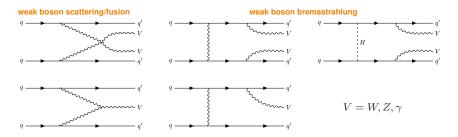


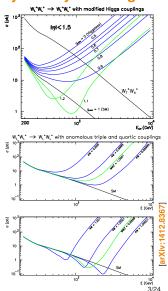
VBF and VBS measurements

Christian Gütschow

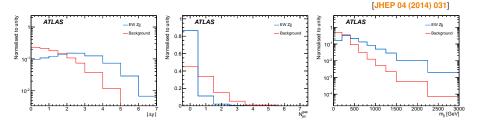
University College London


LHCP online, 28 May 2020

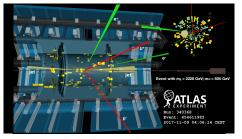
VBF and VBS: measurable, but not measurable



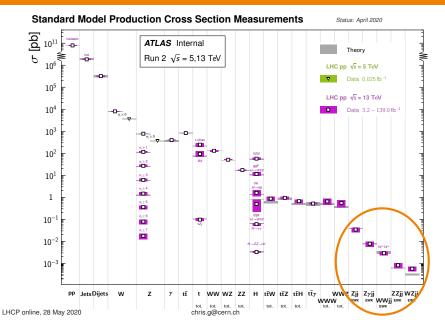
- \rightarrow gauge invariant set of electroweak V(V) jj diagrams at tree level, i.e. $\mathcal{O}(\alpha_w^{3(4)})$
- strong negative interference between all diagrams involving the exchange of a colour-singlet in the t-channel
- → part of the NLO electroweak correction to QCD V(V) + 2 jet production, i.e. $\mathcal{O}(\alpha_s^2 \alpha_w^{1(2)})$
 - → mixed QCD-EW contribution, i.e. $\mathcal{O}(\alpha_s \alpha_w^{2(3)})$, significant at large jet p_T (10–50% at 1–4 TeV)


Probing the foundations of electroweak symmetry breaking

- high-energy behaviour of weak boson scattering subject to delicate cancellation between different terms
 - → the cross-section for the longitudinal component $W_L W_L \rightarrow W_L W_L$ grows with centre-of-mass energy in the absence of the Higgs
- very sensitive to slight shifts in the trilinear or quartic gauge coupling strenghts
- → V(V)jj measurements are a fundamental test of the SU(2)_L × U(1)_Y gauge symmetry

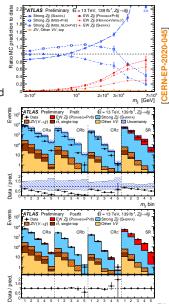


Characteristics of electroweak V(V)jj production



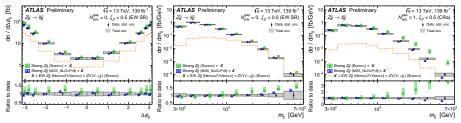
two forward "tagging" jets

- additional radiation between tagging jets heavily suppressed due to colour singlet exchange
- → dijet invariant mass significantly harder than for QCD V(V) + 2 jet production



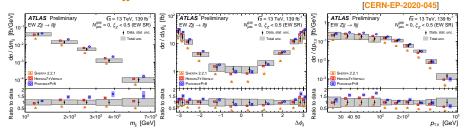
weak boson fusion

Background modelling in Zjj


- *m_{jj}* in general poorly modelled by event generators across the board
- modelling of the QCD V + 2 jet contribution constrained using data in dedicated control regions
 - more details in Heather Russell's talk tomorrow
- data-driven constraint transferred into signal region using the Monte Carlo
- impact of interference component assigned as a systematic on the electroweak signal
- → crucial to measure inclusive V(V) + 2 jet production in addition to extracting the V(V)jj component

Inclusive Z + 2 jet cross-sections

[CERN-EP-2020-045]



- → fiducial differential cross-section measurements in m_{ij}, |Δy_{ij}|, p_{T,ℓℓ}, Δφ_{ij} in signal as well as control regions
- \rightarrow data compared to multi-leg predictions for QCD Z + 0, 1, 2j@NLO+3, 4j@LO
 - using MEPS@NLO from Sherpa 2.2.1
 - using FxFx from MadGraph5_aMC@NLO+Pythia8
- both supplemented with electroweak Zjj@NLO QCD from Herwig7+VBFNLO
- small contribution of semi-leptonic diboson production taken from Sherpa 2.2.1

chris.g@cern.ch

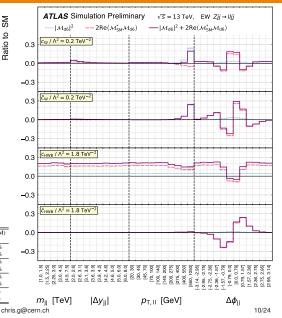
Electroweak Zjj cross-sections

→ fiducial differential cross-section measurements in m_{jj} , $|\Delta y_{jj}|$, $p_{T,\ell\ell}$, $\Delta \phi_{jj}$

data compared to electroweak Zjj predictions (in the VBF approximation)

- → at NLO from Herwig7 + VBFNLO
 - at NLO from Powheg v1 + Pythia8
- → with up to two additional parton emissions at LO from Sherpa 2.2.1
- Sherpa 2.2 series known to have non-optimal colour flow for VBF/VBS processes, resulting in too much radiation between tagging jets

→ integrated cross-section 37.4 ± 3.5(stat) ± 5.5(syst) fb in excellent agreement with SM prediction 39.5 ± 3.4(scale) ± 1.2(pdf) fb from Herwig7+VBFNLO LHCP online, 28 May 2020 chris,g@cern.ch



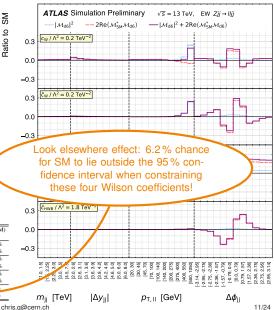
EFT constraints

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{SM}} + \sum_{i} \frac{c_{i}}{\Lambda^{2}} \mathcal{O}_{i}$$

- constraints placed on dim-6 operators in Warsaw basis
 - $\rightarrow CP$ -even: $\mathcal{O}_W, \mathcal{O}_{HWB}$ $\rightarrow CP$ -odd: $\tilde{O}_W, \tilde{O}_{HWB}$
- SM predictions modified as: $|\mathcal{M}|^2 = |\mathcal{M}_{SM}|^2 + |\mathcal{M}_{d6}|^2$ $+ 2 \text{Re}(\mathcal{M}^*_{\text{SM}}\mathcal{M}_{\text{d6}})$ with pure SM-term taken from Herwig7+VBFNLO and using SMEFTsim and MadGraph5+Pythia8 CERN-EP-2020-045 for remaining terms

Wilson	Includes	95% confidence	e interval [TeV ⁻²]	CL (SM)
coefficient	$ M_{d6} ^2$	Expected	Observed	
c_W/Λ^2	no	[-0.30, 0.30]	[-0.19, 0.41]	45.9%
	yes	[-0.31, 0.29]	[-0.19, 0.41]	43.2%
\tilde{c}_W/Λ^2	no	[-0.12, 0.12]	[-0.11, 0.14]	82.0%
	yes	[-0.12, 0.12]	[-0.11, 0.14]	81.8%
$c_{\rm HWB}/\Lambda^2$	no	[-2.45, 2.45]	[-3.78, 1.13]	29.0%
	yes	[-3.11, 2.10]	[-6.31, 1.01]	25.0%
$\tilde{c}_{HWB}/\Lambda^2$	no	[-1.06, 1.06]	[0.23, 2.34]	1.7%
	yes	[-1.06, 1.06]	[0.23, 2.35]	1.6%

LHCP online, 28 May 2020



EFT constraints

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{SM}} + \sum_{i} \frac{c_{i}}{\Lambda^{2}} \mathcal{O}_{i}$$

- constraints placed on dim-6 operators in Warsaw basis
 - $\rightarrow CP$ -even: $\mathcal{O}_W, \mathcal{O}_{HWB}$ $\rightarrow CP$ -odd: $\tilde{O}_W, \tilde{O}_{HWB}$
- SM predictions modified as: $|\mathcal{M}|^2 = |\mathcal{M}_{SM}|^2 + |\mathcal{M}_{d6}|^2$ $+ 2 \text{Re}(\mathcal{M}^*_{\text{SM}}\mathcal{M}_{\text{d6}})$ with pure SM-term taken from Herwig7+VBFNLO and using SMEFTsim and MadGraph5+Pythia8 CERN-EP-2020-045 for remaining terms

Wilson	Includes	95% confidence	e interval [TeV ⁻²]	CL (SM)
coefficient	$ M_{d6} ^2$	Expected	Observed	
c_W/Λ^2	no	[-0.30, 0.30]	[-0.19, 0.41]	45.9%
	yes	[-0.31, 0.29]	[-0.19, 0.41]	43.2%
\tilde{c}_W/Λ^2	no	[-0.12, 0.12]	[-0.11, 0.14]	82.0%
	yes	[-0.12, 0.12]	[-0.11, 0.14]	81.8%
$c_{\rm HWB}/\Lambda^2$	no	[-2.45, 2.45]	[-3.78, 1.13]	29.0%
	yes	[-3.11, 2.10]	1 6.51, 1.011	25.0%
$\tilde{c}_{HWB}/\Lambda^2$	no	[-1.06, 1.06]	[0.23, 2.34]	1.7%
	yes	[-1.06, 1.06	[0.23, 2.35]	1.6%

LHCP online, 28 May 2020

weak boson scattering

Variable

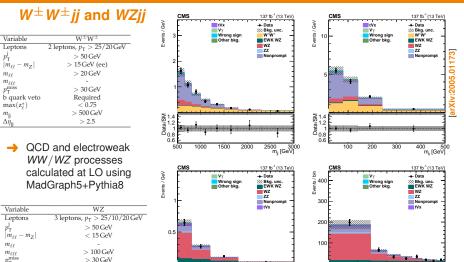
Leptons

 $max(z_{\ell}^*)$

mee mere $p_{\mathrm{T}}^{\ell\ell\ell}$

m_{ii}

 $\Delta \eta_{ii}$


 $m_{\ell\ell}$

mere $p_{\rm T}^{\rm t\ell\ell}$

m_{ii} $\Delta \eta_{ii}$

b quark veto

 $max(z_{\ell}^{*})$

LHCP online, 28 May 2020

Required

< 1.0 $> 500 \, \text{GeV}$

> 2.5

Data/SM 1.2 0.8

0.6

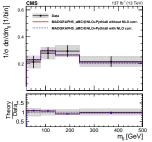
500

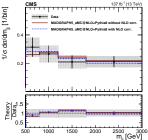
1500 2000

chris.g@cern.ch

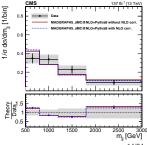
-0.5

Data/SM 1.2 0.8


BDT score 13/24


0.5

$W^{\pm}W^{\pm}jj$ and WZjj

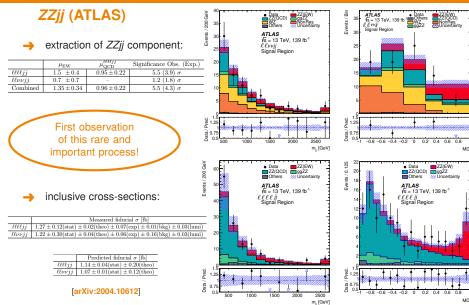

- electroweak component extracted using binned maximum-likelihood fit
- interference component counted towards signal
- → leading systematics: non-prompt rate (3.5 %) for W[±]W[±], JES/JER (4.3 %) and theory (3.8 %) for WZ

[arXiv:2005.01173]

Process	$\sigma \mathcal{B}$ (fb)	Theoretical prediction without NLO corrections (fb)	Theoretical prediction with NLO corrections (fb)
$EW \; W^\pm W^\pm$	3.98 ± 0.45 $0.37 (stat) \pm 0.25 (syst)$	3.93 ± 0.57	3.31 ± 0.47
EW+QCD W^\pm W^\pm	4.42 ± 0.47 $0.39 (stat) \pm 0.25 (syst)$	4.34 ± 0.69	3.72 ± 0.59
EW WZ	1.81 ± 0.41 $0.39 (stat) \pm 0.14 (syst)$	1.41 ± 0.21	1.24 ± 0.18
EW+QCD WZ	4.97 ± 0.46 $0.40 (stat) \pm 0.23 (syst)$	4.54 ± 0.90	4.36 ± 0.88
QCD WZ	3.15 ± 0.49 $0.45 (stat) \pm 0.18 (syst)$	3.12 ± 0.70	3.12 ± 0.70

		[arXiv:2004.10612]
	lllljj	llννjj
Electrons	$p_{\rm T} > 7~{ m GeV}, \eta < 2.47$	$p_{\rm T} > 7~{ m GeV}, ~ \eta < 2.5$
Muons	$p_{\rm T} > 7~{\rm GeV}, \eta < 2.7$	$p_{\rm T} > 7~{ m GeV}, ~ \eta < 2.5$
Jets	$p_{\rm T}>$ 30 (40) GeV for $ \eta <2.4$ (2.4 $< \eta <4.5)$	$p_{\rm T} > 60~(40)~{\rm GeV}$ for the leading (sub-leading) jet
ZZ selection	$p_T > 20$, 20, 10 GeV for the leading, sub-leading and third leptons Two OSSF lepton pairs with smallest $ m_{\ell^+\ell^-} - m_Z + m_{\ell^+\ell^-} - m_Z $ $m_{e^+e^-} > 10$ GeV for lepton pairs	$p_T > 30$ (20) GeV for the leading (sub-leading) lepton One OSSF lepton pair and no third leptons $80 < m_{e^+e^-} < 100 \text{ GeV}$
	$\begin{array}{c} \max_{\ell^+\ell^-} 10 \ \mathrm{Gev} \ \mathrm{meror} \\ \Delta R(\ell,\ell') > 0.2 \\ 60 < m_\ell \epsilon_\ell < 120 \ \mathrm{GeV} \end{array}$	$E_{\mathrm{T}}^{\mathrm{miss}} > 130 \ \mathrm{GeV}$
Dijet selection	Two most energetic jets with $m_{jj} > 300 \ {\rm GeV} \ {\rm and} \ \Delta y(jj) > 2$	$y_{j_1} \times y_{j_2} < 0 \\ m_{jj} > 400 \mbox{ GeV} \mbox{ and } \Delta y(jj) > 2$

ZZjj (ATLAS)


electroweak ZZjj component simulated at LO using MadGraph5+Pythia8

QCD ZZ + 0, 1j@NLO+2, 3, 4j@LO simulated using Sherpa 2.2.2

→ control regions used to constrain the modelling of the strong ZZ + 2 jets component

- multivariate discriminant (MD) based on gradient BDT used to extract electroweak ZZjj component
- impact of interference component assigned as a systematic on the electroweak signal
- → systematics: largest impact from theoretical uncertainties (up to 30 % for ZZ + 2 jets)

chris.g@cern.ch

LHCP online, 28 May 2020

chris.g@cern.ch

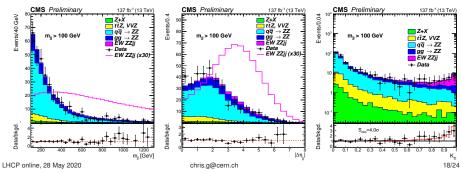
UCL

ZZjj (CMS)

- full electroweak ZZjj component including triboson component simulated at LO using MadGraph5+Pythia8
- → QCD ZZ + 0, 1j@NLO using FxFx from MadGraph5_aMC@NLO+Pythia8
 - → differential NNLO QCD K factor applied as a function of m_{ZZ}
 - \rightarrow EW corrections for $m_{ZZ} > 2m_Z$ applied
 - control regions used to constrain the the strong ZZ + 2 jets modelling
- → matrix-element discriminant (K_D) used to extract electroweak ZZjj component
- systematics: largest impact from jet energy scale (5-11%) and QCD scales (2-11%)

01.1	6.1		
Object	Selection		
ZZjj inclusive			
Leptons	$p_{\mathrm{T}}(\ell_1) > 20 \mathrm{GeV}$		
	$p_{\rm T}(\ell_2) > 10 {\rm GeV}$		
	$p_{\rm T}(\ell) > 5 {\rm GeV}$		
	$ \eta(\ell) < 2.5$		
	(γ with $\Delta R(\ell, \gamma) < 0.1$ added to ℓ 4-vector)		
Z and ZZ	$60 < m(\ell \ell) < 120 \text{GeV}$		
	$m(4\ell) > 180 \text{ GeV}$		
Jets	at least 2		
	$p_{\mathrm{T}}(j) > 30 \mathrm{GeV}$		
	$ \eta(j) < 4.7$		
	$m_{jj} > 100 \text{ GeV}$		
	$\Delta R(\ell, j) > 0.4$ for each ℓ, j		
	VBS-enriched (loose)		
	ZZjj inclusive +		
Jets	$ \Delta\eta(jj) > 2.4$		
	$m_{jj} > 400 \text{ GeV}$		
	VBS-enriched (tight)		
	ZZjj inclusive +		
Jets	$ \Delta \eta(jj) > 5$		
	$m_{jj} > 400 \text{ GeV}$		

[CMS-PAS-SMP-20-001]


ZZjj (CMS)

	SM σ (fb)	Measured σ (fb)		
ZZjj inclusive				
EW	0.275 ± 0.021 (theo)	$0.33^{+0.11}_{-0.10}$ (stat) $^{+0.04}_{-0.03}$ (syst)		
EW+QCD	5.35 ± 0.51 (theo)	$5.29^{+0.31}_{-0.30}$ (stat) ± 0.46 (syst)		
VBS-enriched (loose)				
EW	0.186 ± 0.015 (theo)	$0.200 \stackrel{+0.078}{_{-0.067}} (stat) \stackrel{+0.023}{_{-0.013}} (syst)$		
EW+QCD	$1.21\pm0.09(theo)$	$\begin{array}{c} 0.200 \stackrel{+0.078}{_{-0.067}} (\text{stat}) \stackrel{+0.023}{_{-0.013}} (\text{syst}) \\ 1.00 \stackrel{+0.12}{_{-0.11}} (\text{stat}) \stackrel{+0.06}{_{-0.05}} (\text{syst}) \end{array}$		
VBS-enriched (tight)				
EW	0.050 ± 0.005 (theo)	$0.06^{+0.05}_{-0.04}$ (stat) ± 0.01 (syst)		
EW+QCD	0.171 ± 0.012 (theo)	$0.17 \pm 0.04 (stat) \pm 0.01 (syst)$		

Coupling	Exp. lower	Exp. upper	Obs. lower	Obs. upper	Unitarity bound
f_{T0}/Λ^4	-0.37	0.35	-0.24	0.22	2.9
f_{T1}/Λ^4	-0.49	0.49	-0.31	0.31	2.7
f_{T2}/Λ^4	-0.98	0.95	-0.63	0.59	2.8
f_{T8}/Λ^4	-0.68	0.68	-0.43	0.43	3.3
f_{T9}/Λ^4	-1.46	1.46	-0.92	0.92	3.3

+ 4.0(3.5) σ observed (expected) significance

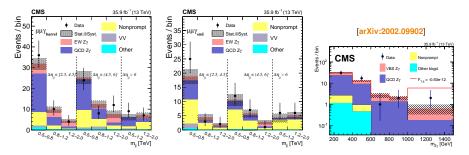
[CMS-PAS-SMP-20-001]

$Z\gamma jj$ (CMS)

[CMS, arXiv:2002.09902]

Common selection	$p_{\rm T}^{\ell 1,\ell 2} > 25 {\rm GeV}, \eta^{\ell 1,\ell 2} < 2.5$ for electron channel
	$p_{\rm T}^{\ell_1,\ell_2} > 20 {\rm GeV}, \eta^{\ell_1,\ell_2} < 2.4$ for muon channel
	$p_{\rm T}^{\gamma} > 20 { m GeV}, \eta^{\gamma} < 1.444 \text{ or } 1.566 < \eta^{\gamma} < 2.500$
	$p_T^{j1,j2} > 30 \text{ GeV}, \eta^{j1,j2} 4.7$
	$70 < m_{\ell\ell} < 110 \text{GeV}, m_{Z\gamma} > 100 \text{GeV}$
	$\Delta R_{ m jj}, \Delta R_{ m j\gamma}, \Delta R_{ m j\ell} > 0.5, \Delta R_{\ell\gamma} > 0.7$
Control region	$150 < m_{\rm jj} < 400 {\rm GeV}$
	Common selection
EW signal region	$m_{\rm jj} > 500 { m GeV}, \Delta \eta_{\rm jj} > 2.5,$
	$\eta^* < 2.4, \Delta \phi_{Z\gamma, jj} > 1.9,$
	Common selection
Fiducial region	$m_{ij} > 500 \text{ GeV}, \Delta \eta_{ij} > 2.5,$
	Common selection, without requirement on $m_{Z\gamma}$
aQGC search region	$m_{\rm jj} > 500 {\rm GeV}, \Delta \eta_{\rm jj} > 2.5,$
	$p_{\rm T}^{\gamma} > 100 {\rm GeV},$
	Common selection, without requirement on $m_{Z\gamma}$

electroweak Zyjj component simulated at LO using MadGraph5+Pythia8

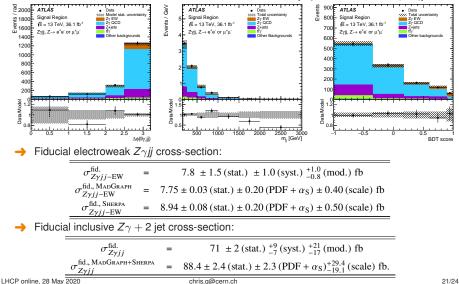

→ QCD $Z\gamma$ + 0, 1*j*@NLO using FxFx from MadGraph5_aMC@NLO+Pythia8

→ impact of interference component assigned as a systematic on the electroweak signal

→ systematics: largest impact from theoretical uncertainties (QCD scales up to 25%)

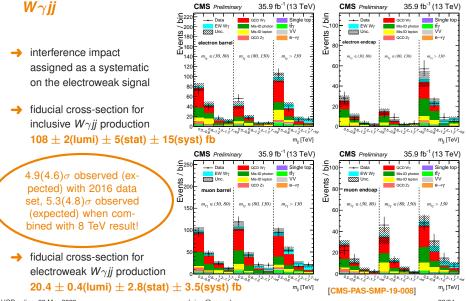
chris.g@cern.ch

$Z\gamma jj$ (CMS)



→ fiducial cross-section for inclusive Zγjj production 14.3 ± 0.4(lumi) ± 1.1(stat) ± 2.7(syst) fb in good agreement with SM prediction 15.7 ± 1.7(scale) ± 0.2(pdf) fb from MadGraph5_aMC@NLO+Pythia8

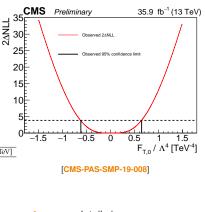
→ fiducial cross-section for electroweak Zγjj production 3.2 ± 0.2(lumi) ± 1.1(stat) ± 0.6(syst) fb agrees within 2σ with with SM prediction 4.97 ± 0.25(scale) ± 0.14(pdf) fb from MadGraph5+Pythia8



$Z\gamma jj$ (ATLAS)

[Phys. Lett. B 803, 135341 (2020)]

LHCP online, 28 May 2020


chris.g@cern.ch

22/24

Wγjj

unitarity bound given by scattering energy at which the aQGC coupling strength, when set equal to the observed limit, would result in a scattering amplitude that violates unitarity

more details in Mariarosaria D'Alfonso's

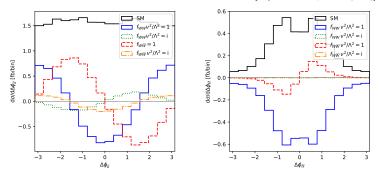
talk tomorrow

Observed limits [TeV ⁻⁴]	Expected limits [TeV ⁻⁴]	Unitarity bound [TeV]
$-8.07 < F_{\rm M,0}/\Lambda^4 < 7.99$	$-7.67 < F_{M,0}/\Lambda^4 < 7.55$	1.0
$-11.8 < F_{M,1}/\Lambda^4 < 12.1$	$-10.8 < F_{\rm M,1}/\Lambda^4 < 11.3$	1.2
$-2.81 < F_{M,2}/\Lambda^4 < 2.81$	$-2.68 < F_{\rm M,2}/\Lambda^4 < 2.68$	1.3
$-4.41 < F_{M,3}/\Lambda^4 < 4.49$	$-4.04 < F_{M,3}/\Lambda^4 < 4.10$	1.5
$-4.99 < F_{M,4}/\Lambda^4 < 4.95$	$-4.70 < F_{M,4}/\Lambda^4 < 4.67$	1.5
$-8.27 < F_{M,5}/\Lambda^4 < 8.31$	$-7.85 < F_{M,5}/\Lambda^4 < 7.73$	1.8
$-16.2 < F_{M.6}/\Lambda^4 < 16.0$	$-15.4 < F_{M.6}/\Lambda^4 < 15.1$	1.0
$-20.8 < F_{M,7}/\Lambda^4 < 20.2$	$-19.4 < F_{\rm M.7}/\Lambda^4 < 18.7$	1.3
$-0.62 < F_{T,0}/\Lambda^4 < 0.64$	$-0.60 < F_{T,0} / \Lambda^4 < 0.62$	1.4
$-0.35 < F_{T,1}/\Lambda^4 < 0.39$	$-0.34 < F_{\rm T,1}/\Lambda^4 < 0.38$	1.5
$-0.99 < F_{T,2}/\Lambda^4 < 1.18$	$-0.98 < F_{T,2}/\Lambda^4 < 1.16$	1.5
$-0.45 < F_{T.5}/\Lambda^4 < 0.46$	$-0.43 < F_{T.5}/\Lambda^4 < 0.44$	1.8
$-0.36 < F_{T.6} / \Lambda^4 < 0.38$	$-0.34 < F_{T.6}/\Lambda^4 < 0.36$	1.7
$-0.87 < F_{\mathrm{T},7}/\Lambda^4 < 0.93$	$-0.83 < F_{\rm T,7}/\Lambda^4 < 0.89$	1.8

Summary

- measurements of Vij and VVij final states are a vital probe of the electroweak sector
 - → unitarity bound achieved through delicate cancellation of terms
- measurements of inclusive V + 2 jet and VV + 2 jet production in VBF/VBS topologies provide a stress test of perturbative QCD
 - → understanding the background modelling key to pinning down these important processes
 - -> crucial to make data available on HEPData and provide a Rivet routine to maximise impact
- → go see Heather Russell's and Mariarosaria D'Alfonso's talks tomorrow!

Thank you!



Backup

Azimuthal decorrelation

[Phys. Rev. D 97, 095017 (2018)]

→ crucial to precisely measure jet/lepton kinematics in VBF/VBS topologies

→ azimuthal difference sensitive to different spin and CP states [JHEP 01 (2013) 148]

chris.g@cern.ch

$W^{\pm}W^{\pm}jj$ and WZjj systematics (CMS)

Source of uncertainty	W [±] W [±] (%)	WZ (%)
Integrated luminosity	1.5	1.6
Lepton measurement	1.8	2.9
Jet energy scale and resolution	1.5	4.3
Pileup	0.1	0.4
btagging	1.0	1.0
Nonprompt rate	3.5	1.4
Trigger	1.1	1.1
Limited MC sample size	2.6	3.7
Theory	1.9	3.8
Total systematic uncertainty	5.7	7.9
Statistical uncertainty	8.9	22
Total uncertainty	11	23

$Z\gamma jj$ systematics (CMS)

Source of systematic uncertainty	Relative uncertainty [%]
Scales in QCD-induced $Z\gamma$ bkg	5–25
Scales in EW Z γ signal	2–14
Interference	4–8
JES	1–49
JER	1–26
Nonprompt photon bkg	9–37
Integrated luminosity	2.5
L1 mistiming correction	1–4
Photon identification	3
Pileup modeling	1
Trigger and selection efficiency	2–3

*Z*γ*jj* systematics (ATLAS)

Source	Uncertainty [%]
Statistical	+19 -18
$Z\gamma jj$ –EW theory modelling	+10 -6
$Z\gamma jj$ –QCD theory modelling	±6
$t\bar{t} + \gamma$ theory modelling	±2
$Z\gamma jj$ -EW and $Z\gamma jj$ -QCD interference	+3 -2
Jets	±8
Pile-up	±5
Electrons	±1
Muons	+3 -2
Photons	±Ĩ
Electrons/photons energy scale	±1
b-tagging	±2
MC statistical uncertainties	±8
Other backgrounds normalisation (including Z+jets)	+9 -8
Luminosity	±2
Total uncertainty	±26

W γ *jj* systematics (CMS)

Source	EW Wγjj	QCD W _{γjj}	VV	ttγ	$QCD Z\gamma$	Single top	Mis-ID photon	Mis-ID lepton	Double fake	$e \rightarrow \gamma$
Jet energy scale	0.9-6.9	11-28	6.4-38	3.7-16	12-78	3.3-18	_	_	_	11-28
Jet energy resolution	0.7-2.2	0.7 - 4.1	6.9-21	1.3-4.9	6.5-15	2.9-7.1	_	_	_	0.7 - 4.1
Luminosity	2.5	2.5	2.5	2.5	2.5	2.5	_	_	_	2.5
Mis-ID photon	_	_	_	_	_	_	12-22	_	12.1-22	_
Mis-ID lepton	_	_	_	_	_	_	_	30	30	_
μ_R/μ_F scales	1.5-11	6.1-20	_	_	_	_	_	_	_	_
PDF	3.2-5.6	1-2	_	_	_	_	_	_	_	_
Interference	1.8-2.8	_	_	_	_	_	_	_	_	_
Cross section of $t\bar{t}\gamma$	_	_	_	10	_	_	_	_	_	_
Cross section of VV	_	_	10	_	_	_	_	_	_	_
Pileup modeling	0-0.6	0.3-1.4	4.8-13	2.6-3.9	6.2-19	1.0-3.9	_	_	_	0.3-1.4
Statistics	7-11	6-36	45-100	13-56	16-100	17-55	7-36	43-72	30-100	54-100
L1 prefiring correction	1.7-2.4	0.8-1.6	0.5-1.6	1.4-2.5	0.6-3.6	1.0-2.1	_	_	_	1.1-2.8
b-tagging veto	0.3	0.3	0.3	0.8	0.3	0.8	_	_	_	0.3
Muon ID/ISO	0.3	0.3	0.3	0.3	0.3	0.3	_	_	_	0.3
Muon trigger	0.3	0.2	0.2	0.2	0.1	0.1	_	_	_	0.2
Electron reconstruction	0.5	0.6	0.5	0.6	0.6	0.5	_	_	_	0.5
Electron ID/ISO	1.3	1.3	1.3	1.3	1.3	1.3	_	_	_	1.3
Electron trigger	2.5	2.5	2.5	2.5	2.5	2.5	_	_	_	2.5
Photon ID	1.2	1.2	1.1	1.2	1.3	1.2	_	_	_	1.2