

Electroweak precision measurements in ATLAS

LHCP 2020

Alexis Vallier (CERN) On behalf of the ATLAS collaboration

Electroweak precision measurements

- Test self-consistency of Standard Model
 - Can be indirect evidence for new physics
- EW symmetry breaking sector can be better constrained, especially m_w and $sin^2\theta_w$
- Direct measurement target uncertainties:

		EW Fit	World Avg.
-	δm_w at the level of $10~MeV$	7 MeV	13 MeV

- $\delta \sin^2 \theta_{eff}$ at the level of **10.10**-5 6.10⁻⁵ 16.10⁻⁵
- LHC measurements start to reach LEP/Tevatron precisions

Gfitter

EW measurements in ATLAS @ LHCP2020

M_w [GeV]

W/Z Production at LHC

W mass measurement at 7 TeV

r

• Method : template fit to p_T^l and m_T

- $p_{T^{l}}$ description depends on $p_{T^{W}}$ modelling
 - \rightarrow large theory uncertainties
- m_T sensitive to hadronic recoil u_T
 - \rightarrow resolution worsen with pile-up

$$ec{u}_T = \sum_i ec{E}_{T,i}$$

Eur. Phys. J. C 78 (2018) 110

$$\vec{p}_T^{\text{miss}} = -(\vec{p}_T^{\ l} + \vec{u}_T)$$

$$a_T = \sqrt{2p_T^l p_T^{\text{miss}} \cos(1 - \Delta\phi)}$$

Alexis Vallier

W mass measurement : Uncertainties

			Uncertaintie	s in MeV						
m_w [MeV]	Stat. Unc.	Muon Unc.	Elec. Unc.	Recoil Unc.	Bckg. Unc.	QCD Unc.	EW Unc.	PDF Unc.	Total Unc.	χ^2/dof
80369.5	6.8	6.6	6.4	2.9	4.5	8.3	5.5	9.2	18.5	29/27
			· 승규가 · · · · · · · · · · · · · · · · · · ·	이는 것 같은 것 같은 것 같은 것 같은 것 같이						

- Main uncertainties: QCD modeling and PDF
- PDF uncertainties large because W polarisation not well known
- QCD uncertainties mainly due to p_T^W modelling
 - Uncertainty coming mainly from $Z \rightarrow W$ extrapolation
 - W/Z ratio predictions have large uncertainties

Eur. Phys. J. C 78 (2018) 110

ATL-PHYS-PUB-2017-021

Prospects on p_T^W

- Low pile-up data : enhanced sensitivity to m_w
 - Measure better m_T and p_T^W
- Need to know better $p_{\rm T}{}^{\rm W}$, in 5 GeV bins \rightarrow measure it with <\mu>~2
- Use $\langle \mu \rangle \sim 2$ data sets taken at 5 TeV (257pb⁻¹) and 13 TeV (335pb⁻¹) :
 - Target 1% precision on $p_T^W \rightarrow$ should reduce by 2 p_T^W modelling uncertainty for W mass

Alexis Vallier

Weak mixing angle from Angular Coefficients

- $pp \rightarrow Z \rightarrow ll cross-section can be$ expanded in harmonic polynomial
 - 9 polynomials $P_i(\cos\theta, \phi)$ → Z decay kinematics (in Collins-Soper frame)
 - $\begin{array}{ll} & 8 \mbox{ angular coefficients } A_i + \mbox{ unpolarised} \\ & \mbox{ cross-section } \sigma^{\rm U+L} \rightarrow Z \mbox{ production} \end{array}$
 - A_4 function of $sin^2 \theta_{eff}^1$
- Method : fit reconstructed $(\cos\theta, \phi, m^{11}, y^{11})$ in born level (m^z, y^z) bins
 - Extract A_4 in full decay lepton phase space and infer $\sin^2 \theta_{l_{eff}}^{l}$ using predictions

n

ATL-CONF-2018-037

$sin^2\theta^{\rm l}_{\rm eff}$ at 8 TeV

ATL-CONF-2018-037

- ATLAS measurement competitive with LEP, SLD and Tevatron results
- ATLAS benefits from improved sensitivity using forward electrons (2.5<|η|<4.9)
 - Lower dilution at high $|y_z|$
- Total uncertainty 36x10-5:
 - $21 \text{ (stat)} \pm 24 \text{ (PDF)} \pm 16 \text{ (syst)}$
 - PDF uncertainties mitigated by profiling (exploit correlations in m¹¹ and y¹¹ bins)

Prospects on \sin^2\theta_{eff}^1

LHC Run-2

- Compared to 8 TeV
 - Luminosity : $20.2 \text{ fb}^{-1} \rightarrow 139 \text{ fb}^{-1}$
 - Higher cross-section
 - \rightarrow Much larger statistics
 - But higher dilution
- Finer binning in y^z : better constrain on PDF uncertainties
- Expected sensitivity on $\sin^2\theta_{\text{eff}} \sim 25.10^{-5}$

LHC Run-3

- ATLAS upgrade its trigger system
 - Improved trigger efficiencies on muons and electrons
 - Will be able to keep low p_T thresholds on leptons
 - Will have capabilities to trigger on forward electrons

Alexis Vallier

Prospects with HL-LHC

• Atlas detector upgraded at HL-LHC, including :

- New tracker ITk : extended coverage $|\eta| < 2.5 \rightarrow |\eta| < 4$
- Timing detector in forward region HGTD : pile-up background rejection
- Expected sensitivity on $m_w \sim 10$ MeV (with 200 pb⁻¹ of low- μ data)
- Expected sensitivity on sin²θ¹_{eff} ~ 15.10⁻⁵

Alexis Vallier

Drell-Yan @ 13 TeV , 36.1 $fb^{\text{-}1}$

1912.02844

Alexis Vallier

$pp \rightarrow Z/\gamma^* \rightarrow ll : Results$

Channel	Measured cross-section $\times \mathcal{B}(Z/\gamma^* \to \ell\ell)$	Predicted cross-section $\times \mathcal{B}(Z/\gamma^* \to \ell \ell)$			
	(value \pm stat. \pm syst. \pm lumi.)	(value \pm PDF $\pm \alpha_{\rm S} \pm$ scale \pm intrinsic)			
$Z/\gamma^* \to ee$	$738.3 \pm 0.2 \pm 7.7 \pm 15.5 \text{pb}$	NNL O in α (DYTurbo)			
$Z/\gamma^* \to \mu\mu$	$731.7 \pm 0.2 \pm 11.3 \pm 15.3 \text{ pb}$				
$Z/\gamma^* \to \ell \ell$	$736.2 \pm 0.2 \pm 6.4 \pm 15.5 \text{ pb}$	$703^{+19}_{-24} \stackrel{+6}{_{-8}} \stackrel{+4}{_{-6}} \stackrel{+5}{_{-5}} \text{ pb } [69]$			

1912.02844

- Results unfolded at Born and Dressed levels
- Good agreement between ee and µµ channels
- Combination with BLUE method
 - Systematic uncertainties reduced in the combination (some uncorrelated sources)
 - Precision of 0.2% for p_{T^{ll}}<30GeV
- Main uncertainties:
 - Leptons reconstruction and identification
 - Leptons momentum scale and resolution (for p_T^{ll}) + Luminosity (Only for absolute cross-section)

Alexis Vallier

$\mathbb{Z}/\gamma^* \to \mathbb{Il}$: Comparison to predictions

- Sherpa : NLO up to 2 partons, LO up to 4 partons
 - Describes data from $p_T^{ll} > 30$ GeV and $\phi^*_{\eta} > 0.1$ within 4%
 - This data can be useful to tune PS settings at low p_T^{ll}
- RadISH : fixed-order NNLO (α_s^3) + resummation N³LL
 - Agreement over the full spectrum (1-3 %)
- Powheg+Pythia8 : NLO matrix elem. + PS AZNLO tune
- Pythia8 : LO matrix. Elem + PS AZ tune
 - Both AZ & AZNLO tunes describe 13 TeV data within 2-4% at $p_T^{11} < 40$ GeV and $\phi^*_{\eta} < 0.5$
- At high p_T^{II} , well below data \rightarrow missing higher order corr. Describe data at % level : need state of the art NNLO+N³LL

EW measurements in ATLAS @ LHCP2020 1912.02844 13

Alexis Vallier

$Z/\gamma^* \rightarrow ll$: Comparison to predictions ($p_T^{\ ll} > 10 \text{ GeV}$)

- NNLOjet : order α_s^3
 - Expected to describe well data only from $p_T^{ll} > 15$ GeV
 - Above data at high p_T^{ll}
- NNLOjet + NLO Electroweak corr. (FEWZ)
 - EW corrections \rightarrow suppression at high p_T^{ll}
 - Below data at high $p_{T^{ll}}$
- Both discrepancies not significant
 - Within the measurement uncertainties

With current statistics, not yet sensitive to EW corrections

Alexis Vallier

EW measurements in ATLAS @ LHCP2020

1912.02844 14

Conclusion

- ATLAS experiment well suited to pursue precise measurements in electroweak sector
- Reaching LEP/SLD/Tevatron precision
- Main limitations in the future : precise predictions (esp. PDFs)
- Experimental and Theory communities need to work together to fully exploit the LHC data (up to HL-LHC)

BACKUP

Alexis Vallier

$pp \rightarrow Z/\gamma^* \rightarrow ll$: Uncertainties

- Main systematics on absolute cross-section:
 - Leptons momentum scale and resolution (for p_T^{ll})
 - Leptons reconstruction and identification \rightarrow Also for normalised cross-section
 - Luminosity
- Normalised cross-section: precision of 0.2% for $p_T^{II} < 30 GeV$

1912.02844

Drell-Yan @ 13 TeV , 36.1 fb⁻¹ : Control plots

Alexis Vallier

EW measurements in ATLAS @ LHCP2020

1912.02844

Drell-Yan @ 13 TeV , 36.1 fb⁻¹: Observables

Alexis Vallier

EW measurements in ATLAS @ LHCP2020

1912.02844

19