2(\phi) = -\mu_0^2 + 2a_{h\phi}\phi + \lambda_{h\phi}\phi^2$$

Naturalness $\sin heta \lesssim m_{\phi}/m_h$ $\lambda_{h\phi} \lesssim m_{\phi}^2/v^2$

Mixing angle Quartic coupling Relaxion

$$V_{\phi} = rg\Lambda^{3}\phi$$
$$\mu^{2}(\phi) = -\Lambda^{2} + g\Lambda\phi - \tilde{M}^{2}\cos\left(\phi/f\right)$$

upper/lower bound on relaxion-Higgs mixing?

Also CP-odd couplings to SM (like axion)

Relaxed mass and mixing

Banerjee, Matsedonskyi, Kim, Perez, Safronova '20

Upper and lower limit on mixing angle

Elina Fuchs (Fermilab&UChicago) – TeV-scale BSM models

LHCP, 05/28/2020

Relaxion hunting at multiple frontiers

LHCP, 05/28/2020

New h decay: $h \rightarrow \phi \phi$, coupling modifier

Direct and indirect bounds: prompt

LHCP, 05/28/2020

II. NEW SOURCES OF CP VIOLATION

CP violation for baryon asymmetry

Sakharov conditions for Baryogenesis I. B number violation II. CP violation III. Out of thermal equilibrium

[adapted from quantumdiaries]

L asymmetry to B asymmetry

Electroweak baryogenesis:

during e.w. phase transition

 \rightarrow connected to the Higgs

 \rightarrow testable at colliders

Leptogenesis:

 \rightarrow high scales

• Observed baryon asymmetry
$$\eta = \frac{n_B - n_{\bar{B}}}{n_{\gamma}} \sim 10^{-10}$$

• SM: $\delta_{\rm CKM}$ and $\bar{\theta}_{\rm QCD} < 10^{-10}$ insufficient

Gavela, Hernandez, Orloff, Pene '93 Huet, Sather '94

Need CP violation beyond the SM

LHCP, 05/28/2020

Restrictions on BSM CP violation

- Discovered Higgs compatible with JPC=O++
 - Small CP-odd component possible
- Electron electric dipole moment (EDM) $d_e \leq 1.1 \times 10^{-29} e \,\mathrm{cm} \,\mathrm{at} \,90\% \,\mathrm{CL}$ ACME [Nature '18]

h

e

 γ, Z

e

Time-varying Yukawas

Bruggisser, Konstandin, Servant '17; Baldes, Konstandin, Servant '16 '17

- CPV only from CKM matrix
- Flavour EWPT:
 - Embed in flavour model

Frogatt-Nielsen, extra dimension, composite Higgs

- Scale of flavour structure can be near ew. scale
- ${\scriptstyle \bullet}$ New scalar between $m_{\rm h} and \, {\rm TeV}$

Bubble wall Γ_{ms} [image: Bruggisser et al] $-\Delta$ 6 z/L_w Broken Symmetric $\overleftarrow{L_w}$ y small today before EWPT Yukawas vary <h>> varies EDM suppressed 1st order phase transition CP violation large

CP violation in dark sector

CPV in dark sector→ EDM suppressed→ provides DM

Different models, e.g.

- Cline, Kainulainen, Tucker-Smith '17: spontaneous CPV in renormalisable interaction of scalar with fermionic DM; CP restored at T=0
- Carena, Quiros, Zhang '18 '19: light Z' as messenger ~e.w. scale
- Hall, Konstandin, McGehee, Murayama, Servant '19: Dark 1st order phase transition, dark SU(2) with neutrino portal
- Azevedo, Ferreira, Mühlleitner, Patel, Santos '18; Okawa, Pospelov, Ritz '19; Keus '19; ...

SMEFT: dim-6 complex Yukawas

Consider dim-6 Yukawa with real and imaginary part (*only1EFT term*)
 <sup>→ for more general EFT see next talk by
</sup>

$$\mathcal{L}_{\text{Yuk}} = Y_f \overline{F_L} F_R H + \frac{1}{\Lambda^2} (X_R^f + i X_I^f) |H|^2 \overline{F_L} F_R H. + \text{h.c.}$$

EF, Losada, Nir, Viernik '19 '20 cf de Vries, Postma, van de Vies '18 where $X_R^f \equiv 0$, $X \equiv \pm i Y_f$

• Ratio of dim-6/dim-4:
$$T^{f} = \frac{m_{f}^{(6)}}{m_{f}^{(4)}} = \frac{v^{2}}{2\Lambda^{2}} \frac{X^{f}}{Y^{f}}$$

sufficient baryon asymmetry within LHC & EDM limits? T: yes t, b, μ : no EDM $\mu(h \rightarrow \mu\mu) < 1.7$ EFT Cut-off scales $\Lambda/\sqrt{X_{R,I}}$ Minimal scales maximally allowed T (collider, EDM) τ , b: 1 - 3 TeV; t: 1 TeV (LHC), 9 TeV (EDM) μ : 10 – 12 TeV Maximal scales minimally required T, (EWBG)

 $\Lambda/\sqrt{X_I^ au}\lesssim 18~{
m TeV}~(0.01/T_I^ au)^{1/2}$

K Mimasu

Several complex Yukawas

Further test these scenarios:

EF, Losada, Nir, Viernik '19 '20

- Higgs production & decay: precise signal strength measurements
- angular distributions, especially h→ττ
- additional EDMs

Y
$$_B^{b+ au,\max}(d_e=0,\mu_b=\mu_{ au}=1)=10.25Y_B^{
m obs}$$

EWBG possible with 0 CPV signals!

Many other (newer or older) models

LHCP, 05/28/2020

Conclusions

Adding singlets to the SM

- Helps with e.w. phase transition
- 2S model: Higgs → Higgs decays
- Broken or unbroken Z_2

-2

Relaxion

- ${\mbox{ \ \ }}$ Dynamic solution to hierarchy of $m_{\rm h}$
- CPV h-Φ mixing
- Mass range: from collider to table-top precision probes

BSM CP violation

- Need large enough CPV for baryogenesis
- Enhanced asymmetry or suppressed washout
- Small enough to hide behind EDM & Higgs properties
- e.g. cancellation, time variation, CPV in dark sector

Models and searches

- BSM possible despite SM-like data
- Some models solve several shortcomings
- Higgs precision, exotic Higgs decays, cosmology,...
- Combine different methods → hoping for discoveries

LHCP, 05/28/2020

THANK YOU

Invitation to further discussion on BSM models at the TeV scale: Meeting ID: 962 5456 7705 Password: same as for this session

APPENDIX

Graham, Kaplan, Rajendran '15 Relaxion mechanism

∧: cutoff scale of Higgs loop

$$V(H) = \mu^2(\phi)H^{\dagger}H + \lambda(H^{\dagger}H)^2$$
$$V(\phi) = rg\Lambda^3\phi + \dots$$

$$\mu^2(\phi) = -\Lambda^2 + g\Lambda\phi$$
 scans m_h during inflation

LHCP, 05/28/2020

Relaxion width and lifetime

Flacke, Frugiuele, EF, Gupta, Perez '16;

LHCP, 05/28/2020

Relaxion hunting at LHC+

- Z decay and production
- h→ΦΦ Prompt decays
 - "untagged" final state
 - Visible decay products
- K_z from hZ xsec

Frugiuele, EF, Schlaffer, Perez '18 + updates for European Strategy '19

Benchmark for European Strategy Update

Ellis et al '19

Relaxion as NP benchmark with light new scalar

Long-lived relaxions

EF, Perez, Savoray, Schlaffer, work in progress

Using and reproducing J. Liu, Zh. Liu, L.T. Wang '19

LHCP, 05/28/2020

MeV-GeV: B, K decays

LHCP, 05/28/2020

Coupling modifier, BR_{NP}, Br_{inv}

Collider	$\sqrt{s} [\text{TeV}]$	$\mathcal{L}_{int} [ab^{-1}]$	BR_{NP} [%]	BR_{inv} [%]	$\delta \kappa ~[\%]$	Ref.	
LHC1	7, 8	0.022	20	37	26	[14] Tab. 10,11	
LHC3	13	0.3	12.3	17	8.6		
HL-LHC	14	6	4.1	1.9	1.3		
HE-LHC	27	15	2.6	(2.6)	0.8	[15] Tab. 24	
LHeC	1.3	1	2.2	2.2	0.6		
ILC250	0.25	2	1.8	0.26	0.3	[15] Tab. 25	
ILC500	0.25, 0.35, 0.5	2+0.2+4	1.4	0.23	0.24		
CEPC	$M_Z, 2M_W, 0.24$	16 + 2.6 + 5.6	1.1	0.28	0.18	[15] Tab. 25	
FCCee240	0.24	5	1.2	0.22	0.21		
FCCee365	0.365	1.7	1.1	0.19	0.18	[15] Tab. 25	
FCCee/eh/hh	100	30	1	0.024	0.24		
TeraZ	M_Z	$N_Z = 10^{12}$					
CLIC stage 1	0.38	1	2.7(0.92)	0.64	0.4	[15] Tab. 25	
CLIC stage 2	1.5	2.5	2.4(0.39)	0.65	0.2	([16] Tab. 6c)	
CLIC stage 3	3	5	2.4(0.26)	0.65	0.1		

Table 1. Bounds in the $\kappa - 2$ scenario on the BR_{NP} and uncertainty in the determination of the most precise κ (namely κ_Z except for CLIC stage 2 and 3 and LHeC where κ_W is more precise) at different benchmarks of the LHC and future lepton colliders with given energy and luminosity. Assumptions on the polarization can be found in the original references. The LHC Run-3 bound at approximately 95% CL was obtained by multiplying the 68% CL bound from Ref. [14] by the ratio of the quantiles of a χ^2 distribution with 2 parameters assuming that a true 2-parameter (BR_{NP} and one global κ) fit will be dominated by the most precise κ .

[14] Bechtle et al 1403.1582[15] de Blas et al 1905.03764[16] de Blas et al 1812.02093

LHC results used for EFT of Yukawa

channel	experiment	$\sqrt{s}/{ m TeV}$	$\mathscr{L}/\operatorname{fb}^{-1}$	comment	μ	Ref
$h \to \tau^+ \tau^-$	ATLAS+CMS	7+8	5 + 20		$1.11_{-0.22}^{+0.24}$	[16]
	ATLAS	13	36.1	ggF, VBF	$1.09\substack{+0.35 \\ -0.30}$	[17]
	\mathbf{CMS}	13	77	ggF, $\bar{b}b$, VBF, Vh	0.75 ± 0.17	[18]
	ATLAS+CMS	7 + 8 + 13		all prod., priv. comb.	0.91 ± 0.13	[16–18]
$h ightarrow \mu^+ \mu^-$	ATLAS	19	139	upper bound at 05% C. I	< 1.7	[19]
	CMS	15	35.9	upper bound at 95% C. L.	< 2.9	[20]
$h ightarrow ar{b}b$	ATLAS	13	79.8	VBF+VH	1.23 ± 0.26	[15]
				$t\bar{t}h + th$	$0.79\substack{+0.60 \\ -0.59}$	[10]
	CMS	7+8+13	41.3	VH (0- 2ℓ , 2 b-tags+jets)	1.01 ± 0.22	[91]
				all prod.	1.04 ± 0.2	[21]
	ATLAS+CMS	7+8+13	≤ 79.8	VH, priv. comb. 0.98 ± 0		[14 91]
				all prod., priv. comb.	1.02 ± 0.14	

LHCP, 05/28/2020

CPV ATLAS $h \rightarrow \tau \tau$: Prospects for HL

This note presents a study for the prospective measurement of the $C\mathcal{P}$ quantum number of the Higgs boson coupling to τ leptons with 3000 fb⁻¹ of proton–proton collisions at $\sqrt{s} = 14$ TeV using the ATLAS detector at the HL-LHC. Only $H \to \tau\tau$ events where both τ leptons decay via the $\tau^{\pm} \to \rho^{\pm} v_{\tau} \to \pi^0 \pi^{\pm} v_{\tau}$ chain are analysed and the acoplanarity angle $\varphi^*_{C\mathcal{P}}$, the angle between the planes spanned by the pion pairs, is used to determine the $C\mathcal{P}$ -mixing angle. It is shown that considering only statistical uncertainties, a pseudoscalar Higgs boson can be excluded at 95% confidence level. The $C\mathcal{P}$ -mixing angle can be measured with a statistical precision ranging between $\pm 18^{\circ}$ and $\pm 33^{\circ}$, depending on the precision of the π^0 reconstruction

$$\mathcal{L} = g_{\tau\tau}(\cos(\phi_{\tau})\overline{\tau}\tau + \sin(\phi_{\tau})\overline{\tau}i\gamma_{5}\tau)h$$

ATLAS PHYS-PUB-2019-008

