CMS Experiment at LHC, CERN Data recorded: Tue Sep 27 10:30:59 2016 EDT Run / Event / LS: 281707 / 1308250303 / 826

Searches for unconventional signatures and long-lived particles

CMS

BHAWNA GOMBER UNIVERSITY OF HYDERABAD, INDIA ON BEHALF OF THE CMS AND ATLAS COLLABORATION

LHCP 2020 May 25-30 2020

Searches for long-lived particles

- ★ LLPs have unconventional signatures
- \Rightarrow LLPs signature depend on the lifetime c τ
- ★ Quasi-stable LLP Cross the detector
- ☆ Decay inside the detector
 - ★ Displaced or disappearing objects, stopped particles

Searches for long-lived particles

- **Challenging** from the **experimental point of view**
 - ★ Non-standard reconstruction
 - \star Displacements, timing and ionization
 - ★ Dedicated triggers

- * Non-standard background is a challenge
- ★ Detector noise, cosmic rays, reco failures
- ★ Should be estimated from data

Many Long-lived Searches

Results presented in the talk today

ATLAS	EXO PublicResults		
Displaced vertex and muon (136 fb ⁻¹)	<u>CERN-EP-2019-219</u>		
Displaced Hadronic jets (36 fb- ¹)	EPJC 79 (2019) 481, PRD 101 (2020) 052013		
Reinterpretation of Displaced Hadronic jets with RECAST framework (36 fb ⁻¹)	ATL-PHYS-PUB-2020-007		
CMS .	EXO PublicResults		

☆ More can be seen in these talks in parallel session:

- ★ Searches for long-lived particles in CMS: Allison Hall
- ★ Searches for long-lived particles in ATLAS: Masahiko Saito

LLP SEARCH WITH DISPLACED VERTEX AND MUON WITH LARGE IMPACT PARAMETER CERN-EP-2019-219, arXiv:2003.11956

Displaced Vertices and Muon

Full Run-II result ! (136 fb⁻¹, 2016-2018)

- Pair production of stop LSP, followed by t~ -> $q\mu$ with small λ'_{23k} coupling
- Range of lifetime ~ 0.01 ns to 100 ns

- Main Backgrounds:
 - Cosmic muons
 - Fake muons from random hit \bigcirc combinations (have poor quality of fit)
 - Semi-leptonic decays of SM hadrons

- Large radius tracking: using the leftover hits not already associated to tracks from standard reconstruction by relaxing req. for impact parameter and number of shared hits [ATL-PHYS-PUB-2017-014]
- Displaced secondary vertex algorithm and muons should be non-pointing [ATL-PHYS-PUB-2019-013]

Displaced Vertices and Muon

- Limits set for $m_{t\sim}$ as a function of $c\tau$
- For the mean proper life-time of 0.1
 ns, masses below roughly m(t~) =
 1.7 TeV are excluded
- For wide range of mean life-time of 0.01 ns and 30 ns, mass below 1.3 TeV are excluded

arXiv:2003.11956

Displaced Jets

Full Runll result! (132 fb⁻¹, 2016-2018)

- Distinctive topology : pair of jets originating at a secondary vertex
- Different signal models targeted
- jet-jet Benchmark model :
 - Long-lived scalar neutral particles (X) decaying to quark-antiquark pairs
- Exotic decays of SM Higgs boson

 $\clubsuit \text{ gg} \rightarrow H \rightarrow 2S, S \rightarrow qq$

- where ct ~ 1mm to 3m
- Other BSM Models
 - Hidden Valley Higgs, Split SUSY, RPV SUSY, General Gauge Mediated SUSY

Displaced Jets: Pre-selection

Dedicated triggers : Displaced trigger and Inclusive trigger

 $\text{RMS}_{\text{cluster}} = \sqrt{\frac{1}{N_{\text{tracks}}} \sum_{i=1}^{N_{\text{tracks}}} \frac{(L_{\text{xy}}^{\text{exp}}(i) - L_{\text{xy}})^2}{L_{\text{xy}}^2}}.$

- A dedicated secondary Vertex reconstruction is performed
- QCD multijet process dominates the background
- Gradient Boosted decision tree (GBDT) as the

discriminant on four variables

- Vertex track multiplicity
- Cluster RMS
- Vertex Lxy significance
- ≻ |k|

$$L_{xy}^{exp} = \frac{IP_{2D}^{track}}{\sin(\phi_{track} - \phi_{dijet})} \left(1 - \frac{|IP_{2D}^{track}|}{R}\right)$$
$$\kappa = \sum_{i=1}^{6} \text{Sig}[IP_{2D}(track_i)].$$

May 30, 2020

-500

0

Data/MC

EXO-19-021

11

3000

500 1000 1500 2000 2500

SV

track

Predicted background in the final signal region : 0.75 + /- 0.44 (stat) +/- 0.39 (syst)

Number of observed events : 1 event

B Displaced Jets

EXO-19-021

2.8

2.6

2.4

1.8 1.6

1.4

1.2

Stop R-Hadron, pp $\rightarrow \tilde{t} \tilde{t}, \tilde{t} \rightarrow \mu q$

√s=13 TeV, 136 fb⁻¹, All limits at 95% CL

Observed Limit (±1 $\sigma_{\text{theory}}^{\text{SUSY}}$

Expected Excl. Limit (±1,2 σ_{axp})

ATLAS

- For Exotic decay of SM Higgs model, branching fractions larger than 1% is excluded for mean proper decay lengths between 1 mm and 1 m.
- For GMSB and SUSY RPV models, the most restrictive limits are set from CMS

DISPLACED HADRONIC JETS EUR. PHYS. J. C 79 (2019) 481

Displaced Hadronic Jets

- Eur. Phys. J. C 79 (2019) 481
- Distinctive topology : Neutral LLPs decaying mainly in the hadron calorimeter or at the edge of the ECAL p
- No associated activity in the tracker
- These jets have a high ratio of E_H/E_E (CalRatio Jets)
- Narrow shower
- CalRatio Jets are required in the analysis
- Two dedicated triggers to target heavy bosons with m_φ > 200 and < 200 GeV topology
 - low-ET trigger (10 fb⁻¹)
 high-ET trigger (33 fb⁻¹)
- Offline strategy to use MVA to discriminate between displaced jet, Non-collision background or multi-jet like

LLP DECAYING TO DISPLACED HADRONIC JETS IN INNER DETECTOR & MUON SPECTROMETER PRD 101 (2020) 052013

AT AT T AT AN

PRD 101 (2020) 052013

Displaced Hadronic Jets in ID + MS (36.1 fb⁻¹, 2015 + 2016)

- Distinctive topology : 2 neutral LLPs produced, with one decaying in the ATLAS inner tracking detector (ID) and the other in the muon spectrometer (MS)
- * Sensitivity : $c\tau$ from few centimeters to ~meters
- For each event one reconstructed decay vertex is required in the ID in addition to one in MS (JINST 9 (2014) P02001)
 - Specialised tracking and vertex algorithms are used
- Muon Region of Interest (RoI) Cluster trigger
 - ✤ L1 trigger search for two Rol in the MS with P_T >10 GeV (<u>JINST 8 (2013) P07015</u>)
 - HLT require atleast 3(4) L1 muons within DR
 < 0.4 in barrel (endcaps)
- Increases the sensitivity to low-mass scalars with shorter proper lifetimes relative to the combined results of the CR and MS analyses (EPJC 79 (2019) 481)

REINTERPRETATION OF DISPLACED HADRONIC JETS WITH RECAST FRAMEWORK <u>ATL-PHYS-PUB-2020-007</u>

Displaced Hadronic Jets

(33 fb⁻¹, 2016)

Basics of RECAST Framework

- Difficult to construct optimised analyses for the wide range of physics models
- But analysis optimised for original model offer good sensitivity to other models provided the signature are similar
- Event selection , background estimate and observed data distributions don't change in the context of re-interpretation
- ***** Only the signal distribution due to a new signal model must be derived
- RECAST : A framework designed to reuse estimates of backgrounds, systematic uncertainties and observations to test alternative signal hypothesis [arXiv: 1010.2506]

Dark photon model

Three models recasted
Stealth SUSY Model
Higgs portal baryogenesis model
Dark photon (FRVZ model)

Displaced Hadronic Jets

- ✤ 95% CL Limits set on the $\sigma_H x B_{H \rightarrow N\gamma d + X}$ as a function of LLP decay length , where the N can be 2 or 4
- Results are compared to previous published ATLAS result (<u>arXiv:1909.01246</u>) of collimated leptons or light hadrons (only considered hDPJ-hDPJ)
- First constraints set for h= 125 GeV
- For h = 800 GeV, limits from this search cover the region complementary to the the existing constraints

RECAST FW

L-PHYS-PUB-2020-007

May 30, 2020

Disappearing track

Full Run-II result! (140 fb⁻¹, 2016-2018)

- ✤ A long lived particle decaying within the CMS tracker
- If the decay products are un-detected, the track "disappears"
 - Neutral, weakly interacting
 - Too low momentum to be reconstructed
- Canonical Benchmark: anomaly-mediated supersymmetry breaking model (AMSB)
- Small mass splitting between chargino and neutralino
 - Direct electroweak production

$$pp \to \tilde{\chi}^{\pm} \tilde{\chi}^{\mp}, \, \tilde{\chi}^{\pm} \tilde{\chi}^{0}$$

•
$$\tilde{\chi}^{\pm} \rightarrow \pi^{\pm} \chi^{0}$$
 with lifetime O(1) ns

Disappearing track

arXiv:2004.05153

Phase 1 CMS Pixel Upgrade

- CMS previously searched for disappearing tracks (@ 8 and 13 TeV) using a 3-layer pixel tracker
 - Limited sensitivity to short tracks (compared to ATLAS' JHEP 1806 (2018) 022)
- Since 2017 CMS now has a 4-layer pixel tracker
- New analysis bins results in the number of layers with measurements:
 - $n_{layers} = 4, 5, \ge 6$
 - New sensitivity to shorter particle lifetimes

Disappearing track : Backgrounds

- SM particles don't disappear, however there are rare backgrounds:
 - Charged hadrons can interact with detector material, e.g.

$$\pi^+ + n \to \pi^0 + p$$

- Leptons can be mis-reconstructed
- Spurious ("fake") tracks pattern recognition errors
- Approach to controlling these:
 - Explore and mitigate all possible ways to lose tracker hits
 - Estimate the remaining probability to fall into search region

S Disappearing track : Selection

arXiv:2004.05153

Trigger Selection

- No tracking information at L1 trigger
 - Trigger on MET from ISR jets at L1
 - At HLT, OR of several MET requirements
 - MET > 105-300 GeV
 - Lowest threshold: MET > 105 GeV and pt > 50 GeV isolated track

Track Selection

- "Disappearing" is defined as:
 - ≥3 missing outer hits rejects most SM tracks
 - <10 GeV energy deposited within $\Delta R < 0.5$
 - Rejects most electrons and charged hadrons
 - E.g. electrons with significant brem. energy causing a track reconstruction failure

Χĩ

ISR jet

- In the context of AMSB, these results exclude charginos below
 - ✤ Wino-like neutralino case 884 (474) GeV for a lifetime of 3 (0.2) ns
 - ✤ Higgsino-like neutralino case 750 (175) GeV for a lifetime of 3 (0.05) ns
 - New interpretation for 2017-2018 data

NEURAL NETWORK BASED LLP SEARCH (EXO-19-011, ARXIV:1912.12238)

SNeural Network Based LLP Search

Benchmark model: split SUSY scenario

- Gluons form R-hadrons leading to displaced jets
- Model parameters
 - ✤ Masses
 - Proper lifetime

Existing search by CMS [JHEP 05 (2018) 025]
 Sensitivity to LLPs through b-tagging (cτ₀ ~ 1mm)

Enhance sensitivity with generic displaced jet tagger

Deep Neural Network (DNN) based multiclass classifier (parameterized as per proper decay length) to identify displaced jets

long-lived

EXO-19-011

arXiv:1912.12238

q

displaced

iets

JHEP 05 (2018) 025

May 30, 2020

EXO-19-011: Labelling "displaced" Jets

- Initial idea: "ghost" tagging as used for b, c jets
- Strong interactions between displaced quarks at the gluino decay vertex
 - ghost tagging cannot account for non-pointing jets or multiple jets from one parton

Solution:

Define jet momentum fraction of generator-level jet carried by clustered particles j per vertex v

$$f_v(\text{jet}) = \frac{\left(\sum_j \vec{p}_j \middle| j \in \text{vertex } v\right) \cdot \vec{p}_{\text{jet}}}{p_{\text{jet}}^2}, \quad f_v(\text{jet}) \in [0; 1]$$

- ↔ Label jets 'LLP' where $f_v = max$
- Remaining non-LLP jets can still possess significant fractions of displace particles
 - Ignore in training to avoid confusions
- Neural Network architecture inspired by CMS DeepJet Algo
- Training of NN on simulated events (jets from multijet, tt & split SUSY)
 - Predict jet class: uds, g, b, c, LLP

arXiv:1912.12238

SEXO-19-011: Results

- Domain adaptation by backward propagation to improve signal modelling
- Rejection factor: 10000 for jets from SM
- LLP Jet Tagging Efficiency: 30-80% for gluinos with 1mm ≤ cτ₀ ≤ 10m

Jet tagger for generic displaced jets:

- Parametrized neural network
- Good performance also for models
 not in training
- Simple event categorization (H_T,#jets, #jet tags)
- Competitive expected limits

EXO-19-011

Overview of CMS long-lived particle searches

Selection of observed exclusion limits at 95% C.L. (theory uncertainties are not included). The y-axis tick labels indicate the studied long-lived particle.

LHCP 2020

Summary

- Highlighted several unconventional signatures and long-lived searches today from full Run-2
 - CMS disappearing track search making use of Phase 1 pixel upgrade to extend sensitivity to lower particle lifetime
 - Added a new higgsino-like neutralino interpretation
 - CMS displaced jet search
 - Added interpretation from Exotic decay of SM Higgs boson
 - ATLAS displaced vertex and muon search
- ATLAS on-going effort to use RECAST framework to reinterpret new results
- CMS neural-network based search to target LLP signatures (requires out-of the box thinking)
 Stay funed for

Stay tuned for more results!

- Towards run-3
 - New ideas for trigger, reconstruction techniques and applications of machine learning to expand phase space of long-lived particles

EXTRA MATERIAL

Systemtic uncertainty for Displaced vertices with muon

Table 5: Summary of the impact of systematic uncertainties on the event selection efficiency ϵ_{sel} for the signal scenarios with pair-produced long-lived top squarks. These uncertainties apply to both signal region selections used in the search unless otherwise specified.

Source of uncertainty	Relative impact on ϵ_{sel} for signal events [%]
Total	18–20
Tracking and vertex reconstruction	15
Displaced muon efficiency	10–12
Prompt muon efficiency	$(0.01-0.7) \oplus (0.9-4.0)$
ISR modeling in MC simulation	3
Pileup modeling	0.37–2.2
Hadronic energy scale and resolution (affecting $E_{\rm T}^{\rm miss}$)	2.1
Integrated luminosity of dataset	1.7
Trigger efficiency	< 0.2

LHCP2020 : BHAWNA GOMBER

CalRatio Trigger

calRatio: 2015-2016

- Targets LLP decays in HCal
 - High ratio of energy deposited in HCal to energy deposited in the ECal
 - Narrow shower •
 - No associated activity in the tracker
- L1
 - High-E_T: 60 GeV τ trigger •
 - Low-E_T: 30 GeV τ trigger w/ no \geq 3 GeV ECal deposits nearby
 - Exploits L1Topo capabilities Introduced in mid-2016
- HLT
 - Tracking performed in Rols around jets with $E_T > 30$ GeV and $E_{FM}/E_H < 0.06$
 - Veto presence of tracks with $p_T > 2$ GeV within $\Delta R(jet) < 0.2$
 - Veto Beam-Induced Background (BIB) via cell timing/ position
- Offline strategy: use MVAs to discriminate against QCD and **BIB** background

RECAST workflow

Figure 3: A schematic of the workflow used in the analysis preservation. Individual steps (in green) are defined with dependencies from other steps (indicated by the arrows).

By John Stupak

RECAST workflow

Table 12: Extension of the γ_d proper decay lengths excluded at 95% CL assuming $\sigma_H \times B_{H \to N\gamma_d + X} = 5$ pb for the FRVZ model with $m_H = 800$ GeV following the reinterpretation of the CalRatio displaced jets search. The existing minimum and maximum decay lengths excluded using the hDPJ-hDPJ selection are denoted by $c\tau_{min}^{old}$ and $c\tau_{max}$. The maximum decay lengths excluded are unchanged following the reinterpretation, but the extended minimum decay lengths are indicated by $c\tau_{min}^{new}$.

Process	$\sigma_H \times B_{H \to N\gamma_d + X}$ [pb]	$c au^{new}_{min}$ [m]	$c au^{old}_{min}$ [m]	$c au_{max}$ [m]
$H \rightarrow 2\gamma_d + X$	5	0.00046	0.0073	1.298
${\rm H} \rightarrow 4\gamma_d + {\rm X}$	5	0.0006	0.0136	0.231

Displaced ID + MS analysis

TABLE IX. Ranges of proper lifetimes excluded at 95% CL for the $m_H = 125$ GeV benchmark model assuming a 10% branching ratio for $H \rightarrow ss$. The $m_s = 55$ GeV exclusion range uses the results of the ID and CR analyses only.

<i>m</i> _s [GeV]	Excluded cτ range at 95% CL [m]
8	0.06–15
15	0.09-64
40	0.12–110 0.26–197
55	0.39-8.1