

LHCb Upgrades

Mark Tobin

Institute of High Energy Physics Chinese Academy of Sciences

On behalf of the LHCb collaboration

Overview

- Motivation.
 - Flavour physics @ HL-LHC.
- Upgrade I.
 - Status of installation.
- Upgrade lb.
 - Consolidation plans.
- Upgrade II.
 - Plans & Design.
- Summary.

Why LHCb?

- Dedicated heavy flavour experiment at LHC.
 - Measure CP-violation in b-sector.
 - Study rare b- and c- hadron decays.
 - Exploit forward production of b-pairs with low angle.
- ♦ Indirect searches for New Physics.
- Physics program in Runs 1&2 was much much more.
 - Electroweak, QCD, direct searches, heavy ions.
- ♦ General Purpose Detector in forward region.

Why upgrade?

- Some hints of New Physics in LHC Runs 1 & 2.
 - Lepton flavour (non-)universality?
 - Semi-leptonic $B^0 \rightarrow D^{(*)-} I^+ v$ (tree level decay) R(D*).
 - b \rightarrow sl⁺l⁻ decays e.g. B⁰ \rightarrow K^{(*)0} l⁺l⁻ (FCNC decays) R(K), R(K*).
 - Angular analysis of $K^*\mu^+\mu^-$.
 - No "discovery" but coherent set of discrepancies w.r.t. Standard Model.
- More data to further challenge theoretical predictions.

Precision tests with very rare decays (BR < 10⁻⁹). design

- Limited by Level-0 hardware trigger.
 - Maximum rate is 1.1 MHz.
- Higher luminosities:
 - Trigger yield saturates.
 - Harder cuts on E_T and p_T .
 - No real gain in statistics.
- Higher occupancy.
 - Degraded detector performance.
 - Radiation damage of detectors.

Detector Performance

- Separation of primary and secondary vertices.
 - Impact parameter resolution: (15 +29/ p_T [GeV]) μm.
- Proper time resolution.
 - − Decay time resolution: ~45 fs ($B_s \rightarrow J/\psi \phi \& B_s \rightarrow D_s \pi$).
- Excellent momentum resolution:
 - $-\Delta p / p = 0.5\%$ (<20 GeV) to 1.0% (200 GeV).
- Particle Identification:
 - Separation between γ , e^{\pm} , mu^{\pm} , π , K, p.
- Trigger Selection:
 - Efficient trigger for leptonic and hadronic final states.
 - Fast reconstruction of primary and secondary vertices

Run 1&2 performance is benchmark for Upgrades

LHC-B

LETTER OF INTENT

A Dedicated LHC Collider Beauty Experiment for Precision Measurements of CP-Violation 1995

Figure 2.1: Limits on the CKM parameters (1 σ) ρ and η for $m_t = 174$ GeV. The annular region cen-

$$V_{\text{CKM}} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

Matrix is unitary: $V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$

$$\alpha = \arg\left(-\frac{V_{td}V_{tb}^*}{V_{ud}V_{ub}^*}\right), \qquad \beta = \arg\left(-\frac{V_{cd}V_{cb}^*}{V_{td}V_{tb}^*}\right), \qquad \gamma \equiv \arg\left(-\frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*}\right).$$

CKM Measurements

LHC-B

LETTER OF INTENT

A Dedicated LHC Collider Beauty Experiment for Precision Measurements of CP-Violation

1995

Figure 2.1: Limits on the CKM parameters (1σ) ρ and η for $m_t = 174$ GeV. The annular region cen-

$$V_{\text{CKM}} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

ATLAS & CMS (3000 fb⁻¹)

 $\sigma_{v} \approx 5^{\circ} (2019) \rightarrow 1^{\circ} (Phase 1) \rightarrow 0.35^{\circ} (Phase 2)$

Physics Reach

Observable	Current LHCb	LHCb 2025	Belle II	Upgrade II	ATLAS & CMS
EW Penguins					
$R_K (1 < q^2 < 6 \mathrm{GeV}^2 c^4)$	0.1	0.025	0.036	0.007	_
$R_{K^*} (1 < q^2 < 6 \mathrm{GeV}^2 c^4)$	0.1	0.031	0.032	0.008	_
R_{ϕ},R_{pK},R_{π}	_	0.08, 0.06, 0.18	_	0.02,0.02,0.05	_
CKM tests					
γ , with $B_s^0 \to D_s^+ K^-$	$\binom{+17}{-22}^{\circ}$	4°	_	1°	_
γ , all modes	(+5.0 (-5.8)°	1.5°	1.5°	0.35°	_
$\sin 2\beta$, with $B^0 \to J/\psi K_s^0$	0.04	0.011	0.005	0.003	_
ϕ_s , with $B_s^0 \to J/\psi \phi$	49 mrad	14 mrad	_	$4 \mathrm{\ mrad}$	$22 \mathrm{\ mrad}$
ϕ_s , with $B_s^0 \to D_s^+ D_s^-$	170 mrad	35 mrad	_	9 mrad	_
$\phi_s^{s\bar{s}s}$, with $B_s^0 \to \phi\phi$	154 mrad	39 mrad	_	11 mrad	Under study
$a_{ m sl}^s$	33×10^{-4}	10×10^{-4}	_	3×10^{-4}	_
$ V_{ub} / V_{cb} $	6%	3%	1%	1%	_
$B^0_s, B^0{ ightarrow}\mu^+\mu^-$					
$\overline{\mathcal{B}}(B^0 \to \mu^+ \mu^-)/\mathcal{B}(B_s^0 \to \mu^+ \mu^-)$	90%	34%	_	10%	21%
$ au_{B^0_s o\mu^+\mu^-}$	22%	8%	_	2%	-
$S_{\mu\mu}$	_	_	_	0.2	-
$b \to c \ell^- \bar{\nu_l}$ LUV studies					
$R(D^*)$	0.026	0.0072	0.005	0.002	_
$R(J/\psi)$	0.24	0.071	_	0.02	_
Charm					
$\Delta A_{CP}(KK - \pi\pi)$	8.5×10^{-4}	1.7×10^{-4}	5.4×10^{-4}	3.0×10^{-5}	_
$A_{\Gamma} \ (\approx x \sin \phi)$	2.8×10^{-4}	4.3×10^{-5}	3.5×10^{-4}	1.0×10^{-5}	_
$x \sin \phi$ from $D^0 \to K^+ \pi^-$	13×10^{-4}	3.2×10^{-4}	4.6×10^{-4}	8.0×10^{-5}	_
$x \sin \phi$ from multibody decays	_	$(K3\pi) \ 4.0 \times 10^{-5}$	$(K_{\rm S}^0\pi\pi)~1.2\times 10^{-4}$	$(K3\pi) 8.0 \times 10^{-6}$	_

^{*} Taken from Physics case for an LHCb Upgrade II (CERN-LHCC-2018-027)

2. CERN-LHCC-2011-001

3. CERN-LHCC-2012-007

I. CERN-LHCC-2013-021

. CERN-LHCC-2013-022

. CERN-LHCC-2014-001

7. CERN-LHCC-2014-016

8. CERN-LHCC-2018-007

9. CERN-LHCC-2018-014

10. CERN-LHCC-2019-005

UPGRADE I

Conditions:

- Luminosity: 2×10³³ cm⁻²s⁻¹ (inst.), 50 fb⁻¹ (int.)
- 5.2 visible interactions / crossing.

Challenge:

- Maintain current reconstruction performance in harsher environment.
- Read out the complete detector at 40 MHz.

25th May 2014 LHCP2020, online edition 10

NEW PHOTON DETECTORS AND READ-OUT!

NEW READ-OUT!

- RTA is integral part of DAQ chain in upgrade data processing.
 - Offline reconstruction in HLT2 à la Run 2.
- TURBO model for exclusive selections.
 - High-level physics objects directly from the HLT \rightarrow small fraction of raw event size.
- HLT1 reconstruction will run on GPUs.

Online

- Data centre on surface.
 - Event Filter Farm and Event Builder network.
- Long distance optical fibres.
 - 19008 fibers installed (0.25% broken).
- Common read-out boards (PCIe40).
 - Large FPGA with 1.15M cells.
 - 48 bi-directional links (10 Gbit/s).
 - Three flavours of firmware.
- GPUs in event builder PCs.
 25th May 2014

- Two retractable halves
 - 3.5 mm from beam when closed.
 - First measurement at 5.1 mm.
- Operates in secondary vacuum.
 - Aluminium R.F. foils separate detector from beam vacuum.
 - Milled to 250 μm thick then chemically etched to 150 μm.
- 52 hybrid-pixel modules.
 - 41M pixels covering total area ~ 1.2 m².

Interaction point (indicative)

- $-200~\mu m$ n-on-p sensor tiles.
- New read-out ASIC (VeloPix).
 - 256x256 pixel array (55 μm x 55 μm)
 - 12 per module.
- Evaporative CO₂ cooling in silicon microchannel substrates (T < -20°C).</p>
- High bandwidth:
 - 20 Gbit/s in hottest ASICs with ~ 3 Tbit/s overall.
- Non-uniform irradiation:
 - $-8 \times 10^{15} \, \text{n}_{\text{eq}} \, / \, \text{cm}^2 \text{ which falls as } \sim \text{r}^{-2.1}.$

25th May 2014

LHCP2020, online

Upstream Tracker

LHCb

- Silicon micro-strip detector.
 - Four layers (x, u, v, x) upstream of magnet.
 - Finer granularity, closer to beam.
- Four types of sensors.
 - n- and p-type with 512 or 1024 strips.
 - 320/250 µm thick; 190/95 µm pitch.
- Modules mounted on double-sided staves.
 - 68 staves / 968 sensors.
 - Bi-phase CO₂ cooling pipe integrated in stave.
- New read-out ASIC (SALT).
 - 128 channels with 6-bit ADC.
 - Pedestal & common-mode subtraction, zerosuppression.
 - Output up to 6 SLVS e-links per ASIC.
 - 1048 4-asic read-out sectors = 4192 ASICs.
- Read-out electronics mounted on detector frame.

Upstream Tracker

- Silicon micro-strip detector.
 - Four layers (x, u, v, x) upstream of magnet.
 - Finer granularity, closer to beam.
- Four types of sensors.
 - n- and p-type with 512 or 1024 strips.
 - 320/250 µm thick; 190/95 µm pitch.
- Modules mounted on double-sided staves.
 - 68 staves / 968 sensors.
 - Bi-phase CO₂ cooling pipe integrated in stave.
- New read-out ASIC (SALT).
 - 128 channels with 6-bit ADC.
 - Pedestal & common-mode subtraction, zerosuppression.
 - Output up to 6 SLVS e-links per ASIC.
 - 1048 4-asic read-out sectors = 4192 ASICs.
- Read-out electronics mounted on detector frame.

Scintillating Fibre Tracker Scintillating fibres read out with SiPMs. 2.4 m long, 250 µm diameter, 6 layers of fibres in module. 12 detection planes – $3 \times (x, u, v, x)$. SiPMs outside acceptance. 128 channels with width 250 μm Require cooling to -40°C (neutron radiation). New ASIC for read-out (PACIFIC). 64 channels, 130 nm CMOS (TSMC). ADC with three hardware thresholds. Clustering on FPGA board in front-end box. Cold boxes Front-end boxes **C-Frame**

Cherenkov detectors:

- RICH 1: C₄F₁₀ (10 65 GeV/c).
 - Replace everything (mirrors, gas enclosure, quartz windows).
- RICH 2: CF₄ (15 100 GeV/c).
- Replace Hybrid Photon Detectors (HPDs) with Multi Anode Photomultiplier Tubes (MaPMTs).
- New 8-channel read-out ASIC (CLARO).

Calorimeters & Muon System

- Remove unnecessary detectors.
- Replace read-out electronics.

MaPMTs (Hamamatsu)

LHCP2020, online edition

25th May 2014

- 1. CERN-LHCC-2017-003
- 2. CERN-LHCC-2018-027

UPGRADE II

Conditions:

- Luminosity: $1.5 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$ (inst.), 300 fb⁻¹ (int.)
- 40 visible interactions / crossing.

Challenge:

- Maintain current reconstruction performance in much, much harsher environment.
- Develop detectors with timing information for tracking & Particle ID.

25th May 2014 LHCP2020, online edition 20

Detector Technologies

Lots of R&D across collaboration.

- SPACAL with crystal fibres.
- CMOS tracker chip in design.
- Silicon with timing capabilities.
- Photon sensors with timing.
- New MPGDs for high-rate muon detection.

Summary

CONCLUSIONS

Summary

Upgrade I (2008 – now):

- Significant progress made by all sub-detectors.
 - Installation is underway!
 - All sub-detectors (were) in full production mode.
- Schedule is (increasingly) challenging.
 - Impact of COVID-19 continuously being assessed.

Upgrade II (2017 – ??):

- Lots of active R&D across collaboration.
- Sub-detectors developing baseline designs.
- Framework TDR expected in 2021.

Merci à tous!

MORE?

BACK UP

UPGRADE 1

Target Luminosity

^{*} μ is average number of visible pp interactions per bunch crossing.

CKM Measurements

LHCb

LHC-B

LETTER OF INTENT

A Dedicated LHC Collider Beauty Experiment for Precision Measurements of CP-Violation 1995

Figure 2.1: Limits on the CKM parameters (1 σ) ρ and η for $m_t=174$ GeV. The annular region cen-

$$V_{\text{CKM}} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

LHCb (23fb⁻¹), Belle-II (50 ab⁻¹) ATLAS & CMS (300 fb⁻¹)

 $\sigma_{v} \approx 5^{\circ} (2019) \rightarrow 1^{\circ} (Phase 1) \rightarrow 0.35^{\circ} (Phase 2)$

R/O Electronics

To be UPGRADED

- Remove Level-0 hardware trigger.
 - Read out every bunch crossing (40 MHz).
 - Replace all front-end electronics.
- Trigger-less read-out system.
 - Full software trigger for every 25 ns bunch crossing.
- Higher occupancy.
 - Redesign and replace tracking detectors.
- Installation during Long Shutdown 2 (on-going).

VELO II

- Hybrid pixel detector.
 - Easier pattern recognition.
 - − Thinner sensors (300 μ m → 200 μ m).
- Move closer to beam
 - First measurement: 8.13 mm → 5.1 mm.
- New RF foil.
 - Reduce material before first measurement.
- New ASIC (VeloPix)
 - Based on Medipix/TimePix.
 - 256x256 (55 μm x 55 μm)
 - 12 per module.
- Non-uniform irradiation.
 - Extremely high data rates.
 - Micro-channel cooling in substrate.

LHCP2020, online edition

Upstream Tracker

Slice test

- Near-detector electronics outside acceptance.
 - Distributes TFC&ECS signals.
 - Collects serial data from ASICs (320 Mbps).
 - Transmits optical serial data via GBTx/VTTx (~4.8 Gbps).
 - Connected to stave via pigtail flex cables.
- Two versions of read-out ASIC (SALT).
 - Problems found in previous iterations have been solved.

amplitude

pixel

pos

channel

fired pixel

photon

SciFi Tracker

fibre

RICH

RICH1:

Change everything but the magnetic shielding

- mirrors, gas enclosure, quartz windows
- Photon detectors, electronics, detector mechanics

=> 22 columns

RICH2:

Change only detectors

 Photon detectors, electronics, detector mechanics

=> 24 columns

25th May 2014

LHCP2020, online edition

RICH 1

CO₂ cooling

RICH 1 mechanics installed:

Magnetic shielding shelves, MaPMT supports, gas enclosure.

Detector Services:

- 100% of long distance copper cables installed.
- 100% of optical fibres installed & tested.
 - Few fibres with power loss > threshold.
- 100% of long distance pipes installed.

CO₂ cooling plants (VELO & UT):

- CO₂ cooling plants and distribution boxes installed.
- Connections and first tests performed.

Services

Cleaning required to remove "oil".

HLT1 on GPUs

- Each event builder server has two GPU slots = 500 GPUs.
- HLT1 must run at visible collision rate (30 MHz).
 - Minimum throughput rate per GPU is 60 kHz.
- See presentation by Dorothea Vom Bruch for more details (27/5).

Magnet tracking stations

Time Of internally Reflected CHerenkov light (TORCH).

UPGRADE 1B

Magnet Stations

- Tracking stations on internal walls of magnet.
 - Reconstruction low momentum tracks.
- Scintillator bars read out with SiPMs outside acceptance.
 - Re-use existing SciFi Tracker electronics (ASIC, read-out boards, etc).

Mirrored edge

250 cm

Beam pipe

TORCH

NIM A 639 (1) (2011) 173

- Time Of internally Reflected CHerenkov light.
 - Large area time-of-flight detector.
 - Provide PID in momentum range 1 10 GeV/c.
- Cherenkov light produced in quartz plates.
 - Photons travel to detector plane via total internal reflection.
- Focusing block focuses image on detection plane.
- Multichannel plate PMTs with 35 ps time resolution.
 - Resolutions of 88 130 ps achieved in test beams.
- Possible installation in Upgrade 1b.

UPGRADE 2

Radiation Environment

VELO, Upgrade 1 Fluence per fb⁻¹ $(1 \text{ MeV n}_{eq}/\text{cm}^2)$

- Expected dose / fluence:
 - VELO: $5 \times 10^{16} \, n_{eq} / cm^2$.
 - ECAL: 1 MGy; ≤ 5 x 10^{15} n_{eq}/cm².
 - Tracker: $3 \times 10^{14} \, n_{eq} / cm^2$ (silicon).
 - SiPMs: $13.2 \times 10^{11} \, n_{eq}/cm^2$ (run 3&4).
- Non-uniform irradiation profile.
- Need radiation hard detectors and/or extreme cooling solutions.
- Make hot-swappable detectors!

- Reconstruction of PV critical for LHCb.
 - 40 visible interactions / crossing @ 1.5×10^{34} cm⁻²s⁻¹.
- Add timing information.
 - Reduces combinatorics and minimises PV mis-association.
- PV mis-association rate ~ 20% without timing.
 - Reduce to \sim 5% with timing precision between 50 100 ps.

VELO III

- Silicon sensors with timing capability.
 - Aim for 50 ps per hit \rightarrow 15 ps per track.
 - Several candidates: LGAD, 3D, MAPS.
- Higher occupancy:
 - Reduce pixel size
 - $-55 \times 55 \mu m^2 \rightarrow 27.5 \times 27.5 \mu m^2$.
- Minimise material.
 - Thinner sensors.
 - Remove r.f. foil and operate in primary vacuum.
- Fluence ~ $8 \times 10^{16} \, n_{eq} / cm^2$.
 - Require radiation hard sensors.

Downstream Tracking

- Add silicon detectors in central region.
 - Segmentation in y-direction → reduce ghost rate.
- Replace SciFi modules around beam-pipe in LS3.
 - Hybrid modules with shorter fibres.
 - Silicon sensors around beam-pipe (HV-CMOS).
- New radiation hard fibres being studied.
- Cryogenic cooling proposed for SiPMs (-80°C).

LHCB I

LHCb detector

LHCb VErtex LOcator I (VELO)

- Two retractable halves
 - 5 mm from beam when closed.
 - 30 mm during injection.
 - First measurement at 8.13 mm.
- Operates in secondary vacuum.
 - 300 μm aluminium foils separates detector from beam vacuum.
- 21 R-Φ modules per half.
 - Silicon microstrip sensors.
 - Pitch: 38 101 μm.
- Best resolution: 4 μm!

LHCb Tracker

Outer Tracker:

- Gaseous straw tube detector.
- \circ 12 detection layers (~ 4 x 6 m²).
- o 53760 straw tubes (2.4 m long, 4.9 mm diameter).
- o Gas mixture: Ar/CO₂/O₂ (70%/28.5%/1.5%).
- Nominal operating voltage is 1550 V.
- Resolution ≈ 200 μm.

Silicon Tracker:

Silicon micro-strip detectors covering areas
 closest to the beam pipe. 5m

Inner Tracker

 \circ Pitch: 183 μm (TT), 198 μm (IT).

Tracker Turicensis

- o Thickness: 500 μm (TT), 320/410 μm (IT)
- Strips up to 37 cm long.
- Resolution \approx 50 µm.

